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Abstract

This thesis presents sequential and parallel implementation of MOBB(Multi-
Objective-Branch-and-Bound) algorithm, a novel algorithm that solves MOMIP (Multi-
Objective-Mixed-Integer-Programming) problem. While SOMIP (Single-Objective-
Mixed-Integer-Programming) is notoriously hard to solve, MOMIP is even harder.

No efficient algorithms to solve MOMIP has been known before.

MOBB is based on tradtional SOBB(Single-Objective-Branch-and-Bound) al-
gorithm, with several major modifications of bounding feasible region and of
how to prune Branch-and-Bound tree. Parallelization is implemented with the
hope of speeding up calculation as much as possible. The combination of a novel
algorithm and its parallelization is the highlight of this thesis project.

All classes, methods, data structures and algorithms in this thesis are imple-
mented in C++, while certain data analysis and visualization are implemented
in Matlab and Python. The result of this project shows that our MOBB algo-
rithm is much better than the traditional brute and force algorithm. Further,
our parallelization of MOBB algorithm has achieved super linear speedup, which
is the best possible result of any parallelization program.

The investigations of MOBB algorithm and its parallelization has susccessfully
proven that MOBB can very efficiently solve certain MOMIP problems, which
could possibly lead to a major breaththrough in the Operations Research area.
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CHAPTER 1

Introduction

Operations Research(OR) [I] is a branch of applied mathematics used to sup-
port decision making. It has gained its popularity ever since world war II. The
paramount aim of OR is to find the maxima or minima of one objective function
given a certaint complicated constraints. It uses methods of mathematical mod-
elling, statistics, and algorithms to achieve such a goal. It is used everywhere
in modern engineering, such like economy, production plan, logistics, medical
engineering, computer chip designing, chemical engineering. In other words, OR
is the core of all management sciences.

Linear programming(LP) [I] is a very useful tool in OR. It mainly deals with
the linear objective function and linear constraints. Serveral powerful algorithms
have been proposed to solve LP. These algorithms are very much efficient, usu-
ally they can solve LP problems very quickly.

While there are certain very effective ways of solving linear programming, one
simple extra requirement could make linear programming extremely hard — that
requirement is to make all variables be integers. This special case is called IP
(Integer Programming) [2]. IP problems are notoriously hard to solve, due
to the fact that the solution space is exponentially growing with the number
of variables, which is categorized as an NP-hard problem. MIP(Mixed Integer
Programming) and BIP(Binary Integer Programming) are two forms of IP: MIP
requires the integer variables to be arbitrary integers, while BIP requires the
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integer variables to be solely binary integers.

Through the last 50 years, many approaches have been proposed to better solve
IP. Among them, B & B (Branch and Bound) [2] is a generic algorithm that
could greatly reduce the solution space. Traditional B & B deals with sin-
gle objective. MOMIP (Multi-Objective-Mixed-Integer-Programming) H] deals
with multi-objective. There are currently no efficient algorithms to deal with
MOMIP. Therefore, it is a very hard problem. In this thesis, we propose a novel
algorithm to efficiently solve MOMIP based on a modified version of branch and
bound algorithm , i.e. MOBB (Multi-Objective Branch and Bound) .

Parallel computing [3] is a form of computing in which many instructions are
carried out simultaneously. It attempts to use as many CPUs available as pos-
sible at one time, therefore calculation can be achieved much faster. Parallel
computing has been the primary programming paradigm in the HPC (High
Performance Computing) area, where intensive computation is required. Once
to be only primarily used on super-computers, with the advent of multi-core
processers’ popularlity nowadays, parallel computing has been more and more
important in the programming area. While there are no methods to convert
an NP [3] problem to a P [B]problem, parallel computing is by now the most
effective method to solve NP-hard problems. In this thesis, we propose two
algorithms to parallelize our novel MOBB algorithm.

1.1 Thesis outline

Chapter2 reviews the B & B algorithm. It presents the fundamental data struc-
tures and algorithm flowcharts of B & B algorithm, also it briefly introduces
CLP solver, which is the simplex solver we used in this thesis project.

Chapter3 proposes our MOBB algorithm. It compares MOBB with SOBB and
illustrates several key points of MOBB. It explains how to modify a SOBB al-
gorithm to construct a MOBB algorithm in great details.

Chapterd describes the implementation and analysis of sequential MOBB al-
gorithm. It also shows the result of MOBB algorithm is much better than the

traditional brute and force method.

Chapterb reviews the parallel programming. It explains classifications of paral-
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lel pogramming and gives introduction to the parallelization tools that we used
in this thesis project.

Chapter6 presents the coarse-grained parallelization algorithm for MOBB. Coarse-
grained parallelization is a straightforward implementation of parallelization of
MOBB algorithm and shows it gives a medicore speedup.

Chapter7 presents the fine-grained parallelization algorithm for MOBB. It gives
a thorough explaination of how a fine-grained algorithm of parallel MOBB is
constructed. And it shows a very good speedup.

Chapter8 presents the software architecture of the whole project. It explains
how Object Oriented technology is adopted in this project and why they are

useful.

Chpater9 presents the conclusion and future work of this thesis project.
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CHAPTER 2

Single-Objective Branch and
Bound

In this chapter, formal descriptions of linear programming and single-objective
branch and bound is presented as they are the foundations of later MOBB work
and further parallelization; also, the B & B algorithm is presented in greater
details in the form of algorithm flow charts.

