
rs

larger
upply
d main
om the

to the
g how
cache
nce of

sion
ovides
pective

ache
ions.

nted
that

serv-
Memory Profiling using Hardware Counte

Marty Itzkowitz, Brian J. N. Wylie, Christopher Aoki and Nicolai Kosche

{marty.itzkowitz,brian.wylie,christopher.aoki,nicolai.kosche}@sun.com

Sun Microsystems, Inc.
Menlo Park, California

ABSTRACT
Although memory performance is often a limiting factor in application
performance, most tools only show performance data relating to the
instructions in the program, not to its data. In this paper, we describe a
technique for directly measuring the memory profile of an application. We
describe the tools and their user model, and then discuss a particular code, the
MCFbenchmark from SPEC CPU 2000. We show performance data for the
data structures and elements, and discuss the use of the data to improve
program performance. Finally, we discuss extensions to the work to provide
feedback to the compiler for prefetching and to generate additional reports
from the data.

1. Introduction
Modern computer systems are using increasing numbers of ever faster processors to solve
and larger problems. However, performance of those processors is limited by the need to s
data to them at ever increasing rates. A hierarchy of caches between the processors an
memory is used to improve performance: the processors run at full speed when using data fr
caches closest to the processors, but are frequently stalled loading data from or storing data
primary caches through secondary or tertiary caches and, ultimately, memory. Understandin
an application’s data is structured in memory, and how it passes from memory through the
hierarchy is one of the most important issues for understanding and improving the performa
applications on these systems.

In this paper, we describe extensions to the Sun ONE Studio1 compilers and performance tools
[1] that can provide information relating to the data space of an application. The exten
provides per-instruction details of memory accesses in the annotated disassembly, and pr
data aggregated and sorted by object structure types and elements, a new observability pers
for application developers. The underlying framework can be a foundation for providing c
miss data to compilers and dynamic code generators, thus allowing cache-related optimizat

Permission to make digital or hard copies of all or part of this work for personal or classroom use is gra
without fee provided that copies are not made or distributed for profit or commercial advantage, and
copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on
ers or to redistribute to lists, requires prior specific permission and/or a fee.
SC’03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

1. Sun, Sun ONE Studio, Sun Fire 280R, and UltraSPARC are trademarks of Sun Microsystems,
Incorporated. Other names are trademarks of their respective owners.
Memory Profiling using Hardware Counters July 17, 2003 1

ce. In
l, and
e
the
, we

was
cribed

ols,
hop
uch as

with
her an

or a
are

data
can

nted
al for

based
s may
using
s from
files

ork of
d a
fetch

erflow
s and
ation,
s of the
ects are

emory
nts and
ghly-
from
n be
cient

g the
in the
In the rest of this introduction, we describe related work to measure application performan
the next section, we describe the Sun ONE Studio compilers and tools, and their user mode
the UltraSPARC-III hardware counters and their use in profiling. In the following section, w
describe theMCFbenchmark, part of the SPEC CPU 2000 suite of benchmarks, and
application of memory profiling to understanding the performance of that benchmark. Finally
describe the opportunities for future work, and present our conclusions.

1.1 Related Work
Clock-based profiling has been available on UNIX systems for at least 20 years [2], and
implemented even earlier on CDC machines [3]. Hardware-counter based profiling was des
by Zagha,et.al. at SuperComputing ‘96 in Pittsburgh [4].

Application profiling with processor counter overflows is supported by various commercial to
such as Intel’s VTune [5] and DEC/Compaq/HP’s DCPI [6] and Caliper [7], and SGI’s SpeedS
[8], as well as numerous academic tools, the latter often based on portable counter libraries s
PCL [9] and PAPI [10].

Each proprietary processor implements counters tailored for its particular architecture,
considerable variation in the number of counters supported, the events counted, whet
interrupt is provided on counter overflow and whether such an interrupt is precise or not,
detailed history is available for sampled instructions. Alpha 21264 [6] and Pentium 4 [11]
examples of processors which support precise instruction and data address profiling.

The difficulty of collecting accurate profiles and correlating these with application program
structures has led to the use of simulators to acquire this information. While simulators
provide extremely detailed memory-reference information for both code- and data-orie
analyses, such as those offered by MemSpy [12], their runtime costs make them impractic
many large-scale applications. Buck and Hollingsworth [13] discuss cache-miss sampling,
on simulations of hardware that can report effective addresses. Data-object profiling/analyse
also be achieved through instrumentation of structure accesses (for example, by
Dyninst[14]), but these are also generally costly and intrusive. With address reference trace
suitably instrumented applications, the SIGMA infrastructure [15] can provide memory pro
and analyses for data-objects profiling.

Other work has been done to optimize data-layout via simulation and static analysis. The w
Chilimbi, et.al. [16] [17] [18] shows gains for commercial workloads. Chilimbi also has explore
mechanism to dynamically profile general-purpose programs and optimize them via pre
insertion [19].

2. The Sun ONE Studio Compilers and Performance Tools
The Sun ONE Studio performance tools collect data based on clock- or hardware-counter ov
profiling, and present that information against functions, callers and callees, source line
disassembly instructions. Attribution is against the elements in the text space of the applic
but not against the data space representation. That allows the user to understand which part
program generate cache misses, but does not allow the user to understand which data obj
causing the misses.

This paper describes new functionality using hardware performance counters to examine m
system behavior in the context of the target’s data space. Data-oriented analysis compleme
extends existing performance analyses, providing observability into the performance of hi
optimized yet under-performing applications. Since this memory profile data is acquired
direct execution of uninstrumented applications, and since collection perturbation ca
controlled through configuration of the processors’ counter overflow rates, the tools are effi
and convenient to use even on large and complex applications.

