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ABSTRACT

Although memory performance is often a limiting factor in application
performance, most tools only show performance data relating to the
instructions in the program, not to its data. In this paper, we describe a
technigue for directly measuring the memory profile of an application. We
describe the tools and their user model, and then discuss a particular code, the
MCFoenchmark from SPEC CPU 2000. We show performance data for the
data structures and elements, and discuss the use of the data to improve
program performance. Finally, we discuss extensions to the work to provide
feedback to the compiler for prefetching and to generate additional reports
from the data.

1. Introduction

Modern computer systems are using increasing numbers of ever faster processors to solve larger
and larger problems. However, performance of those processors is limited by the need to supply
data to them at ever increasing rates. A hierarchy of caches between the processors and main
memory is used to improve performance: the processors run at full speed when using data from the
caches closest to the processors, but are frequently stalled loading data from or storing data to the
primary caches through secondary or tertiary caches and, ultimately, memory. Understanding how
an application’s data is structured in memory, and how it passes from memory through the cache
hierarchy is one of the most important issues for understanding and improving the performance of
applications on these systems.

In this paper, we describe extensions to the Sun ONE Sfifdemmpilers and performance tools

[1] that can provide information relating to the data space of an application. The extension
provides per-instruction details of memory accesses in the annotated disassembly, and provides
data aggregated and sorted by object structure types and elements, a new observability perspective
for application developers. The underlying framework can be a foundation for providing cache
miss data to compilers and dynamic code generators, thus allowing cache-related optimizations.
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In the rest of this introduction, we describe related work to measure application performance. In
the next section, we describe the Sun ONE Studio compilers and tools, and their user model, and
the UltraSPARCI-III hardware counters and their use in profiling. In the following section, we
describe theMCFbenchmark, part of the SPEC CPU 2000 suite of benchmarks, and the
application of memory profiling to understanding the performance of that benchmark. Finally, we
describe the opportunities for future work, and present our conclusions.

1.1 Related Work

Clock-based profiling has been available on UNIX systems for at least 20 years [2], and was
implemented even earlier on CDC machines [3]. Hardware-counter based profiling was described
by Zaghagt.al at SuperComputing ‘96 in Pittsburgh [4].

Application profiling with processor counter overflows is supported by various commercial tools,
such as Intel's VTune [5] and DEC/Compag/HP’s DCPI [6] and Caliper [7], and SGI's SpeedShop
[8], as well as numerous academic tools, the latter often based on portable counter libraries such as
PCL [9] and PAPI [10].

Each proprietary processor implements counters tailored for its particular architecture, with
considerable variation in the number of counters supported, the events counted, whether an
interrupt is provided on counter overflow and whether such an interrupt is precise or not, or a
detailed history is available for sampled instructions. Alpha 21264 [6] and Pentium 4 [11] are
examples of processors which support precise instruction and data address profiling.

The difficulty of collecting accurate profiles and correlating these with application program data
structures has led to the use of simulators to acquire this information. While simulators can
provide extremely detailed memory-reference information for both code- and data-oriented
analyses, such as those offered by MemSpy [12], their runtime costs make them impractical for
many large-scale applications. Buck and Hollingsworth [13] discuss cache-miss sampling, based
on simulations of hardware that can report effective addresses. Data-object profiling/analyses may
also be achieved through instrumentation of structure accesses (for example, by using
Dyninst[14]), but these are also generally costly and intrusive. With address reference traces from
suitably instrumented applications, the SIGMA infrastructure [15] can provide memory profiles
and analyses for data-objects profiling.

Other work has been done to optimize data-layout via simulation and static analysis. The work of
Chilimbi, et.al [16] [17] [18] shows gains for commercial workloads. Chilimbi also has explored a
mechanism to dynamically profile general-purpose programs and optimize them via prefetch
insertion [19].

2. The Sun ONE Studio Compilers and Performance Tools

The Sun ONE Studio performance tools collect data based on clock- or hardware-counter overflow
profiling, and present that information against functions, callers and callees, source lines and
disassembly instructions. Attribution is against the elements in the text space of the application,
but not against the data space representation. That allows the user to understand which parts of the
program generate cache misses, but does not allow the user to understand which data objects are
causing the misses.

