Privacy-Preserving Data Mining: Models and Algorithms

Overview

Advances in hardware technology have increased the capability to store and record personal data. This has caused concerns that personal data may be abused. This book proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. The book is designed for researchers, professors, and...

See more details below
Paperback (Softcover reprint of hardcover 1st ed. 2008)
$151.08
BN.com price
(Save 27%)$209.00 List Price
Other sellers (Paperback)
  • All (6) from $130.81   
  • New (6) from $130.81   
Sending request ...

Overview

Advances in hardware technology have increased the capability to store and record personal data. This has caused concerns that personal data may be abused. This book proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. The book is designed for researchers, professors, and advanced-level students in computer science, but is also suitable for practitioners in industry.

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

"This book provides an exceptional summary of the state-of-the-art accomplishments in the area of privacy-preserving data mining, discussing the most important algorithms, models, and applications in each direction. The target audience includes researchers, graduate students, and practitioners who are interested in this area. … I recommend this book to all readers interested in privacy-preserving data mining." (Aris Gkoulalas-Divanis, ACM Computing Reviews, October, 2008)

Read More Show Less

Product Details

  • ISBN-13: 9781441943712
  • Publisher: Springer US
  • Publication date: 11/19/2010
  • Series: Advances in Database Systems Series , #34
  • Edition description: Softcover reprint of hardcover 1st ed. 2008
  • Edition number: 1
  • Pages: 514
  • Product dimensions: 6.14 (w) x 9.21 (h) x 1.08 (d)

Table of Contents

An Introduction to Privacy-Preserving Data Mining.- A General Survey of Privacy-Preserving Data Mining Models and Algorithms.- A Survey of Inference Control Methods for Privacy-Preserving Data Mining.- Measures of Anonymity.- k-Anonymous Data Mining: A Survey.- A Survey of Randomization Methods for Privacy-Preserving Data Mining.- A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining.- A Survey of Quantification of Privacy Preserving Data Mining Algorithms.- A Survey of Utility-based Privacy-Preserving Data Transformation Methods.- Mining Association Rules under Privacy Constraints.- A Survey of Association Rule Hiding Methods for Privacy.- A Survey of Statistical Approaches to Preserving Confidentiality of Contingency Table Entries.- A Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data.- Survey of Privacy-Preserving Methods across Vertically Partitioned Data.- A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods.- Private Data Analysis via Output Perturbation.- A Survey of Query Auditing Techniques for Data Privacy.- Privacy and the Dimensionality Curse.- Personalized Privacy Preservation .- Privacy-Preserving Data Stream Classification.- Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)