The user model for the Sun ONE Studio performance tools consists of three steps: compilin
target program, collecting the data, and analyzing the data. These steps are discussed
remainder of this section.
Memory Profiling using Hardware Counters July 17, 2003 2

using

ot
nges
olic
encing
; third,

each

mpiler

-
lock as

ns in
ents,
mance

e

Clock-
of
result

corded,

sters.

nding

. The
es.

each
, and

laris
al
d to be

Data-
(E$)

t events
ache
actual

n.
2.1 Compiling the Target Program
Normally, the user compiles the target program just as he or she would for production use,
the Sun ONE Studio compilers. For data space profiling, two flags,-g -xhwcprof , are needed.
(An additional flag,-xdebugformat=dwarf , is used because DWARF symbol tables, but n
the default STABS symbol tables, support memory profiling.) These two flags will cause cha
to the symbolic information recorded with the executable: first, by ensuring that symb
information about data references are written into the symbol tables; second, by cross-refer
each memory operation with the name of the variable or structure member being referenced
by adding information about all instructions that are branch targets; and fourth, by associating
instruction (PC) with a source line number.

Neither of these flags causes the compiler to suppress optimizations. For example, if both co
options-xprefetch and - xhwcprof are specified,-xhwcprof does not suppress the
optimizations enabled by-xprefetch . However, with-xhwcprof specified, the compiler
does change the generated code slightly. It may addnop instructions between loads and any join
nodes (labels or branches) to help ensure that a profile event is captured in the same basic b
the triggering instruction. In addition, the compiler avoids scheduling load or store instructio
branch delay slots. With this compiler-generated padding, for some well-understood ev
accuracies of nearly 100% have been observed. The impact of these modifications on perfor
is very much application-dependant, but generally minor. The runtime for theMCFapplication
discussed below, as compiled with-xhwcprof , is approximately 1.3% greater than the runtim
of the application compiled with identical flags, but without-xhwcprof .

2.2 Collecting the Data
Data collection is usually performed with thecollect command, specifying data collection
parameters along with the target program and any arguments the target program requires.
and HW-counter profiling may be specified, independently of or along with tracing
synchronization delays, memory (heap) allocation and deallocation, or MPI messages. The
of a collect run is an experiment, which is a file-system directory with alog file giving a
timestamped trace of high-level events during the run, aloadobjects file describing the target
executable and any shared objects it uses, and additional files, one for each type of data re
containing the profile events and the callstacks associated with them.

To profile with hardware counters, thecollect command takes a-h flag, which may specify
either one or two counters; if two counters are requested, they must be on different regi
Counters may be specified by name, and an overflow interval may be specified as “on”, “ high ”,
or “low ” or as a numerical value. The settings are chosen to give overflow intervals correspo
to approximately 10 ms., 1 ms., and 100 ms. for the counter named “cycles ”; for other counters,
the time corresponding to the overflow value will obviously depend on the program behavior
intervals are chosen as prime numbers, to reduce the probability of correlations in the profil

2.2.1 The UltraSPARC-III Hardware Counters
On UltraSPARC-III family of chips (see, for example, [20]), there are two counter registers,
of which can count one of a number of events. The counter may be preloaded with a value
when the counter overflows, a interrupt is generated. That interrupt is translated by the So
Operating Environment into a signal (SIGEMT) delivered to the process being profiled. The sign
is received by a handler that is part of the data collection system, and causes a data recor
written by that handler for the event.

Counters are available for Cycles, Instructions Completed, Instruction-cache (I$) Misses,
cache (D$) Read Misses, Data-translation-lookaside-buffer (DTLB) Misses, External-cache
References, E$ Read Misses, E$ Stall Cycles, and many others. Some of the counters coun
(that is the number of times the particular trigger occurred), but others count cycles; for c
counters, the counters that measure in cycles are especially interesting, since they count the
time lost because of the events, not just the number of events. Thecollect command, if run
with no arguments, will generate a list of available counters for the machine on which it is ru
Memory Profiling using Hardware Counters July 17, 2003 3

trap
ic to
ip in
ounter

on to
. A

ng the
emory-

orted.

, the
that

ution

by the
data
rflow
the
cking

e first
anch
an not
didate

le the
er, the
nter is
ot be
ctive

d by a

h, with
graph

show a
the
urce or

built
graph
e used

there
nd the

target,
2.2.2 Counter Skid
As is the case with many other chips, the UltraSPARC-III does not always deliver a precise
when a HW counter overflows. Since a counter may overflow quite late in the pipeline, the log
deliver a precise trap is complex, and may significantly affect the performance of the ch
normal operation. Instead, the trap may be delivered after the event that caused the c
overflow and may arrive quite a bit later.

At the time the signal arrives, the PC that is delivered with it represents the next instructi
issue, which is rarely the instruction following the one that caused the counter overflow
performance measurement tool should take this skid into account in recording and interpreti
data. The hardware does not capture the address of the data whose reference causes a m
related counter overflow event—only the register set at the time of the signal delivery is rep

2.2.3 Apropos Backtracking Search
As mentioned above, although a PC is reported when the profile interrupt is delivered
instruction at the location pointed to by the PC is generally not the one triggering the event—
instruction may not yet have been executed. The instruction immediately preceding it in exec
may be the one causing the event, but counter skid adds a great deal of uncertainty.