This paper describes new functionality using hardware performance counters to examine memory
system behavior in the context of the target’'s data space. Data-oriented analysis complements and
extends existing performance analyses, providing observability into the performance of highly-
optimized yet under-performing applications. Since this memory profile data is acquired from
direct execution of uninstrumented applications, and since collection perturbation can be
controlled through configuration of the processors’ counter overflow rates, the tools are efficient
and convenient to use even on large and complex applications.

The user model for the Sun ONE Studio performance tools consists of three steps: compiling the
target program, collecting the data, and analyzing the data. These steps are discussed in the
remainder of this section.
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2.1 Compiling the Target Program

Normally, the user compiles the target program just as he or she would for production use, using
the Sun ONE Studio compilers. For data space profiling, two flagsxhwcprof |, are needed.

(An additional flag,-xdebugformat=dwarf , Is used because DWARF symbol tables, but not

the default STABS symbol tables, support memory profiling.) These two flags will cause changes
to the symbolic information recorded with the executable: first, by ensuring that symbolic
information about data references are written into the symbol tables; second, by cross-referencing
each memory operation with the name of the variable or structure member being referenced; third,
by adding information about all instructions that are branch targets; and fourth, by associating each
instruction (PC) with a source line number.

Neither of these flags causes the compiler to suppress optimizations. For example, if both compiler
options-xprefetch and- xhwcprof are specified;xhwcprof does not suppress the
optimizations enabled byprefetch . However, with-xhwcprof  specified, the compiler

does change the generated code slightly. It mayramidinstructions between loads and any join-
nodes (labels or branches) to help ensure that a profile event is captured in the same basic block as
the triggering instruction. In addition, the compiler avoids scheduling load or store instructions in
branch delay slots. With this compiler-generated padding, for some well-understood events,
accuracies of nearly 100% have been observed. The impact of these modifications on performance
is very much application-dependant, but generally minor. The runtime foviG&application
discussed below, as compiled witkhwcprof , is approximately 1.3% greater than the runtime

of the application compiled with identical flags, but withednwcprof

2.2 Collecting the Data

Data collection is usually performed with tleellect command, specifying data collection
parameters along with the target program and any arguments the target program requires. Clock-
and HW-counter profiling may be specified, independently of or along with tracing of
synchronization delays, memory (heap) allocation and deallocation, or MPI messages. The result
of acollect runis an experiment, which is a file-system directory witlog file giving a
timestamped trace of high-level events during the runadobjects file describing the target
executable and any shared objects it uses, and additional files, one for each type of data recorded,
containing the profile events and the callstacks associated with them.

To profile with hardware counters, tlllect command takes & flag, which may specify
either one or two counters; if two counters are requested, they must be on different registers.
Counters may be specified by name, and an overflow interval may be specified’as high ”,

or “low " or as a numerical value. The settings are chosen to give overflow intervals corresponding
to approximately 10 ms., 1 ms., and 100 ms. for the counter nanoyete’s ”; for other counters,

the time corresponding to the overflow value will obviously depend on the program behavior. The
intervals are chosen as prime numbers, to reduce the probability of correlations in the profiles.

2.2.1 The UltraSPARC-III Hardware Counters

On UltraSPARC-I11I family of chips (see, for example, [20]), there are two counter registers, each
of which can count one of a number of events. The counter may be preloaded with a value, and
when the counter overflows, a interrupt is generated. That interrupt is translated by thelSolaris
Operating Environment into a sign@IGEMT) delivered to the process being profiled. The signal

is received by a handler that is part of the data collection system, and causes a data record to be
written by that handler for the event.

Counters are available for Cycles, Instructions Completed, Instruction-cache (I1$) Misses, Data-
cache (D$) Read Misses, Data-translation-lookaside-buffer (DTLB) Misses, External-cache (E$)
References, E$ Read Misses, E$ Stall Cycles, and many others. Some of the counters count events
(that is the number of times the particular trigger occurred), but others count cycles; for cache
counters, the counters that measure in cycles are especially interesting, since they count the actual
time lost because of the events, not just the number of eventscdlleet  command, if run

with no arguments, will generate a list of available counters for the machine on which it is run.
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2.2.2 Counter Skid

As is the case with many other chips, the UltraSPARC-III does not always deliver a precise trap
when a HW counter overflows. Since a counter may overflow quite late in the pipeline, the logic to
deliver a precise trap is complex, and may significantly affect the performance of the chip in
normal operation. Instead, the trap may be delivered after the event that caused the counter
overflow and may arrive quite a bit later.