2.1 Formal description of Linear Programming
and Integer Programming

Linear programming consists of two major components: (1) an objective func-
tion [1], which is a linear combination of variables and (2) a set of constraints
] imposed on variables.

The goal for linear programming is to minimize or maximize the objective func-
tion while maintaining all the variables inside the feasible region [I], which is
defined by the constraints. A formal description of one linear programming is
given below:

Maximize

Z =cx (2.1)
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Subject to
Az < b (2.2)

And
z 20 (2.3)

Where, ¢ is a row vector of n real numbers, x is a column vector of n contin-
uous number(a.k.a n variables), b is a column vector of m real numbers(a.k.a
m constraints ), A is an m * n matrix of constraints’ parameters. The maxi-
mization value of the objective function is called the optimal objective. When
an optimal objective is achieved, the values of all variables are called the op-
timal solutions. A feasible region[l] refers to the region in which all variables
are sastisfied with the constraints. The variables confined in the feasible region
are called feasible solutions. All the optimal solutions must be feasible solutions.

A number of algorithms have been developed to solve such problems, among
those algorithms, the simplex method [I] is the most widely used.

In the formal description of linear programming, the objective function is a
maximizatioin function. Duality theory [I] ensures for each maximization prob-
lem, one can always find a dual minimization problem which once solved can
generate the same solutions for the counterpart maximization problem. The
equivalent form of minimization problem is given below:

Minimize
W =uyb (2.4)
Subject to
yA>=c (2.5)
And
y=0 (2.6)

Where, c is the same row vector as in maximization problem, y is a row vector
of m continuous numbers(a.k.a m variables), b is the same column vector as in
maximization problem, A is the same m * n matrix as in maximization prob-
lem.Since these two forms are equivalent to each other, one can always convert
one LP problem from maximization form to minimization form, or vice versa.

Based on LP, the IP problem is to add one more constraint, which is to re-
quire some of the continous variables to be integers. The reason behind why
IP is much harder than LP, is that the simplex method traverses corner points
defined by the constraints set by pivoting basic variables in and out. Such a
process can be done by matrix factorization [I6], which is very fast on modern
computer systems. However, when the integer constraint is added, such meth-
ods may still apply but the result might not be in the feasible region anymore.
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To ensure a solution is both optimal and feasible requires enumeration of all
the possible solutions, thus the exploration of solution space gets enormously
big. Duality theory does not hold in IP problem.The focus of this thesis is min-
imization problem. For maximization problem, we could negate the objective
coefficients and adopt several transformation and scaling techniques to convert
it to a minimization problem.

2.2 What CLP solver has to offer

After giving the formal description of LP and IP, we should turn to the tool
at our disposal to examine what it can offer. This thesis project is based on
COIN-OR project. COIN-OR, (COmputational INfrastructure for Operations
Research) [f] is an initiative to spur the development of open-source software for
the operations research community. COIN-OR provides a handful of open source
projects for OR algorithms. More specifically, this thesis uses CLP project in
COIN-OR as the backbone solver. Clp (Coin-or linear programming) is an
open-source linear programming solver written in C++. It is primarily meant
to be used as a callable library. Certain methods provided in CLP are of great
interests for this thesis, as they provide the gateway to solving SOBB/MOBB.
A brief review of these methods are given below. This review serves as a know-
how primal, so that the rest of thesis can solely focus on the algorithm aspect
without excessive considerations to the technicalities.

The input to the CLP solver is usually in the mps file format. MPS (Math-
ematical Programming System) is a file format for presenting and archiving
linear programming (LP) and mixed integer programming problems. MPS is
column-oriented (as opposed to entering the model as equations), and all model
components (variables, rows, etc.) receive names. As in the LP format, columns
refer to variables and rows refer to constraints. The below is a list of methods
that are used throughout this project.

e void readMps(): It reads the .mps [I7] file(mps, Mathematical Program-
ming System format, a special file format that is used to faciliate several
mathematical programming, which includes linear programming) and ini-
tiates the solver.

o int getNumCols(): It returns the number of columns of constraint matrix,
i.e., the number of variables.
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e int getNumRows(): It returns the number of row of constraint matrix, i.e.,
the number of constraints.

o string getColName(int index): It returns the column name of given index.
e string getRowName(int index) : It returns the row name of given index.

e addRow(int rowNumber, int* columnIndices, double* element, double lower-
Bound, double upperBound): It adds one row(i.e a constraint), rowNum-
ber is how many variables are affected in this constraint, columnlndices
is the column indices of the affected variables, element is the constraint
coeflicients of the affected variables, lowerBound is the lower bound of this
constraint, upperBound is the upper bound of this constraint.

e removeRow(int rowIndex): It removes the row of the given row index, i.e.,
remove one constraint.

e isBinary(int columnlIndex): It returns true if the variable of the specified
columnlIndex is a binary variable, false otherwise.

o setContinuous(int columnIndex): It sets the variable of the specified columnIn-
dex to be continuous.

e setColBounds(int columnIndex, double lowerBound, double upperBound):
It sets the upper bound and lower bound of the variable of the specified
columnlIndex.

e initialSolve(), resolve(): They both serve as the simplex solving methods,
initialSolve is used when pivoting the LP system for the first time, resolve()
is used afterwards as it keeps track some information from the previous
initialSolve() or resolve() to speed up calcuation.

e double* getColSolution(): It returns the values of each variable.

e void setObjSense(double direction): It sets the direction of optimization,
i.e. whether it is a minimization problem(when direction is 1.0) or a
maximization problem(when direction is 0.0). Since the focus of this thesis
is minimization, we always set direction as 1.0.

e bool isProvenPrimallnfeasible(): It returns whether the current solution
is feasible or not, returns true if infeasible, returns false otherwise.