To address this problem we implemented an apropos backtracking search. It is specified
user by prepending a “+” to the name of a memory-related counter used for profiling. During
collection, the collector walks back in the address space from the PC reported with the ove
until it finds a memory-reference instruction of the appropriate type. The actual PC of
instruction causing the event is called the trigger PC; the PC determined by apropos backtra
is referred to as the candidate trigger PC.

The first memory reference instruction preceding the PC in address order may not be th
preceding instruction in execution order. In particular, if there is any instruction that is a br
target, there is no way to determine which path to the PC was taken, so the true trigger PC c
be determined. It is too expensive to locate branch targets at data collection time, so the can
trigger PC is always recorded, but it is validated during data reduction.

Once the collector has backtracked to find the candidate trigger PC, it can disassemb
instruction, and determine which registers are used to compute the effective address. Howev
contents of the registers may have been changed by intervening instructions while the cou
skidding, so that even if the expression to compute the effective address is known, it may n
computable. The collector makes that determination, and either reports a putative effe
address, or indicates that the address could not be determined.

2.3 Analyzing the data
As mentioned above, the result of a data-collection run is an experiment. It may be analyze
GUI program (analyzer) or by a command-line equivalent (er_print). Both use the same
shared-object to process the data.

For all experiments, the data is reduced to an annotated representation of the program grap
performance metrics for each node in the graph. The nodes correspond to PCs, and the
corresponds to the dynamic call graph of the program. The reduced data can be used to
function list, to show callers and callees of a function, with information about how
performance metrics are attributed to the callers and callees, and to show annotated so
disassembly code of the target.

For HW-counter experiments with apropos backtracking, additional data structures are
corresponding to the data objects referenced by the target. The node in the program
corresponds to an instruction, and, for memory reference instructions, the symbol tables ar
to determine the name of the data object being referenced.

In order to validate a candidate trigger PC, the data reduction process must first verify that
were no branch targets between the next PC as delivered with the counter overflow signal, a
candidate trigger PC determined at data collection time. If there was an intervening branch
Memory Profiling using Hardware Counters July 17, 2003 4

an not
et PC,

l [21]
mum-
n. It

essor.

piled

ire
D$,
lines.

r
le data
ence
a “

two

ficial
m as
sses.
of 28

ion is
verall

d E$
shows
ns:

U
t is
the analysis code can not determine how the code got to the point of the interrupt, and so c
be sure which instruction caused the event. The data analysis inserts an artificial branch-targ
and attributes the events to that artificial branch target.

3. Example: TheMCF SPEC CPU 2000 Benchmark

TheMCFapplication, part of the SPEC CPU 2000 benchmark suite, was developed by Löbe
for his dissertation. It is a single-depot vehicle scheduler formulated as a large-scale mini
cost flow problem solved with a network simplex algorithm accelerated with column generatio
is neither multithreaded nor parallelized, but it does stress the performance of a single proc

3.1 Experimental setup
TheMCFapplication consists of 11 source files in the C language. The program was com
using the Sun ONE Studio 8 C Compiler (v5.5) with the-fast -xarch=v9 build options along
with the options for memory profiling support:-g -xhwcprof -xdebugformat=dwarf .

Two experiments were collected using the Sun ONE Studio 8 Performance Toolscollect
command on theMCFapplication. They were run on a dual 900 MHz UltraSPARC-III Cu Sun F
280R system with 2GB of RAM; each processor has 64kB of 4-way-associative level-1
organized in 32-byte lines, and 8MB of 2-way-associative level-2 E$, organized in 512-byte
The machine was running Solaris 9 update 4.

The two experiments were collected with the following command lines:

collect -S off -p on -h +ecstall,lo,+ecrm,on mcf.exe mcf.in

 collect -S off -p off -h +ecref,on,+dtlbm,on mcf.exe mcf.in

The first experiment collects both clock profile data (-p on) and hardware counter profile data fo
E$ Read Misses and E$ Stall Cycles; the second experiment collects hardware counter profi
for E$ References and DTLB Misses. Apropos backtracking search for memory-refer
instructions and their effective data addresses was specified for all four HW counters, using+”
preceding the counter name for each counter.

3.2 Discussion
The remainder of this section will discuss the performance data recorded from these
experiments.

3.2.1 Performance Metrics
Figure 1 shows the performance metrics recorded from the two experiments for the arti
function<Total> , which represents the sum across all functions in the program. The progra
a whole is almost 100% CPU-bound, but spends more than half its time stalled for E$ Mi
Furthermore, estimating the cost of a DTLB Miss as 100 cycles suggests an additional cost
seconds, or another 5% of the total run time. The overall E$ Read Miss rate for the applicat
about 6.4%. Clearly, performance of the memory subsystem is a dominant factor in the o
performance of the application.

3.2.2 Functions
Figure 2 shows the function list, with the exclusive time and percentage for User CPU time an
Stall Cycles, and the percentages of E$ Read Misses, E$ References and DTLB Misses. It
that over 95% of the application’s User CPU Time is spent in the top three functio
refresh_potential (51%),primal_bea_mpp (23%) and,price_out_impl (22%).

The topmost function,refresh_potential , is responsible for about half the total User CP
time, and disproportionately more E$ Stall Cycles (62%) and DTLB Misses (88%). I
Memory Profiling using Hardware Counters July 17, 2003 5

an E$

.6%.
nd for

ted

owing
rous
, the

l loop

ur of
each
the

of
hem

riented

; the
responsible for 62% of all the E$ Read Misses, but only 38% of the E$ references; it has
Read Miss rate of 10.3%. Conversely, the third function,primal_bea_mpp , is responsible for
42% of all E$ references, but only 4% of E$ Read Misses; it has a cache-miss rate of 0
Clearly, memory usage is a source of performance problems for this application in general, a
the topmost functions in particular.