At the time the signal arrives, the PC that is delivered with it represents the next instruction to
issue, which is rarely the instruction following the one that caused the counter overflow. A
performance measurement tool should take this skid into account in recording and interpreting the
data. The hardware does not capture the address of the data whose reference causes a memory-
related counter overflow event—only the register set at the time of the signal delivery is reported.

2.2.3 Apropos Backtracking Search

As mentioned above, although a PC is reported when the profile interrupt is delivered, the
instruction at the location pointed to by the PC is generally not the one triggering the event—that
instruction may not yet have been executed. The instruction immediately preceding it in execution
may be the one causing the event, but counter skid adds a great deal of uncertainty.

To address this problem we implemented an apropos backtracking search. It is specified by the
user by prepending a “+” to the name of a memory-related counter used for profiling. During data
collection, the collector walks back in the address space from the PC reported with the overflow
until it finds a memory-reference instruction of the appropriate type. The actual PC of the
instruction causing the event is called the trigger PC; the PC determined by apropos backtracking
is referred to as the candidate trigger PC.

The first memory reference instruction preceding the PC in address order may not be the first
preceding instruction in execution order. In particular, if there is any instruction that is a branch
target, there is no way to determine which path to the PC was taken, so the true trigger PC can not
be determined. It is too expensive to locate branch targets at data collection time, so the candidate
trigger PC is always recorded, but it is validated during data reduction.

Once the collector has backtracked to find the candidate trigger PC, it can disassemble the
instruction, and determine which registers are used to compute the effective address. However, the
contents of the registers may have been changed by intervening instructions while the counter is
skidding, so that even if the expression to compute the effective address is known, it may not be
computable. The collector makes that determination, and either reports a putative effective
address, or indicates that the address could not be determined.

2.3 Analyzing the data

As mentioned above, the result of a data-collection run is an experiment. It may be analyzed by a
GUI program @nalyzer ) or by a command-line equivalergr(_print ). Both use the same
shared-object to process the data.

For all experiments, the data is reduced to an annotated representation of the program graph, with
performance metrics for each node in the graph. The nodes correspond to PCs, and the graph
corresponds to the dynamic call graph of the program. The reduced data can be used to show a
function list, to show callers and callees of a function, with information about how the
performance metrics are attributed to the callers and callees, and to show annotated source or
disassembly code of the target.

For HW-counter experiments with apropos backtracking, additional data structures are built
corresponding to the data objects referenced by the target. The node in the program graph
corresponds to an instruction, and, for memory reference instructions, the symbol tables are used
to determine the name of the data object being referenced.

In order to validate a candidate trigger PC, the data reduction process must first verify that there
were no branch targets between the next PC as delivered with the counter overflow signal, and the
candidate trigger PC determined at data collection time. If there was an intervening branch target,
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the analysis code can not determine how the code got to the point of the interrupt, and so can not
be sure which instruction caused the event. The data analysis inserts an artificial branch-target PC,
and attributes the events to that artificial branch target.

3. Example: TheMCFSPEC CPU 2000 Benchmark

The MCFapplication, part of the SPEC CPU 2000 benchmark suite, was developed by Lobel [21]
for his dissertation. It is a single-depot vehicle scheduler formulated as a large-scale minimum-
cost flow problem solved with a network simplex algorithm accelerated with column generation. It
is neither multithreaded nor parallelized, but it does stress the performance of a single processor.

3.1 Experimental setup

The MCFapplication consists of 11 source files in the C language. The program was compiled
using the Sun ONE Studio 8 C Compiler (v5.5) with tfest -xarch=v9 build options along
with the options for memory profiling suppott. -xhwcprof -xdebugformat=dwarf .

Two experiments were collected using the Sun ONE Studio 8 Performance daltdst
command on th&1CFapplication. They were run on a dual 900 MHz UltraSPARC-III Cu Sun Fire
280R0 system with 2GB of RAM; each processor has 64kB of 4-way-associative level-1 D$,
organized in 32-byte lines, and 8MB of 2-way-associative level-2 E$, organized in 512-byte lines.
The machine was running Solaris 9 update 4.