2.3 Description of B & B

After giving the formal description of IP and the tool to solve LP, now we can
see how to solve an IP problem using the available tool.
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To solve IP problems, Branch and Bound is by far the most widely used frame-
work. The core idea is that instead of brute-force searching for all the possible
solutions, the algorithm starts from one node(see subsection EZZTTl) where no
binary variable is fixed, then the algorithm does a linear relaxation [2](linear
relaxation means to solve this problem as an LP problem regardless of the in-
teger constraints), the result of this linear relaxation provides the lower bound
of this IP problem, lower bound means no subsequent solutions can obtain a
better objective than it— a relaxation normally increases the feasible solution of
original problem, thus might contain a better objective, which was not feasible
in the original problem. Then the algorithm branches on the most fractional
variable in the solution of last linear relaxation (i.e. the variable with a solution
closest to 0.5). For each branch, the lower bound of its IP problem is the result
from a linear relaxation. Bounding (or fathoming) refers to the condition un-
der which the subtree of a given node could be discarded, there are three such
condtions: (1) the relaxation value of any branch is bigger than the incumbent
best feasible objective value so that no better objective values can be obtained
from this subtree; (2) the solution to this node’s relaxation is infeasible so that
when fixing more binary variables, the solution cannot be feasible as the feasible
region only gets smaller when more constraints are imposed; (3) If a linear re-
laxation happens to generate an intger solution(i.e. all the integer variables are
fixed with an integer in the solutions), so that the optimal objective is the lower
bound of the subtree then there is no need for further branching. Algorithm [
is a general description of B & B. To better illustrate B & B algorithm, the next
two subsections are presented to elaborate on the data structures and algorithm
flows involved.

2.3.1 Data structure needed

To faciliate B & B algorithm, several data structures are needed. As coded in
C++, each data structure is represented by an according class.

2.3.1.1 BBNode

The main purpose of the class BBNode is to keep track of which binary vari-
ables are fixed to faciliate linear relaxation in B & B algorithm. Therefore, in
BBNode class, two vectors are needed, one vector records the binary variable in-
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Algorithm 1 Branch and Bound

1: while tree(see subsection EZZT2)) is not empty do

2:  choose a node (see subsection EZIIT) in tree
3:  reset CLP solver’s bounds and fix binary variable according to this node
4:  do a linear relaxation

5. if solution is feasible then
6

7

8

9

if relaxed objective is better than the incumbent then
if solution is an integer solution then
update incumbent

: else
10: branch on this node
11: end if
12: end if
13:  end if

14: end while

dices, to which have been assigned a fixed binary value; the other vector records
the values of these fixed binary variables. These two vectors always have the
same size. The minimum size of each vector is 0, which is the starting point of
the whole program. The maximum size of each vector is the number of binary
variables, which means that all binary variables are fixed, and such a node is
called leaf node.

2.3.1.2 BBTree

The main purpose of BBTree is to contain the BBNodes, so that the algorithm
can better access the BBNodes. Currently, a vector of type BBNode is used
as the backbone of this class. Six methods are offered: push()/pop(), which
adds/returns one node; iIsEmpty(), which returns if the tree still has any node;
size(), which returns the size of the tree; split(), which splits a tree into two trees
of equal size; and chooseNextNode(), which chooses the next node to solve, there
are several strategies to choose next node to solve: choose the one with smallest
relaxed objective value, or with the largest relaxed objective value, or in the
order they are inserted — based on previous experiments, the one with choosing
the smallest relaxed objective value has the best performance.

A typical B & B tree [] looks like below:
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Initial LP relaxation value 0.65
X2 fractional

X2=0 X2=1
P1 value 0.6 pa O value 0.63
X1 fractional X3 fractional
X1=0 X1=1
P3 @ P4

value 0.6 valug 0.3

integer feasible

Figure 2.1: A typcial B & B tree

2.3.2 Algorithm flow chart

After designing all the required data structures, one needs to assemble them
together to solve an IP problem. In this section, a big picture of how the whole
program works is presented first; then, a detailed explanation of how to solve
each node in the tree is presented.

2.3.2.1 Big picture of the sequential B & B algorithm

First, a flow chart of single objective B & B is presented in Figure [ZZ

Explainations of the flow chart:

e Step(A) Initiate CLP solver, four tasks need be done: (1) read the input
.mps file;(2) look up the binary variable indices, store them, set each binary
variable to continuous(the reason to set the binary variable to continuous
is that we need to treat all variables as continuous first to implement our
own B & B algorithm, otherwise, CLP solver will use its own method to
solve this TP problem), set lower bound to 0 and upper bound to 1 for
each binary variable; (3) Construct one empty Node, which has no binary
fixing, and push it into a tree; (4) set the current best objective value to
be a very large number.
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O

¥

(A) Initiate
Clp Solver

B)ls tree
emp

Y
(C)Choose
and solve a
node

O

Figure 2.2: Big picture of sequential B & B algo.

e Step(B) While the tree is not empty, choose a node and solve the node.
As discussed above, the node selection strategy is minimum-objetive-first
strategy.

e Step(C) Choose a node and solve this node. For details, please refer to
subsection

2.3.2.2 Elaboration on Solving a Node

This part deals with solving one node in the B & B tree, it is the core part of
the whole algorithm. Figure presents such a process.
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| (A) Choose a
i Node )

(B) reset l;ounds, fix
binary variable

h

(H) branch [«—N

¥
(G)Update
incumbent

Figure 2.3: Solve a node in B & B algo.