To understand the critical code in theseMCFfunctions, source and disassembly listings annota
with metrics associated with each source line or instruction can be examined.

3.2.3 Annotated Source and Disassembly
Figure 3 shows an excerpt from the annotated source of the most expensive function, sh
User CPU Time and E$ Stall Cycles for the critical loop. The critical loop contains nume
pointer dereferences which make it difficult to determine the most costly ones. However
annotated disassembly will allow us to understand those references.

Figure 4 shows an excerpt from the annotated disassembly of the same function. The critica
in refresh_potential consists of fewer than 30 instructions (includingnop s added for
padding). Approximately half of the instructions in the critical loop are loads and stores. Fo
these memory-referencing instructions (all loads) are particularly costly: three of them
account for approximately 10% of the total E$ Stall Cycles (or 5% of the total run time), while
first in the loop at 0x1000031B0 accounts for almost 20% (10% of total runtime). Almost 90%
all the DTLB misses for the entire program also occur in this loop, with about one-fourth of t
being caused by loads ofnode.orientation and the remainder coming fromarc.cost .

Closer examination of the annotated disassembly reveals several features specific to data-o
analysis.

First, the E$ Stall Cycles metric correlates quite well with memory-referencing instructions

 Exclusive Total LWP Time: 552.677 secs.
 Exclusive User CPU Time: 549.404 secs.
 Exclusive System CPU Time: 3.082 secs.
 Exclusive Wait CPU Time: 0.180 secs.
 Exclusive User Lock Time: 0. secs.
 Exclusive Text Page Fault Time: 0. secs.
 Exclusive Data Page Fault Time: 0. secs.
 Exclusive Other Wait Time: 0.010 secs.
 Exclusive E$ Stall Cycles: 297.569 secs.
 " count: 267812254774
 Exclusive E$ Read Misses: 1580927631
 Exclusive E$ Refs: 24873218652
 Exclusive DTLB Misses: 256265124

Figure 1. Performance metrics for the<Total> function

Excl. User Excl. E$ Excl. E$ Excl. Excl. Name
CPU Stall Cycles Read E$ DTLB
 sec. % sec. % Misses % Refs % Misses %
549.404 100.0 297.569 100.0 100.0 100.0 100.0 <Total>
280.706 51.1 184.224 61.9 62.3 38.4 88.0 refresh_potential
127.319 23.2 90.267 30.3 29.6 13.8 9.4 primal_bea_mpp
120.134 21.9 11.389 3.8 4.0 41.7 0.8 price_out_impl
 6.154 1.1 5.533 1.9 2.0 0.3 0.2 flow_cost
 4.933 0.9 0.011 0.0 0. 3.4 0. sort_basket
 3.733 0.7 2.711 0.9 1.0 0.4 0.1 dual_feasible
 2.682 0.5 1.656 0.6 0.6 0.8 0.1 update_tree
 1.861 0.3 0.933 0.3 0.2 0.4 0.3 primal_iminus
 0.690 0.1 0.411 0.1 0.1 0.0 0.7 write_circulations
 . . .

Figure 2. The Function List
Memory Profiling using Hardware Counters July 17, 2003 6

rrectly
hown

ction
rence

ticular
tion,

e line
Stall

esent
In this
ay to
from

ctions,

iently
ed

ation,
metric usually appears on a load instruction, suggesting that the apropos backtracking co
determined the trigger PC. On the other hand, significant amounts of User CPU time is s
against unlikely instructions, such as the 57 secs. associated with theadd instruction at
0x1000031D8 and 48 secs. associated with thesub instruction at 0x100003208. Clock profiling
events, which are the basis of the User CPU Time metric, are delivered with PC of the instru
next to be executed and can not be corrected with apropos backtracking, but memory refe
events can be corrected. To some extent, the correlation is the fortuitous behavior of this par
example code. If there were floating-point instructions immediately following the load instruc
the skid would be greater.

Second, lines marked with an asterisk and labeled<branch target> , are included in the
listing and some have an E$ Stall Cycles metric associated with them. For example, th
labeled 0x100003218* preceding the instruction at 0x100003218 shows 1.2 secs. of E$
Cycles which clearly are not attributable to the branch instruction itself. These metrics repr
events where the apropos backtracking was blocked because of the control transfer target.
example, the metric values are not statistically significant and can be ignored; there is no w
tell whether the overflow events came via the branch at 0x1000031E8 or simply fell through
the immediately preceding block of instructions.

Third, data-object descriptor names are shown as annotations for memory-referencing instru
based on the information provided by the compiler.

From these data it is readily apparent that two of the costly reads are forarc.cost (with no
other references tostructure:arc in the cri t ical loop) whi le the third is for
node.orientation , (with none of the references to other elements ofstructure:node
being particularly costly). The initial reference tonode.orientation at the start of the loop
brought the structure into the cache where other elements of it could subsequently be effic
accessed. The references toarc.cost occur immediately after their address was determin
(since they are pointer elements of the previously loadedstructure:node): too soon to be
effectively prefetched.