The two experiments were collected with the following command lines:
collect -S off -p on -h +ecstall,lo,+ecrm,on mcf.exe mcf.in
collect -S off -p off -h +ecref,on,+dtlbm,on mcf.exe mcf.in

The first experiment collects both clock profile daga ©on ) and hardware counter profile data for

E$ Read Misses and E$ Stall Cycles; the second experiment collects hardware counter profile data
for E$ References and DTLB Misses. Apropos backtracking search for memory-reference
instructions and their effective data addresses was specified for all four HW counters, using a “
preceding the counter name for each counter.

3.2 Discussion

The remainder of this section will discuss the performance data recorded from these two
experiments.

3.2.1 Performance Metrics

Figure 1 shows the performance metrics recorded from the two experiments for the artificial

function<Total> , which represents the sum across all functions in the program. The program as
a whole is almost 100% CPU-bound, but spends more than half its time stalled for E$ Misses.
Furthermore, estimating the cost of a DTLB Miss as 100 cycles suggests an additional cost of 28
seconds, or another 5% of the total run time. The overall E$ Read Miss rate for the application is
about 6.4%. Clearly, performance of the memory subsystem is a dominant factor in the overall
performance of the application.

3.2.2 Functions

Figure 2 shows the function list, with the exclusive time and percentage for User CPU time and E$
Stall Cycles, and the percentages of E$ Read Misses, E$ References and DTLB Misses. It shows
that over 95% of the application’s User CPU Time is spent in the top three functions:
refresh_potential (51%),primal_bea_mpp  (23%) andprice_out_impl (22%).

The topmost functiomefresh_potential , is responsible for about half the total User CPU
time, and disproportionately more E$ Stall Cycles (62%) and DTLB Misses (88%). It is
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Exclusive Total LWP Time:  552.677 secs.
Excusive User CPUTime: 549404 secs.
Exclusive SystemCPUTime:  3.082 secs.
Exclusive Wait CPU Time:  0.180 secs.
Exclusive UserLock Time: 0. secs.
Excusive TextPage Fault Time: 0. secs.
Exclusive Data Page Fault Time: 0. secs.
Exdusive OtherWait Time:  0.010 secs.
Exdusive E$ Stall Cydes:  297.569 secs.
" count 267812254774
Exclusive E$ Read Misses: 1580927631
Exdusive E$ Refs: 24873218652
Exclusive DTLB Misses. 256265124

Figure 1. Performance metrics for th€otal> function

BExclUser EXcLEY EBExcd ES BExcd. Exc. Name

CPU StallCydes Read E$ DTLB

sec. % sec. % Misses% Refs% Misses %

549.404 1000 2975691000 1000 1000 1000 <Total>
280.706 51.1 184.224 619 623 384 880 refresh potential
127319 232 90267 303 296 138 94 primal bea mpp
120134 219 11389 38 40 417 08 price out impl
6154 11 5533 19 20 03 02 flow cost

4933 09 0011 00 0. 34 0. sort basket

3733 07 2711 09 10 04 01 dual feashle

2682 05 1656 06 06 08 01 update tree

1861 03 0933 03 02 04 03 primal iminus

0690 01 0411 01 01 00 07 wite crrculations

Figure 2. The Function List

responsible for 62% of all the E$ Read Misses, but only 38% of the E$ references; it has an E$
Read Miss rate of 10.3%. Conversely, the third functmmal_bea_mpp , is responsible for

42% of all ES$ references, but only 4% of E$ Read Misses; it has a cache-miss rate of 0.6%.
Clearly, memory usage is a source of performance problems for this application in general, and for
the topmost functions in particular.

To understand the critical code in thdg€CHunctions, source and disassembly listings annotated
with metrics associated with each source line or instruction can be examined.

3.2.3 Annotated Source and Disassembly

Figure 3 shows an excerpt from the annotated source of the most expensive function, showing
User CPU Time and E$ Stall Cycles for the critical loop. The critical loop contains numerous
pointer dereferences which make it difficult to determine the most costly ones. However, the
annotated disassembly will allow us to understand those references.