Explainations of the flow chart:
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Step(A) Choose a Node, the selection strategy is smallest-objective-value
first.

Step(B) Reset binary variable bounds, and fix binary value according to
the two vectors in Node.

Step(C) Call CLP’s simplex solver to solve the current configuration. First
time call initialSolve(), later call resolve().

Step(D) Check if the current configuration is feasible, call isProvenPrima-
lInfeasible().

Step(E) Compare the linear-relaxed objective value with the current best
objective value.

Step(F) Check if all the binary variables are close to 1 or 0 enough. The
gap precision here is set to 107°.

Step(G) Update the current best objective value, i.e. if newly obtained
objective is better than the incumbent, then set incumbent to the new
one, otherwise keep the incumbent.

Step(H) Choose a binary variable, whose current solution is closest to 0.5,
branch on this node, i.e. set this variable’s solution to 0 and 1 respectively
while keeping all other solutions of the last solving process, put the two
branched nodes back to the tree.

CLP solver itself provides a method that does branch and bound, however,
we need to have much more flexibility of the program to construct later MOBB
algorithm, so it is neccessary to have our own branch and bound implementation.



CHAPTER 3

Multi-Objective Branch and
Bound

From this chapter, we start to discuss the core topic of this thesis - MOBB(Multi-
Objective Branch and Bound). Compared to SOBB(Single-Objective Branch
and Bound) , the distinctive feature of MOBB is that the objective is not only
evaluated by one objective, but by many such values. More specifically, the
focus of this thesis is two-objective branch and bound. In this chapter, we first
give a formal description of MOBB, and then give definitions of several terms, fi-
nally we give a thorough explaination of our algorithm to solve MOBB problems.
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3.1 Formal description of MOBB

This section gives the formal description of MOBB.

Minimize {z1,22} (3.1)
Subject to

21 = Zcixi,w, where x; € B (3.3)

22 = > cl; Vi (3.4)

AX > b (3.5)

Equation [[MLA defined the objective of MOBB, that is to minimize both z1 and
z2. Easily seen, the objective will not only contain one point anymore (in most
cases), but rather a curve of points, i.e. a Pareto front(please refer to subsection

7).

Equation defines one dimension of the Pareto front, this constraint en-
sures that given a total binary fixing(i.e. all the binary variables are fixed),
objective z1 is a fixed number, because z1 is only decided by binary variables .

Equation defines the other dimension of the Pareto front, this dimen-
sion is decided by a mixture of both continuous and binary variables, so given
a total binary fixing, z2 will not have a deterministic value.

Inequation [MII0lis the same constraint as in the ordiany LP.

3.2 Some term definitions in MOBB

3.2.1 Integer Point

An ”integer point” is a point obtained when all the binary variables are fixed. z1
and 22 are each dimension of the point, which are defined in Equation and
Equation [ respectively. For each pair of integer points (assume ipl, ip2),
there are two kinds of relationship: ipl dominates ip2, provided ipl.z1 < ip2.z1
and ipl.z2 < ip2.22; ipl draws ¢p2, provided ipl cannot dominate ip2 and ip2
cannot dominate ipl, i.e. one of the dimensions of ipl is better than that of ip2
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but worse for the other dimension.

3.2.2 Pareto Front

A Pareto front is a curve that contains a series of Integer points, which are

drawing each other. Figure BJlshows a Pareto front.

1%

0.9

0.8

0.7F

0.5F

0.4}

031

Figure 3.1: A Pareto front.

3.2.3 Semi-Nadir Point

A Semi-Nadir point is a point between two integer points which bears such
property: assume two drawing integer point ipl, integer point ip2, and ipl.z1 >
ip2.z1(thus ip2.22 > ipl.22 ); then, a Semi-Nadir point SP is such a point that

SP.z1 =ipl.z1 and SP.22 = ip2.22. Figure shows such a point.
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®
I
I
I
I
I
i
I
P p—

Z1
@ Integer Point
®  Semi-Nadir Point

Figure 3.2: A Semi-Nadir Point

In other words, the property of a Semi-Nadir point is that any point in the
region confined by two Semi-Nadir Points(snpl, snp2) and the integer point(ip)
between these two Semi-Nadir points will be dominated by ip, because all the
points in such region will hold larger z1 and 22 than ip’s. In Figure B3l all
points in Region R1 will be dominated by the upleft integer point while all the
points in Region R2 will be dominated by downright integer point.
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1

@ Integer Point
®  Semi-Nadir Point

Figure 3.3: Two Integer points and Three Semi-Nadir Points with the regions
dominated by the integer points

Obviously, any two integer points can decide one semi-Nadir point, therefore
N + 1 adjacent integer points on one Pareto front can decide N semi-Nadir
points. Figure B4l shows one Pareto front and its semi-Nadir point list(red
points are the integer points and blue points are the Semi-Nadir points).
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Figure 3.4: Pareto front and its Semi-Nadir point list, red points are integer
points and blue points are Semi-Nadir points

3.3 Omne-Sliced MOBB

After introducing the basic definitions and description of MOBB, we can start
to ponder how to solve such a problem with the given tool. This section deals
with One-Sliced MOBB (traditional SOBB is also one-sliced, i.e, the feasible
region is examined as a whole rather than being divided-and-conqured). The
main topics of this section are two-fold: (1) how to modify the objective func-
tion to comply with CLP solver (2) how to branch and bound.

