- Shopping Bag ( 0 items )
-
All (4) from $62.65
-
New (2) from $102.8
-
Used (2) from $62.65
More About This Textbook
Overview
Explore cutting-edge statistical methodologies for collecting, analyzing, and modeling online auction data
Online auctions are an increasingly important marketplace, as the new mechanisms and formats underlying these auctions have enabled the capturing and recording of large amounts of bidding data that are used to make important business decisions. As a result, new statistical ideas and innovation are needed to understand bidders, sellers, and prices. Combining methodologies from the fields of statistics, data mining, information systems, and economics, Modeling Online Auctions introduces a new approach to identifying obstacles and asking new questions using online auction data.
The authors draw upon their extensive experience to introduce the latest methods for extracting new knowledge from online auction data. Rather than approach the topic from the traditional game-theoretic perspective, the book treats the online auction mechanism as a data generator, outlining methods to collect, explore, model, and forecast data. Topics covered include:
Throughout the book, R and MATLAB software are used for illustrating the discussed techniques. In addition, a related Web site features many of the book's datasets and R and MATLAB code that allow readers to replicate the analyses and learn new methods to apply to their own research.
Modeling Online Auctions is a valuable book for graduate-level courses on data mining and applied regression analysis. It is also a one-of-a-kind reference for researchers in the fields of statistics, information systems, business, and marketing who work with electronic data and are looking for new approaches for understanding online auctions and processes.
Visit this book's companion website by clicking here
Editorial Reviews
From the Publisher
"Modeling online auctions is a valuable book for graduate-level courses on data mining and applied regression analysis." (Mathematical Reviews, 2011)"The referred volume offers a detailed survey of methods and run of online auctions by means of detailed analysis of empirical and statistical data . . . the volume is completed by a rich bibliography and index." (Zentralblatt Math, 2010)
"Modeling Online Auctions is a valuable book for graduate-level courses on data mining and applied regression analysis. It is also a one-of-a-kind reference for researchers in the fields of statistics, information systems, business, and marketing who work with electronic data and are looking for new approaches for understanding online auctions and processes". (Dublin Business Wire, 27 October 2010)
Product Details
Related Subjects
Meet the Author
WOLFGANG JANK, PhD, is Associate Professor of Management Science and Statistics in the Robert H. Smith School of Business at the University of Maryland, where he is also Director of the Center for Complexity in Business. He has published over seventy articles on statistics and data mining in electronic commerce, marketing, information systems, and operations management. Dr. Jank is the coauthor of Statistical Methods in e-Commerce Research (Wiley).
GALIT SHMUELI, PhD, is Associate Professor of Statistics and Director of the eMarkets Research Lab in the Robert H. Smith School of Business at the University of Maryland. Her research focuses on statistical strategy and data mining methods for scientific research and real-world applications. Dr. Shmueli has published over sixty journal articles on statistical and data mining methods related to online auctions and biosurveillance. She is the coauthor of Statistical Methods in e-Commerce Research and Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel® with XLMiner®, Second Edition, both published by Wiley.
Table of Contents
Preface.
Acknowledgments.
1 Introduction.
1.1 Online Auctions and Electronic Commerce.
1.2 Online Auctions and Statistical Challenges.
1.3 A Statistical Approach to Online Auction Research.
1.4 The Structure of this Book.
1.5 Data and Code Availability.
2 Obtaining Online Auction Data.
2.1 Collecting Data from the Web.
2.2 Web Data Collection and Statistical Sampling.
3 Exploring Online Auction Data.
3.1 Bid Histories: Bids versus "Current Price" Values.
3.2 Integrating Bid History Data With Cross-Sectional Auction Information.
3.3 Visualizing Concurrent Auctions.
3.4 Exploring Price Evolution and Price Dynamics.
3.5 Combining Price Curves with Auction Information via Interactive Visualization.
3.6 Exploring Hierarchical Information.
3.7 Exploring Price Dynamics via Curve Clustering.
3.8 Exploring Distributional Assumptions.
3.9 Exploring Online Auctions: Future Research Directions.
4 Modeling Online Auction Data.
4.1 Modeling Basics (Representing the Price Process).
4.2 Modeling The Relation Between Price Dynamics and Auction Information.
4.3 Modeling Auction Competition.
4.4 Modeling Bid and Bidder Arrivals.
4.5 Modeling Auction Networks.
5 Forecasting Online Auctions.
5.1 Forecasting Individual Auctions.
5.2 Forecasting Competing Auctions.
5.3 Automated Bidding Decisions.
Bibliography.
Index.