Figure 4 shows an excerpt from the annotated disassembly of the same function. The critical loop
in refresh_potential consists of fewer than 30 instructions (includingp s added for
padding). Approximately half of the instructions in the critical loop are loads and stores. Four of
these memory-referencing instructions (all loads) are particularly costly: three of them each
account for approximately 10% of the total E$ Stall Cycles (or 5% of the total run time), while the
first in the loop at 0x1000031B0 accounts for almost 20% (10% of total runtime). Almost 90% of
all the DTLB misses for the entire program also occur in this loop, with about one-fourth of them
being caused by loads vwbde.orientation and the remainder coming fraarec.cost

Closer examination of the annotated disassembly reveals several features specific to data-oriented
analysis.

First, the E$ Stall Cycles metric correlates quite well with memory-referencing instructions; the
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Bxd BExXES
UserCPU St

sec. Cyclessec.

0 o 79. tmp=node =root->chid;
0 O 80. whie(node =roat)
8L {
0290 O. 82.  whie(node)
83.
##37826 61978 84.  if(node->orentaion—=UP)
##75993 49.745  85. node->potential = node->basic_arc->cost
+ node->pred->potential;
86.  else/f=DOWN?
87. {
##60552 41311 88 node->potential = node->pred->potential
-node->basic_arc->cost;
3202 O 89. checksum+;
0.
oL
0560 O. 92.  tmp=node;
##75343 20500 93.  node=node->chid;
A 1}
9%5.
0220 0. 9. node=tmp;

Figure 3. Annotated source of critical looprefresh_potential

metric usually appears on a load instruction, suggesting that the apropos backtracking correctly
determined the trigger PC. On the other hand, significant amounts of User CPU time is shown
against unlikely instructions, such as the 57 secs. associated withdithenstruction at
0x1000031D8 and 48 secs. associated withstite instruction at 0x100003208. Clock profiling
events, which are the basis of the User CPU Time metric, are delivered with PC of the instruction
next to be executed and can not be corrected with apropos backtracking, but memory reference
events can be corrected. To some extent, the correlation is the fortuitous behavior of this particular
example code. If there were floating-point instructions immediately following the load instruction,
the skid would be greater.

Second, lines marked with an asterisk and labelbrhnch target> , are included in the

listing and some have an E$ Stall Cycles metric associated with them. For example, the line
labeled 0x100003218* preceding the instruction at 0x100003218 shows 1.2 secs. of E$ Stall
Cycles which clearly are not attributable to the branch instruction itself. These metrics represent
events where the apropos backtracking was blocked because of the control transfer target. In this
example, the metric values are not statistically significant and can be ignored; there is no way to
tell whether the overflow events came via the branch at 0x1000031E8 or simply fell through from
the immediately preceding block of instructions.

Third, data-object descriptor names are shown as annotations for memory-referencing instructions,
based on the information provided by the compiler.

From these data it is readily apparent that two of the costly reads asrdarost  (with no

other references tgtructure:arc in the critical loop) while the third is for
node.orientation , (with none of the references to other elementstaiicture:node

being particularly costly). The initial referenceriode.orientation at the start of the loop
brought the structure into the cache where other elements of it could subsequently be efficiently
accessed. The referencesat@.cost  occur immediately after their address was determined
(since they are pointer elements of the previously loasteacture:node ): too soon to be
effectively prefetched.