3.2.4 PCs
Figure 5 shows a list of those PCs with the highest performance metric values in the applic

 Excl. Excl. E$
 User CPU Stall
 sec. Cycles sec.
 . . .
 0. 0. 79. tmp = node = root->child;
 0. 0. 80. while(node != root)
 81. {
 0.290 0. 82. while(node)
 83. {
37.826 61.978 84. if(node->orientation == UP)
75.993 49.745 85. node->potential = node->basic_arc->cost
 + node->pred->potential;
 86. else /* == DOWN */
 87. {
60.552 41.311 88. node->potential = node->pred->potential
 - node->basic_arc->cost;
 3.202 0. 89. checksum++;
 90. }
 91.
 0.560 0. 92. tmp = node;
75.343 29.500 93. node = node->child;
 94. }
 95.
 0.220 0. 96. node = tmp;
 . . .

Figure 3. Annotated source of critical loop ofrefresh_potential
Memory Profiling using Hardware Counters July 17, 2003 7

p PC

data
ranked by E$ Read Misses.

Examination of the PCs ranked by their E$ Read Misses shows that although the single to
comes fromprimal_bea_mpp ; the next four PCs all come fromrefresh_potential .
(The poorer correlation of User CPU profile data with critical instructions is also evident.)

3.2.5 Data Objects
Figure 6 shows a list of the data object types in the program, annotated with the cost of the
references to each.

 Excl. Excl. E$ Excl.
User CPU Stall DTLB
 sec. Cycles sec. Misses %
 . . .
 0. 0. 0. [82] 1000031a8* <branch target> <===----<<<
 0.290 0. 0. [82] 1000031a8: be,pn %xcc,0x100003220
 0. 0. 0. [82] 1000031ac: nop
 0. 0.522 0. [84] 1000031b0* <branch target> <===----<<<
5.514 61.456 24.3 [84] 1000031b0: ldx [%o3 + 56], %o2

{structure:node -}.{long orientation}
75.303 28.300 0.1 [93] 1000031b4: ldx [%o3 + 24], %o4

{structure:node -}.{pointer+structure:node child}
 32.313 0. 0. [84] 1000031b8: cmp %o2, 1
 0. 0. 0. [69] 1000031bc: nop
 0. 0. 0. [84] 1000031c0: bne,pn %xcc,0x1000031f0
 0.560 0. 0. [92] 1000031c4: mov %o3, %o5
 0.040 3.056 0. [85] 1000031c8: ldx [%o3 + 16], %o0

{structure:node -}.{pointer+structure:node pred}
 3.583 2.767 0.0 [85] 1000031cc: ldx [%o3 + 64], %g4

{structure:node -}.{pointer+structure:arc basic_arc}
 4.953 0.578 0.2 [85] 1000031d0: ldx [%o0 + 88], %g5

{structure:node -}.{cost_t=long potential}
10.687 43.345 29.9 [85] 1000031d4: ldx [%g4 + 32], %g1

{structure:arc -}.{cost_t=long cost}
56.720 0. 0. [85] 1000031d8: add %g1, %g5, %g2
 0.010 0. 0.2 [85] 1000031dc: stx %g2, [%o3 + 88]

{structure:node -}.{cost_t=long potential}
 0. 0. 0. [69] 1000031e0: nop
 0.881 0. 0. [69] 1000031e4: nop
 0. 0. 0. [85] 1000031e8: ba 0x100003218
 0. 0. 0. [93] 1000031ec: cmp %o4, 0
 0. 0. 0. [88] 1000031f0* <branch target> <===----<<<
 0. 2.689 0. [88] 1000031f0: ldx [%o3 + 16], %g4

{structure:node -}.{pointer+structure:node pred}
 3.202 0. 0. [89] 1000031f4: inc %g3
 0. 0. 0. [93] 1000031f8: cmp %o4, 0
 0. 2.367 0.0 [88] 1000031fc: ldx [%o3 + 64], %g5

{ structure:node -}.{pointer+structure:arc basic_arc}
 3.362 0.956 0. [88] 100003200: ldx [%g4 + 88], %g2

{structure:node -}.{cost_t=long potential}
9.537 35.300 32.8 [88] 100003204: ldx [%g5 + 32], %g1

{structure:arc -}.{cost_t=long cost}
 47.643 0. 0. [88] 100003208: sub %g2, %g1, %o2
 0.010 0. 0.1 [88] 10000320c: stx %o2, [%o3 + 88]

{structure:node -}.{cost_t=long potential}
 0. 0. 0. [69] 100003210: nop
 0.751 0. 0. [69] 100003214: nop
 0. 1.200 0. [93] 100003218* <branch target> <===----<<<
 0.040 0. 0. [93] 100003218: bne,pt %xcc,0x1000031b0
 0.530 0. 0. [69] 10000321c: mov %o4, %o3
 . . .

Figure 4. Annotated disassembly of critical loop ofrefresh_potential
Memory Profiling using Hardware Counters July 17, 2003 8

is for a
Such
profile
The data objects associated with memory-referencing instruction events also provide a bas
fundamentally different set of metrics derived from the hardware counter profile event data. (
data-derived metrics are not possible from other hardware counter events or other types of

Excl. User Excl. E$ Excl. Excl. Name
CPU Stall Cycles E$ Read DTLB
 sec. % sec. % Misses % Misses %
549.404 100.0 297.569 100.0 100.0 100.0 <Total>
 1.841 0.3 63.567 21.4 24.8 4.7 primal_bea_mpp + 0x000002EC

{structure:arc -}.{long ident}
 5.514 1.0 61.456 20.7 21.4 24.3 refresh_potential + 0x000000D0

{structure:node -}.{long orientation}
 10.687 1.9 43.345 14.6 16.3 29.9 refresh_potential + 0x000000F4

{structure:arc -}.{cost_t=long cost}
 9.537 1.7 35.300 11.9 13.4 32.8 refresh_potential + 0x00000124