3.3.1 Objective function

As discussed before, the CLP solver can only solve the linear programming with
one objective function. We can certainly brute force all the binary fixings and
switch the objective function from z1 to 22 back and forth, but it will not be
the best method. A better means would be to introduce an additional variable
z and z is a linear combination of z1 and 22, and then try to find a Pareto front
along with minimizing z. So the formal description of MOBB can be modified
as below:
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Minimize = (3.6)
Subject to (3.7)
z = kiz1 +kozo (3.8)

21 = chfci,w, where x; € B (3.9)

2 = Y Vi (3.10)

AX < b (3.11)

in Equation BX ki and ko can be arbitrary numbers, usually we choose the
perpendicular direction of the angle division line of the upper bound and lower
bound of the feasible region(in one slice case, this region is the first Quadrant.)
to set up k1 and ko. The graphic meaning of z is the distance from original point
to the objective function line. Figure B shows the objective function’s graph-
ical representation in one slice. Theoretically, one should use the distance(as
shown in the figure) as the objective function. However, in practice, the inter-
sect on 22 axis can serve the same purpose, as it equals to #(&)’ where o equals
to 8 — 7, (deducted from § — (7 — 3)), B is a constant degree whose tagent is
the slope of objective function; therefore, sin(a)is a constant number. In the
one slice case, one can easily deduct that k; and ko are both 1.

Zjl
2

Intersect of Obj |

function on Z2

Z1

Figure 3.5: Objective function
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3.3.2 Branch and bound

After the objective function is defined as in the traditional B & B algorithm,
there are two major things that need to be considered: branch and bound. As
in SOBB, bound refers to fathoming nodes while branch refers to branching on
nodes once they cannot be fathomed. Also as in SOBB, there are three criterion
to fathom: fathom by infeasibility, fathom by worse objective value, fathom by
integer solution out of linear relaxation.

3.3.2.1 Fathom by infeasibility

Obviously, Equation is the only extra constraint added compared to a nor-
mal linear programming, and this constraint cannot change the feasible region
of either z1 or 22 or any other variables. So the feasiblity of MOBB is exactly
the same as the SOBB, which can be tested by the CLP solver’s isProvenPri-
mallnfeasible() method.

3.3.2.2 Fathom by worse than best incumbent

In the SOBB algorithm, the fathom scheme is done by comparing a linear relax-
ation objective to the current best feasible ojbective, if not better just fathom
the whole branch. However, in MOBB, the fathom scheme will not apply any-
more. In one slice, a linear relaxed solution has to be compared to the worst
Semi-Nadir point, only if this solution is worse than the current worst Semi-
Nadir Point that it can be fathomed. Figure illustrates this. Except the
worst Semi-Nadir point, any other Semi-Nadir points have the potential to jump
into the feasible solution area, so do the points that are only slightly worse than
them; therefore, only a point’s z value worse than the worst Semi-Nadir point
can it be fathomed. For instance, in Figure B point A is in the potential feasi-
ble region so it cannot be fathomed, point B can jump downwards to potential
feasible region so it cannot be fathomed either, only point C is worse than the
worst Semi-Nadir point so it can be fathomed.
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Figure 3.6: Fathom scheme

3.3.2.3 Fathom by Integer condition

In the SOBB algorithm, once a linear relaxation generates an integer solution,
the branch below this node can be totally fathomed, because any other solution
after this node in that branch will not possibly be better than this integer
solution. But in MOBB, due to the same reason as in ”Fathom by comparing to
best incumbent”, one cannot simply fathom all the possible solutions below this
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node; instead, one has to continue to search from this node until either ”fathom
by infeasibility” or ”fathom by worse than best incumbent” applies. However,
one cannot branch on this solution, as it is an integer solution, and none of the
binary fixings can be branched; further, it cannot generate a different solution
if sending the previous fixing to CLP solver. Therefore, one constraint needs to
be added in the CLP solver to escape this integer point. Such a constraint can
be described as below:

dowity (I—w) > 1Viie S, Vjje s (3.12)
i j

Where Sy is the set in which all binary variables are fixed to 0, .S; is the set in
which all binary variables are fixed to 1.

It is only when all the binary fixings are exactly the same with the Integer
solution that Inequation B2 will be violated, any other case will satisfy such a
constraint. Therefore, this constraint skillfully escapes the last integer solution
while still makes all the other solutions feasible.

3.3.2.4 Branching

If a node cannot be fathomed, then it has to be branched and inserted back into
the tree. MOBB branching is exactly the same as in SOBB, that is to branch
on the most fractional solution, fixing it to both 0 and 1 and put these two
subsequent nodes to the tree.

3.4 Multi-Sliced MOBB

While Non-Sliced MOBB can perfectly handle MOBB problems, the Sliced
MOBB algorithm is come up with the hope that better bounding could lead
to getting solutions faster.

Generally speaking, Sliced MOBB is to divide Quadrant to a number of slices;
and in each slice, a CLP solver runs as in the Non-Sliced MOBB algorithm;
while a single Pareto front is kept to generate the eventual result. Since the
feasible region is divided by slices yet the total region is not affected, the even-
tual result will not miss any potential solution. Equation guarantees that
given the same binary fixing, only one optimal solution will dominate all the
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other solutions in different slice; therefore, the eventual solution will maintain
unchanged. In some unlikely cases, there might be the same number of feasible
solutions as in the One-Sliced MOBB, therefore, the total number of solutions
could get much larger than the One-Sliced version. But in more usual cases,
sliced-MOBB algorithm gives much better bounding for each slice, and it could
help the algorithm to reach the points on the final solution much faster.