3.2.4 PCs
Figure 5 shows a list of those PCs with the highest performance metric values in the application,

Memory Profiling using Hardware Counters July 17, 2003 7



Exd. BExcd ES Exd.
UserCPU Sl DTLB
sec. Cydes sec. Misses %

0. 0. 0. [82]1000031a8*<branchtarget> <——=<<<
0290 0. 0. [82]1000031a8: be,pn Yaxcc,0x100003220
0. 0. 0. [82]1000031ac:nop
0. 0522 0. [84]1000031b0*<branchtarget> <—<<<
#5514 61456 24.3 [84]1000031b0:ldx [%603 +56], %002
{structure:node -}{long orientation}
#75303 28300 0.1 [93]1000031b4:ldx [%603 +24], %04
{structure:node -} {poirtter+structure:node chidl}
32313 0. 0. [84]1000031b8:cmp %02, 1
0. 0. 0. [69]1000031hbc:nop
0. 0. 0. [84]1000031c0: bnepn%excc,0x100003110
0560 0. 0. [92]1000031c4 mov %003,%05
0040 3056 0. [85]1000031c8:ldx [%003+ 16],%00
{structure:node -}{pointer+structure:node pred}
3583 2767 00 [85]1000031cc:ldx [¥603+64], %g4
{stucture:node -}{pointer+structure:arc basic_arc}
4953 0578 02 [851000031d0:ldx [%600+88], %g5
{stucture:node -}{cost_t=long potential}
#10687 43345 299 [85]1000031d4:ldx [6gd +32], %gl
{structure:arc -}{cost _t=long cost}
#56720 0. 0. [85]11000031d8:add %gl, %95, %692
0010 0. 02 [85]1000031dc:six %6g2, [¥003+88]
{structure:node -}{cost_t=long potential}
0. 0. 0. [6911000031€0:nop
0881 0. 0. [69]1000031e4:nop
0. 0. 0. [851000031e8:ba 0x100003218
0. 0. 0. [93]1000031ec.cmp %04,0
0. 0. 0. [88]1000031f0*<branchtarget> <—=<<<
0. 2689 0. [88]10000310:ldx [¥003+16],%g4
{stucture:node -} {poirter+structure:node pred}
3202 0. 0. [89]1000031f4:inc %g3
0. 0. 0. [93]1000031f8:cmp %04,0
0. 2367 00 [88]1000031fc: ldx [¥603+64], %g5
{ structure:node -}{pointer+structure:arc basic_arc}
3362 0956 0. [88]100003200:ldx [Y6g4 +88],%g2
{stucture:node -}{cost_t=long potential}
#9537 35300 328 [88]100003204: Idx [6g5 +32], %gl
{structure:arc -}{cost _t=long cost}
47643 0. 0. [88]100003208:sub 9%6g2, %gl, %02
0010 0. 01 [88]10000320c: six %602, [¥003+88]

{structure:node -}{cost_t=long potertial}

0. 0. 0. [69]100003210:nop

0751 0. 0. [69]100003214: nop

0. 1200 O. [03]100003218*<branchiarget> ~<==—<<<
0040 0. 0. [93]100003218; bnept %excc,0x100003100
0530 0. 0. [69]10000321c:mov %04, %03

Figure 4. Annotated disassembly of critical loopeffesh_potential

ranked by E$ Read Misses.

Examination of the PCs ranked by their E$ Read Misses shows that although the single top PC
comes fromprimal_bea_mpp ; the next four PCs all come fromefresh_potential
(The poorer correlation of User CPU profile data with critical instructions is also evident.)

3.2.5 Data Objects

Figure 6 shows a list of the data object types in the program, annotated with the cost of the data
references to each.
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ExcdUser Excd E$S Exd Exd Name
CPU Stal Cydes E$Read DTLB
sec. % sec. % Misses% Misses%
549404 100.0 2975691000 1000 1000 <Tota>
1841 03 63567 214 248 4.7 primal_bea mpp+0x000002EC
{structure:arc -}{flong ident}
5514 10 61456 20.7 214 243 refresh_potential + 0x000000D0
{structure:node -}.flong orientation}
10687 19 43345 146 163 299 refresh potential + 0x000000F4
{structure:arc -}{cost_t=long cost}
9537 17 35300 119 134 328 refresh potential + 0x00000124
{stucture:arc -}{cost t=long cost}
75303 137 28300 95 79 0.1 refresh potential + 0x000000D4
{structure:node -}{pointer+structure:node chid}
0280 01 9644 32 28 19 primal_bea mpp +0x0000030C
{stucture:node -}{cost_t=long potential}
14270 26 5000 17 18 15 primal bea mpp+0x00000310
{structure:node -}{cost_t=long poterttal}
3583 0.7 2767 09 10 00 refresh_potential + 0x000000EC
{structure:node -} {pointer+structure:arc basic_arc}
0120 00 1944 07 10 05 price_out impl+0x000004C8
{stucture:arc -} fflow_t=long flowj}
0010 00 2422 08 10 0.1 flow_cost+0x00000120
{stucture:arc -}{flong ident}
0030 00 2333 08 10 0.0 dual feasble +0x0000001C