{structure:arc -}.{cost_t=long cost}
 75.303 13.7 28.300 9.5 7.9 0.1 refresh_potential + 0x000000D4

{structure:node -}.{pointer+structure:node child}
 0.280 0.1 9.644 3.2 2.8 1.9 primal_bea_mpp + 0x0000030C

{structure:node -}.{cost_t=long potential}
 14.270 2.6 5.000 1.7 1.8 1.5 primal_bea_mpp + 0x00000310

{structure:node -}.{cost_t=long potential}
 3.583 0.7 2.767 0.9 1.0 0.0 refresh_potential + 0x000000EC

{structure:node -}.{pointer+structure:arc basic_arc}
 0.120 0.0 1.944 0.7 1.0 0.5 price_out_impl + 0x000004C8

{structure:arc -}.{flow_t=long flow}
 0.010 0.0 2.422 0.8 1.0 0.1 flow_cost + 0x00000120

{structure:arc -}.{long ident}
 0.030 0.0 2.333 0.8 1.0 0.0 dual_feasible + 0x0000001C

{structure:arc -}.{flow_t=long flow}
 3.683 0.7 3.111 1.0 0.9 0. price_out_impl + 0x000004CC

{structure:arc -}.{flow_t=long flow}
 24.797 4.5 2.367 0.8 0.9 0.0 price_out_impl + 0x000002CC

{structure:node -}.{long time}
 0. 0. 2.367 0.8 0.9 0.0 refresh_potential + 0x0000011C

{structure:node -}.{pointer+structure:arc basic_arc}
 0.370 0.1 1.567 0.5 0.7 0.2 price_out_impl + 0x000002C4

{structure:arc -}.{pointer+structure:node tail}
 0. 0. 2.689 0.9 0.7 0. refresh_potential + 0x00000110

{structure:node -}.{pointer+structure:node pred}
 0.040 0.0 3.056 1.0 0.6 0. refresh_potential + 0x000000E8

{structure:node -}.{pointer+structure:node pred}
 . . .

Figure 5. PCs, ranked by E$ Read Misses

Data. E$ Data. Data. Data.
Stall Cyc. E$ Read E$ DTLB
 sec. % Misses % Refs % Misses % Name

297.569 100.0 100.0 100.0 100.0 <Total>
166.402 55.9 59.4 37.3 70.0 {structure:arc -}
124.601 41.9 39.5 41.4 29.7 {structure:node -}
 6.378 2.1 1.2 19.0 0.2 <Unknown>
 3.467 1.2 1.1 2.1 0.1 (Unspecified)
 2.611 0.9 0.0 5.3 0. (Unresolvable)
 0.200 0.1 0.1 0.5 0.1 (Unascertainable)
 0.178 0.1 0.0 2.2 0. {structure:basket -}
 0.100 0.0 0.0 11.2 0. (Unidentified)
 0.011 0.0 0. 0. 0. {structure:network -}
 0. 0. 0.0 0.0 0. <Scalars>

Figure 6. Data objects, ranked by E$ Stall Cycles
Memory Profiling using Hardware Counters July 17, 2003 9

relate

Stall
e other
thus

ces:
he
the
ere

et of

e the

100%

$ Stall
are

ciated
on a

ture.
n ts

bytes
data.) Aggregation by data object reveals that 63% of E$ Read Misses and Data TLB Misses
to accesses tostructure:arc versus 36% from accesses tostructure:node . Negligible
numbers of misses are attributable to other structures.

The<Unknown> data object shows metrics corresponding to about 2% percent of the E$
Cycles, and 19% of all E$ References. E$ References have significantly greater skid than th
memory metrics in these experiments, and they are also far more widely distributed,
accounting for the difference. Many such references come from libraries such aslibc.so.1 ,
that were not compiled with the appropriate compiler flags for memory profiling.

The <Unknown> object is an aggregate of several types of indeterminate referen
(Unspecified) , meaning that the compiler did not give a symbolic reference for t
instruction;(Unresolvable) , meaning that the apropos backtracking could not determine
trigger PC;(Unascertainable) , meaning that some modules that had memory events w
not compiled with the-xhwcprof flag; and (Unidentified) , meaning that the compiler did
not identify the data object, which is most likely a compiler-temporary. One additional subs
<Unknown> does not happen to appear in the data from these experiments:(Unverifiable) ,
meaning that the compiler branch-target information provided was inadequate to determin
validity of the trigger PC.

The effectiveness of the apropos backtracking for each metric is approximately equal to
minus the metric values associated with the(Unresolvable) and(Unascertainable)
data objects. From Figure 6, the scheme can be seen to be more than 99% effective for E
Cycles, almost 100% effective for E$ Read Misses, 100% effective for DTLB misses (which
precise), and almost 94% effective for E$ References (which have the greatest skid asso
with them). We have found approximately the same effectiveness for these in experiments
large commercial application.

Figure 7 shows the expansion of the data objectstructure:node , showing metrics for each

element in the structure.

From this table, it can be seen that of the 42% of E$ Stall Cycles related to accessing thenode
structure, with the bulk of the cost attributable to accessing itschild , orientation and
potential elements, at offsets of 24, 56 and 88 bytes respectively, in the 120-byte struc
Fur ther inves t iga t ion revea ls tha t the major i ty o f the re ferences to e leme
node.orientation andnode.child occur in functionrefresh_potential , while the
majority of the references to elementnode.potential occur in functionprimal_bea_mpp .
The 32-byte separation between these elements places them in different D$ lines (each 32
wide), which is likely to limit cache effectiveness.