To migrate from One-Sliced MOBB to Multi-Sliced MOBB algorithm, two mod-
ifications need be done:

(1) For each slice, an upper bound and a lower bound need to be added so that
all the solutions are confined to this slice. Therefore, the objective function’s
slope becomes perpendicular with the angle division line of the angle squeezed
by the lower bound and upper bound. Figure B illustrates a 5-slice-MOBB
setup, in which blue lines define lower bound and upper bound while red lines
define objective function.

1 T T T T

09 Objective 1

osh / function ]
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0.1 B

Figure 3.7: Lower bound, upper bound and objective function for a slice
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(2) Definition of Semi-Nadir point is also extended, as the intersection points
of two adjacent integer points and the lower/upper bound(s) between them are
also categorized as Semi-Nadir points; so that within in one slice, the property
that any point worse than a Semi-Nadir point will always be dominated by the
Semi-Nadir point’s adjacent integer points holds still. Figure shows two in-
teger points and all the Semi-Nadir points generated by them in a 3-slice setup.
For convenience, SN(Semi-Nadir) points on lower/upper bound are called bor-
der SN points while SN points not on lower/upper bound are called conventional
SN points.

Border Conventional
N point SN point

/

\

Z1

® Integer point

® Semi-Nadir point

Figure 3.8: Conventional and border Semi-Nadir points

Up to this point, the formal description of sliced-MOBB and elements of MOBB
algorithm has been provided. In the next chapter, a detailed implementation of
MOBB algorithm will be presented.



CHAPTER 4

Implementation of Sequential
MOBB

This chapter presents the implementation of the MOBB algorithm. As in Chap-
ter 2, first, it presents the major data structures; second it presents the major
algorithm flow charts.

4.1 Data structure needed

4.1.1 Point

As the problem domain is two dimensional, a point is the best data structure
to represent z1 and z2. When working with numerical algorithms, a certain nu-
merical precision is always needed in order to maintain numerical stability [T6].
Throughout the algorithm, a great number of numerical comparisions need be
done, and moreover, the final result, which is a list of points, needs to stay sta-
ble while slice numerical increases or decreases. Therefore, a precision definition
is important in MOBB algorithm, since the stability of Pareto Front is totally
dependent on the precision of Point. A rounding algorithm is added to cut off
the extra digits to give a desired resolution for the point. As this rounding
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algorithm can be solely encapsulated in this class, nothing needs to be changed
except a macro define in header file when a new precision is needed. Since the
precision in CLP solver is 107°, a precision of 10~ is used here. Algorithm
illustrates the rounding scheme.

Algorithm 2 Rounding(orig)

Require: orig is a double number
Ensure: rounding of orig
1: tmp « origx Prec+0.5 > tmp is an integer, Prec is the reporical of precision

2: xx < (double) tmp / Prec > xx is a double number
3: return xx

In fact, Point is more of an abstract class, as in the real algorithm, two concrete
classses are needed — SemiNadir Point and Integer Point. These two classes are
child classes of Point with no further methods overloaded.

4.1.2 MOBB Node

MobbNode is one of the key data structures of the MOBB algorithm: it con-
tains the information for each round of calculation in the whole algorithm. As
in the SOBB Node, it requires two vectors, one for the binary indices of fixed
values, and one for the fixed values. Also, as described in subsection B3 Z3
constraints to escape specific integer solutions are needed, such constraint class
named EscapeConstraint is further explained in subsection Therefore,
three vectors are needed in MOBB Node class: two for binary variable indices
and fixed values and the other for EscapeConstraint.

4.1.3 EscapeConstraint

As explained in Equation BIZ one of the distinct differences from the SOBB
algorithm is that MOBB needs to avoid checking the same Integer solutions
again within one slice. An EscapeConstraint class is designed to serve this pur-
pose. As discussed before, this class will generate a constraint to the CLP solver
to ecapse an integer solution. In general, this algorithm finds all the solutions
of fixed value 0, and then sets their coefficients to 1; finds all the solutions of
fixed value 1 then sets their coefficients to 0. Finally, the lower bound of this
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constraint is 1 — z, where x is the number of variables that are fixed value 1.
Algorithm [ illustrates - given an integer point - how to generate the needed
information for CLP solver to constrcut a constraint in order to avoid such so-
lution in later calculation.

Algorithm 3 escape(fixing)

Require: fizxing is a vector of fixed values
Ensure: elements an array of coefficients for a constraint in CLP solver and
LB the lower bound of this constraint
elements «— arr[BN| > BN is the number of binary variables
nonZero — 0
for i =1 to BN do
if fixing[i]=1 then
elements[i] — —1
nonZero «— nonZero+ 1
else
elements[i] — 1
end if
end for
: LB «+— 1 —nonZero
: return elements, LB

=

4.1.4 MOBB Tree

MobbTree is the data structure that contains a vector of MobbNodes. As in
SOBB Tree, six methods are offered: push()/pop(), which adds/returns one
node; isEmpty(), which returns if the tree still has any node; size(), which
returns the size of the tree; split(), which splits a tree into two trees of equal
size; and chooseNextNode(), which chooses next node to solve. There are several
strategies to choose the next node to solve: choose the one with smallest relaxed
objective value, or with the largest relaxed objectve value, or in the order they
are inserted. The strategy of choosing the smallest relaxed objective value is
adopted.