{stucture:arc -} {flow _t=long flow}
3683 0.7 3111 10 09 0. price_out impl+0x000004CC
{stucture:arc }{ﬂa/v t=long flowj}
24797 45 2367 08 09 0.0 price_out impl+(0x000002CC
{stucture:node -}flong time}
0. 0. 2367 08 09 00 refresh potential +0x0000011C
{structure:node -}{pointer+structure:arc basic_arc}
0370 01 1567 05 07 02 price_out impl+0x000002C4
{stucture:arc -} {pointer+structure:node i}
0. 0. 2689 09 07 0. refresh potential +0x00000110
{structure:node -}{pointer+structure:node pred}
0040 00 3056 10 06 0. refresh potental +0x000000E8
{structure:node -} {pointer+structure:node pred)

Figure 5. PCs, ranked by E$ Read Misses

Dala. ES Dala. Dafa. Daia.
SElCyc. E3Read E$ DTLB
sec. % Misses% Refs% Misses% Name

2975691000 1000 1000 1000 <Towa>
166402 559 594 373 700 {stuctureiarc-}
124601 419 395 414 297 {stucturenode}
6378 21 12 190 02 <Unknown>
3467 12 11 21 01 (Unspecified)
2611 09 00 53 0. (Unresolvable)
0200 01 01 05 01 (Unascertainable)
0178 01 00 22 0. {structurebasket-}
0100 00 00 112 0. (Unidentfied)
0011 00 0. 0. 0. {structurenetwork-}
0. 0. 00 00 O <Scaars>

Figure 6. Data objects, ranked by E$ Stall Cycles

The data objects associated with memaory-referencing instruction events also provide a basis for a
fundamentally different set of metrics derived from the hardware counter profile event data. (Such
data-derived metrics are not possible from other hardware counter events or other types of profile
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data.) Aggregation by data object reveals that 63% of E$ Read Misses and Data TLB Misses relate
to accesses tstructure:arc versus 36% from accessesdipucture:node . Negligible
numbers of misses are attributable to other structures.

The <Unknown> data object shows metrics corresponding to about 2% percent of the E$ Stall
Cycles, and 19% of all E$ References. E$ References have significantly greater skid than the other
memory metrics in these experiments, and they are also far more widely distributed, thus
accounting for the difference. Many such references come from libraries slitit.as.1
that were not compiled with the appropriate compiler flags for memory profiling.

The <Unknown> object is an aggregate of several types of indeterminate references:
(Unspecified) , meaning that the compiler did not give a symbolic reference for the
instruction;(Unresolvable) , meaning that the apropos backtracking could not determine the
trigger PC;(Unascertainable) , meaning that some modules that had memory events were
not compiled with thexhwcprof  flag; and Unidentified) , meaning that the compiler did

not identify the data object, which is most likely a compiler-temporary. One additional subset of
<Unknown> does not happen to appear in the data from these experinjgntgerifiable) :
meaning that the compiler branch-target information provided was inadequate to determine the
validity of the trigger PC.

The effectiveness of the apropos backtracking for each metric is approximately equal to 100%
minus the metric values associated with {himresolvable) and(Unascertainable)

data objects. From Figure 6, the scheme can be seen to be more than 99% effective for E$ Stall
Cycles, almost 100% effective for E$ Read Misses, 100% effective for DTLB misses (which are
precise), and almost 94% effective for E$ References (which have the greatest skid associated
with them). We have found approximately the same effectiveness for these in experiments on a
large commercial application.

Figure 7 shows the expansion of the data obgtaicture:node , showing metrics for each

Daia. ES DalaES Dala. Daia.  Name
StlCycles Read E$ DTLB +offset field-name
sec. % Misses% Refs % Misses %
124601 419 394 415 298 {stucturenode-}
0056 00 00 0. 00  +0{longnumber}
0 0 0 O o +8 {pointer+char ident}
7056 24 13 18 05  +16 {pointer+structure:node pred}
20100 98 82 37 01  +24 {pointer+structure:node child}
0444 01 00 22 00  +32 {painter+structure:node sibiing}
0 0. 0. 00 O  +40. {poriertsiuduencdesding prev
0244 01 01 04 02  +48 {ongdepth}
61523 207 214 80 243  +56 {long orientation}
5256 18 20 15 01 +64 {pointer+structure:arc basic_arc}
0078 00 00 01 0.  +72 {pointer+structure:arc firstout}
0033 00 0. 00 0.  +80 {ponter+structure:arc firsin}
18133 61 52 167 45  +88{cost t=ong potential}
0256 01 01 02 0. +96 {flow t=ongflow}
0056 00 00 14 0. +104 {ongmark}
2367 08 09 55 00 +112 {ongtime}

Figure 7. Dataobjedtructure:node expansion

element in the structure.