Data. E$ Data. E$ Data. Data. Name
Stall Cycles Read E$ DTLB +offset .field-name
 sec. % Misses % Refs % Misses %
124.601 41.9 39.4 41.5 29.8 {structure:node -}
 0.056 0.0 0.0 0. 0.0 +0 .{long number}
 0. 0. 0. 0. 0. +8 .{pointer+char ident}
 7.056 2.4 1.3 1.8 0.5 +16 .{pointer+structure:node pred}
 29.100 9.8 8.2 3.7 0.1 +24 .{pointer+structure:node child}
 0.444 0.1 0.0 2.2 0.0 +32 .{pointer+structure:node sibling}
 0. 0. 0. 0.0 0. +40 . {pointer+structure:node sibling_prev}
 0.244 0.1 0.1 0.4 0.2 +48 .{long depth}
 61.523 20.7 21.4 8.0 24.3 +56 .{long orientation}

5.256 1.8 2.0 1.5 0.1 +64 .{pointer+structure:arc basic_arc}
 0.078 0.0 0.0 0.1 0. +72 .{pointer+structure:arc firstout}
 0.033 0.0 0. 0.0 0. +80 .{pointer+structure:arc firstin}
 18.133 6.1 5.2 16.7 4.5 +88 .{cost_t=long potential}
 0.256 0.1 0.1 0.2 0. +96 .{flow_t=long flow}
 0.056 0.0 0.0 1.4 0. +104 .{long mark}
 2.367 0.8 0.9 5.5 0.0 +112 .{long time}

Figure 7. Dataobjectstructure:node expansion
Memory Profiling using Hardware Counters July 17, 2003 10

ese
to re-
sly
tes or

the
rofile
ent to
y be

ime.
of 8kB
ctive

the
iling

g so, by

nd the
piler

tional

cause
of the

as the
apped
an be

cache
ent in
object

mance,
pilers
If the first of the dynamically-allocated 120-bytestructure:node data objects is E$-line
aligned, the fifth such data object will be split over two 512-byte E$ lines. In fact, 28% of th
120-byte data objects end up split this way. This suggests that it would be more efficient
arrange the elements ofstructure:node to pack the most referenced elements contiguou
into 32 bytes to facilitate re-use in the D$, and either pad the structure with an additional 8 by
otherwise align them such that only whole data objects are mapped into E$ lines.

Similarly, of the 56% of E$ Stall Cycles attributable to accessingstructure:arc , 27% are due
to elementcost (mostly in refresh_potential) and 22% are due to elementident
(mostly inprimal_bea_mpp). While these constitute the critical references, accounting for
bulk of the E$ Read Misses and E$ Stall Time, other references which show up in the p
should be considered in any possible optimization. The current performance data is insuffici
quantify the number of such references which may be efficiently exploiting the E$ but ma
adversely impacted by code or data modifications.

The application also shows high DTLB Misses, which contribute about 5% to the total run t
The analysis suggests that rebuilding with pages larger than the system default page size
will improve performance by decreasing the number of DTLB Misses, thus making more effe
use of the DTLB.

3.3 Performance Improvements based on the Analysis
The first change suggested by the data above is padding thenode structure with an additional 8
bytes, aligningnode andarc structures on cache lines, and re-arranging the members of
node andarc structures according to their frequency of reference. Doing so and recomp
produced a 16.2% speedup inMCF total execution time.

The second change suggested is to change the page size used for the heap segment. Doin
adding a-xpagesize_heap=512k flag and recompiling, produced a 3.9% gain.

Combining the changes produced a cumulative decrease of 20.7% in theMCFapplication total
execution time.

4. Future Work
The current implementation presents information about data structures and members, a
profiles attributed to them. Future work is under consideration to support feedback to the com
to allow it to produce more-efficient executables, and to support reports and displays of addi
information.

Since the experiments contain the information necessary to know which memory references
the cache-misses, the data can be used to construct a feedback file, allowing a recompilation
target to be done with the insertion of prefetch instructions.

Event data addresses can be further analyzed by corresponding machine entities, such
memory segment (of load objects or allocated to stack, heap, shared or otherwise m
memory), and broken down by page for those segments. Alternatively, addresses c
aggregated by corresponding cache line for analysis.

In the current implementation, although the actual effective address of the data causing a
miss is determined (where possible), it is only used in showing an individual cache-miss ev
the analyzer. Future work could support translating the effective addresses into structure
instances, and aggregating data by instance, rather than only by type.

5. Conclusions
We have discussed the issues concerning memory accesses, and their effects on perfor
summarizing related work on memory profiling. We then discussed the Sun ONE Studio com
Memory Profiling using Hardware Counters July 17, 2003 11

filing.
n
nalysis
ly, we
s.

IPS

, Shun-
ihl,
d
lel

to

ross-

ed to

tem
and

ate

ator
and performance tools, and described the new functionality added to support memory pro
We used the tools to explore the behavior of theMCFbenchmark, and showed how they ca
highlight the performance issues relating to memory accesses. We then showed how the a
suggested changes to the code that improve its performance by more than 20%. Final
discussed extensions to the present work to further explore memory behavior in application

REFERENCES
[1] Program Performance Analysis Tools, Sun Microsystems, Inc. Publication 817-0922-10, May 2003.

[2] S.L.Graham, P.B.Kessler, and M.K.McKusick, “An Execution Profiler for Modular Programs,”Software
Practice and Experience, 13, 671-685, August 1983.

[3] D.F.Stevens, SPY for the CDC 6600, private communication, 1968.