4.1.5 ConstraintsHelper

ConstraintsHelper is a class that faciliates the calcuation of lower bound, upper
bound, and objective function. For each slice, there are 3 parameters that con-
fine the solution region of MOBB. Theoretically speaking, given a slice number
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m, and total number of slices IV, the lower bound slope k7", upper bound slope
¢+ and objective function slope kg can be found using the equations below.

A = A N (4.1)
EP = tan(Ax (m —1)) (4.2)
7 = tan(Ax(m)) (4.3)
k- tan(atan(kL) + atan(ku)) (4.4)

2

In practice, there might be some gaps between the upper bound of slice k£ and
lower bound slice k + 1 due to roundoff errors; so one needs to use the average
value of theoretical k7 and k"L”H as the real ones; based on those values, a real
slope of objective function can be calculated. It might be even safer to make
some overlappings of each slice; however, since the Point’s precision is 10~* and
the CLP’s precision is 107°, i.e. a point can always overlap the gap caused by
CLP solver precision, the current setup is sufficient.

4.1.6 ParetoFront

The ParetoFront class is a new class, which does not exist in the SOBB al-
gorithm. Overall, ParetoFront has 2 tasks: (1)decide if an integer point in a
certain slice is worse than the worst semi-nadir points; (2) add one integer point
to an existing pareto front, and update the semi-nadir point list. Obviously,
the ParetoFront class shall have two lists to faciliate calculation, which are an
integer point lists and a semi-nadir point lists respectively. In practice, all these
points are sorted based on their x(i.e. z1) value, so that if point pl is ahead of
point p2, then the x value of pl is smaller than p2’s x value.

The ParetoFront class needs to implement two main algorithms as described
above: isWorse() and addIntegerPoint(). isWorse() is an easier algorithm, as it
only needs to traverse all the SN points in a given slice and compare their z
value to the calling point’s z value. The algorithm H defines such a process.

Compared to isWorse(), addIntegerPoint() is a more complicated algorithm, it

needs 4 subtasks to complete:

(1) locate(ip)(see Algorithm H): this algorithm has, given an integer point ip,
to locate a point loc in the integer point list so that the x value of ip is between
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Algorithm 4 isWorse(ip, sliceID)

Require: ip a point, sliceID the slice in which ip located
Ensure: if this point is worse than the worst SN point in sliceID
1: for all snp in semiNadirPointList of sliceID do
2:  if ip better than snp then

3 return false

4: end if
5
6

: end for
: return true

loc and loc’s next point (or loc + 1).

Algorithm 5 locate(ip)
Require: ip an integer point, x value of ip is strictly between 0 and 1
Ensure: loc an integer point so that ip’s x value is between that of loc and
loc+1
: for all loc in integer point list do
if ip is between loc and loc+1 then

1

2

3 return loc
4: end if
5

6

: end for
: return loc > this statement shall never be reached

(2) reshuffleIntegerPoints() (see Algorithm [H): this algorithm is to reshuffle the
integer point list after one integer point is added in the place between loc and
loc+1(as described in locate() method). Adding an integer point at such a place
could lead to several effects on the integer point list:(A) added integer point is
dominated by other integer points so the integer point list is not affected; (B)
added integer point draws with all the other integer points, so it is added in its
according position in the list and no other integer points are deleted; (C) added
integer point dominates some other integer points, so that they have to be delete
from list. reshuffleIntegerPoints() is such a method to decide which one of the
three senarios is when an integer point is added and take the according action.

(3) reshuffleSemiNadirPoint() (see Algorithm [): this algorithm has to gen-
erate all the SN points(be it conventional or border) once the integer point list
is changed. It first calculates the conventional SN points and then finds all the
border SN points between them.

(4) addIntegerPoint(ip)(see Algorithm [J): this algorithm has to call all the
previous 3 algorithms to finish the whole task. It first locates a given ip and
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Algorithm 6 reshuffleIntegerPoints()
1: for all loc in integer point list do
2:  while (loc+1)—y > loc—y do

3: remove(loc+1)
4:  end while
5: end for

Algorithm 7 reshuffleSemiNadirPoints()
1: for all loc in integer point list do
2:  calculate the conventional semi-Nadir Point csp between loc and loc + 1
3:  based on csp,loc and loc+ 1, find all the semi-Nadir Points intersected on

the border

4:  put all the conventional and border semi-Nadir Points into the semiNadir-
Point list

5. end for

adds ip into the integer point list without validating this integer point, then it
reshuffles integer point list and the SN point list , so that both of them are valid.

4.1.7 SliceSolver

The class SliceSolver is the core part of the whole algorithm. It coordinates all
the classes described above to carry on MOBB algorithm. A SliceSolver instance
is assigned to each slice. It holds one MOBB tree to keep track of all the MOBB
nodes. It holds one CLP solver to carry out desired LP calculation, once a time
this solver needs to be modified according to EscapeConstraint. Whenever it
obtains an integer point, it needs to talk to ParetoFront to handle this integer
point. This class is a very complicated class, and further details are presented
in subsection

4.2 Algorithm flow chart

After describing the data structures and the algorithms used by them, the
MOBB algorithm as a whole is presented below.
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Algorithm 8 addIntegerPoint(ip)
Require: ip an integer point blaba
Ensure: add ip into the appropriate place of the integer point list

1: updated « false

2: if ip out of 1*1 bound then

3 updated <« false;