From this table, it can be seen that of the 42% of E$ Stall Cycles related to accessimugléhe
structure, with the bulk of the cost attributable to accessinghitkl , orientation and
potential elements, at offsets of 24, 56 and 88 bytes respectively, in the 120-byte structure.
Further investigation reveals that the majority of the references to elements
node.orientation andnode.child  occur in functiorrefresh_potential , while the
majority of the references to elemerdde.potential occur in functionprimal _ bea _mpp

The 32-byte separation between these elements places them in different D$ lines (each 32 bytes
wide), which is likely to limit cache effectiveness.
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If the first of the dynamically-allocated 120-byséructure:node data objects is E$-line
aligned, the fifth such data object will be split over two 512-byte E$ lines. In fact, 28% of these
120-byte data objects end up split this way. This suggests that it would be more efficient to re-
arrange the elements sfructure:node to pack the most referenced elements contiguously
into 32 bytes to facilitate re-use in the D$, and either pad the structure with an additional 8 bytes or
otherwise align them such that only whole data objects are mapped into E$ lines.

Similarly, of the 56% of E$ Stall Cycles attributable to accessingcture:arc , 27% are due

to elementcost (mostly inrefresh_potential ) and 22% are due to elemeittent

(mostly inprimal_bea_mpp ). While these constitute the critical references, accounting for the
bulk of the E$ Read Misses and E$ Stall Time, other references which show up in the profile
should be considered in any possible optimization. The current performance data is insufficient to
guantify the number of such references which may be efficiently exploiting the E$ but may be
adversely impacted by code or data modifications.

The application also shows high DTLB Misses, which contribute about 5% to the total run time.
The analysis suggests that rebuilding with pages larger than the system default page size of 8kB
will improve performance by decreasing the number of DTLB Misses, thus making more effective
use of the DTLB.

3.3 Performance Improvements based on the Analysis

The first change suggested by the data above is paddingothe structure with an additional 8
bytes, aligningnode andarc structures on cache lines, and re-arranging the members of the
node andarc structures according to their frequency of reference. Doing so and recompiling
produced a 16.2% speedup\tCFotal execution time.

The second change suggested is to change the page size used for the heap segment. Doing so, by
adding axpagesize_heap=512k flag and recompiling, produced a 3.9% gain.

Combining the changes produced a cumulative decrease of 20.7% MGhkapplication total
execution time.

4. Future Work

The current implementation presents information about data structures and members, and the
profiles attributed to them. Future work is under consideration to support feedback to the compiler
to allow it to produce more-efficient executables, and to support reports and displays of additional
information.

Since the experiments contain the information necessary to know which memory references cause
the cache-misses, the data can be used to construct a feedback file, allowing a recompilation of the
target to be done with the insertion of prefetch instructions.

Event data addresses can be further analyzed by corresponding machine entities, such as the
memory segment (of load objects or allocated to stack, heap, shared or otherwise mapped
memory), and broken down by page for those segments. Alternatively, addresses can be
aggregated by corresponding cache line for analysis.

In the current implementation, although the actual effective address of the data causing a cache
miss is determined (where possible), it is only used in showing an individual cache-miss event in
the analyzer. Future work could support translating the effective addresses into structure object
instances, and aggregating data by instance, rather than only by type.

5. Conclusions

We have discussed the issues concerning memory accesses, and their effects on performance,
summarizing related work on memory profiling. We then discussed the Sun ONE Studio compilers
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and performance tools, and described the new functionality added to support memory profiling.
We used the tools to explore the behavior of MEFbenchmark, and showed how they can
highlight the performance issues relating to memory accesses. We then showed how the analysis
suggested changes to the code that improve its performance by more than 20%. Finally, we
discussed extensions to the present work to further explore memory behavior in applications.
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