[4] Marco Zagha, Brond Larson, Steve Turner and Marty Itzkowitz, “Performance Analysis using the M
R10000 Performance Counters,”Proceedings of SuperComputing ‘96, Pittsburgh, PA, November, 1996.

 http://www.supercomp.org/sc96/proceedings/SC96PROC/ZAGHA/ZAGHA.PS

[5] K. Sridharan, “VTune: Intel’s Visual Tuning Environment,”Proceedings of USENIX-NT ’97, 11 August,
1997.

[6] Jennifer Anderson, Lance Berc, George Chrysos, Jeffrey Dean, Sanjay Ghemawat, Jamey Hicks
Tak Leung, Mitch Lichtenberg, Mark Vandevoorde, Carl A. Waldspurger, and William E. We
“Transparent, Low-Overhead Profiling on Modern Processors,”Proceedings of the Workshop on Profile an
Feedback-Directed Compilation, held in conjunction with the International Conference on Paral
Architectures and Compilation Techniques (PACT’98, Paris, France), 13 October, 1998.

 http://research.compaq.com/SRC/dcpi/papers/pfdc98.ps

[7] Robert Hundt, “HP Caliper: A Framework for Performance Analysis Tools,”IEEE Concurrency, 8, 64-
71, Oct-Dec 2000

[8] SpeedShop User’s Guide (IRIX 6.5), Silicon Graphics, Inc., manual 007-3311-005, 1998

[9] Rudolf Berrendorf and Bernd Mohr,PCL - The Performance Counter Library: A Common Interface
Access Hardware Performance Counters on Microprocessors, Technical Report IB-9816,
Forschungszentrum Jülich.

 http://www.fz-juelich.de/zam/PCL

[10] Shirley Browne, Jack Dongarra, Nathan Garner, Kevin London, and Philip Mucci, “A Scalable C
Platform Infrastructure for Application Performance Tuning Using Hardware Counters,”Proceedings of
SC2000, Dallas, Texas, November 2000.

 http://www.sc2000.org/techpapr/papers/pap.pap256.pdf

[11] Brinkley Sprunt, “The Performance Monitoring Features of the Pentium4 Processor,” submitt
IEEE Micro, February 2002.

 http://www.eg.bucknell.edu/~bsprunt/emon/brink_abyss/doc/pentium4_emon.pdf

[12] Margaret Martonosi, Anoop Gupta and Thomas Anderson, “MemSpy: Analyzing Memory Sys
Bottlenecks in Programs,”Proceedings of the ACM SIGMETRICS Conference on Measurement
Modeling of Computer Systems, pp.1-12, May 1992.

 http://portal.acm.org/citation.cfm?doid=133057.133079

[13] Bryan R. Buck and Jeffrey K. Hollingsworth, “Using Hardware Performance Monitors to Isol
Memory Bottlenecks.”Proceedings of SC2000, Dallas, TX, November 2000.

 http://www.supercomp.org/sc2000/Proceedings/techpapr/papers/pap.pap197.pdf

[14] DyninstAPI Programmer’s Guide, University of Maryland College Park, release 4.0, May 2003.

 http://dyninst.org/docs/dyninstProgGuide.v40.pdf

[15] Luiz De Rose, K. Ekanadham, Jeffrey K. Hollingsworth and Simone Sbaraglia, “SIGMA: A Simul
Memory Profiling using Hardware Counters July 17, 2003 12

ta-
s of

t,”
LDI),

on,”
LDI)

ose
and

he
r.
Infrastructure to Guide Memory Analysis,”Proceedings of SC2002, Baltimore, MD, November 2002.

 http://www.sc-2002.org/paperpdfs/pap.pap191.pdf

[16] Shai Rubin, Rastislav Bodik, and Trishul Chilimbi, “An Efficient Profile-Analysis Framework for Da
Layout Optimizations,”Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principle
Programming Languages (POPL), 2002, pp 140-153

[17] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus, “Cache-Conscious Structure Layou
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation (P
1999, 1-12

[18] Trishul M. Chilimbi, Bob Davidson, and James R. Larus, “Cache-Conscious Structure Definiti
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation (P,
1999, 13-24

[19] Trishul M. Chilimbi and Martin Hirzel, “Dynamic Hot Data Stream Prefetching for General-Purp
Programs,”Proceedings of ACM SIGPLAN Conference on Programming Language Design
Implementation (PLDI), 2002, 199-209

[20] Sun Microsystems, Inc.,UltraSPARC III Cu User’s Manual, April 2003.

 http://www.sun.com/processors/manuals/USIIIv2.pdf

[21] Andreas M. Löbel, “Optimal Vehicle Scheduling in Public Transit,” Ph.D. thesis, Technisc
Universität Berlin, 1997. SPEC CPU2000 181.mcf; source code shown with permission of the autho
Memory Profiling using Hardware Counters July 17, 2003 13

	1. Introduction
	1.1 Related Work

	2. The Sun ONE Studio Compilers and Performance Tools
	2.1 Compiling the Target Program
	2.2 Collecting the Data
	2.2.1 The UltraSPARC-III Hardware Counters
	2.2.2 Counter Skid
	2.2.3 Apropos Backtracking Search

	2.3 Analyzing the data

	3. Example: The MCF SPEC CPU 2000 Benchmark
	3.1 Experimental setup
	3.2 Discussion
	3.2.1 Performance Metrics
	3.2.2 Functions
	3.2.3 Annotated Source and Disassembly
	3.2.4 PCs
	3.2.5 Data Objects

	3.3 Performance Improvements based on the Analysis

	4. Future Work
	5. Conclusions