4: else

5. loc « locate(ip) > Algorithm (&)
6 if ip—x == loc—x then

7 > handle when two points have the same x value
8 if ip—y > loc—y then

9 upated « false

10: else

11: remove loc

12: insert p

13: upated « true

14: end if

15:  else if ip— x == (loc+1)—x then
16: if ip—y > (loc+1)—y then
17: upated « false

18: else

19: remove loc

20: insert p

21: upated « true

22: end if

23:  else

24: > when ip is strictly between loc and loc+1
25: if ip—y > loc—y then

26: upated « false

27: else

28: insert p

29: upated « true
30: end if
31: end if
32: end if

33: if updated then

34:  reshuffleIntegerPoints() > Algorithm (@)

35:  reshuffleSemiNadirPoints() > Algorithm ({J)
36: end if
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Figure 4.1: Big picture of Multi-objective B & B algo.

4.2.1 Big picture

Figure Elis a big picture of MOBB algorithm. Explaination for each process
is given below:

e (A) For each SliceSolver, initiate CLP solver, 6 tasks need be done: (1)
read the input .mps file; (2) look up the binary variable indices, store
them, set each binary variable to continuous, set lower bound to 0 and
upper bound to 1 for each binary variable; (3) get the column indices of
variable z1 and 22 for the convenience of accessing them in solutions later.
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21, z2are given names of 7Z1..” [”Z2..” in this project respectively; (4) get
the row indice of the objective function, which was previously defined as
z = z1 + 22 for convenience of modifying it later. This row is given the
name of "NEW.” in this project; (5) calculate the upper bound, lower
bound and objective function of each slice. Add these constraints (rows)
and change the objective function for each slice’s CLP solver. To facilitate
the calculation, the ConstraintsHelper instance is used to come up with
the neccessary information for the CLP solver in each SliceSolver. To
modify one objective function constraint, one has to remove the old one
first and then add the new objective function row; (6) construct one empty
MOBBNode, which has no binary fixing, and pushs it into a tree.

(B) Special scaling procedure is taken to make sure that (1,0) and (0,1)
are always two feasible integer points, and all the solutions shall be non-
negative, therefore, (1,0) and (0,1) are always in any Pareto front. Thus,given
the (1,0) and (0,1) points and each upper bound, lower bound, the pro-
gram initiates the pareto front and Semi-Nadir points.

(C) Pick up each slice solver for later calcuation. The pick-up scheme can
be varied: one can pick in an anti-clockwise way (slice 0 —1—2—3...) or a
clockwise, or randomly. To simulate a parallel implementation of MOBB,
random-pick-up scheme is adopted here.

(D) The function call isEmpty() in MOBBTree class is invoked to decide
if the tree in the selected SliceSolver has more nodes to exploit.

e (E) Solving a selected node, as described in the subsection {EZZZ)

4.2.2 Solve one Node

Figure is the flow chart of solving one node.
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(A) Choose an MOBBNode, with the smallest z value.

(B) Reset the binary variable bounds and fix the binary variables according
to the selected node.

(C) Add rows according to all the predecessors’ integer-solution-escape
constraints added in their step(K) operations. This process is to ensure
that the CLP solver will not examine the previously examined Integer
points as discussed in subsection

(D) Call the CLP solver’s solve method to do one round of linear relaxation
solve. Same as in SOBB, call method initialSolve() when the first time
solving, call method resolve() afterwards.

(E) Remove all the integer-solution-escape constraints added in (C) to
clear up the CLP solver, because in the next round of solving a node, it
is most likely that another node is selected, and it might have completely
different integer-solution-escape constraints. Therefore a clear up of the
CLP solver is demanded here.

(F) Call ProvenPrimallnfeasible() in the CLP solver to decide the feasibil-
ity. In practice, one needs to call this method right after step (D) to record
the feasibility. That is because in the CLP solver’s design, once certain
procedures such like in step(E) are taken, the solver’s feasibility will be
affected so previously infeasible solutions might be switched to feasible,
which leads to inserting false nodes into tree. In such a case, indefinitely
more false nodes, with the same integer fixing, will be added since they
cannot be pruned by infeasibility and cannot escape the previous integer
solution.

(G) Call the ParetoFront class to compare current z value with the worst
z value of all the seminadir points in that slice.

(H) Test if all the solutions are integer. This procedure is exactly the same
as in SOBB.

(I) Call ParetoFront class to add one integer solution to the pareto front,
this point could be, as discussed previously, either (1) dominated (2) in-
serted without affecting other integer solutions on the pareto front, or (3)
dominate other integer solutions.

(J) Calculate if the current node is a leaf node, i.e if all the binary variables
are fixed before calling the solve routine as in Step(D). This procedure was
not needed in SOBB because in SOBB if a node generates an integer point,
this node can always be discarded so it will not be further branched. But
as discussed in subsection BZ23 such a node cannot be discarded and
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it need to be branched if it is not a leaf node and can only be discarded if
it is a leaf node.

e (K) Add all the predecessors’ integer-solution-escape constraints so that
those solutions will not appear again.

e (L) Add this node(after adding the integer solution escape constraint in
(K)) back to the tree because this node needs to be further branched.
Adding the integer-solution-escape constraint could help avoid generating
the same integer point so that a further branching on this node is made
possible.

e (M) Choose the binary variable closest to 0.5 and branch on this variable.
It is exactly the same as in SOBB.

4.3 Test and analysis of sequential MOBB

4.3.1 Test the validity of the program

The traditional way to calculate a Pareto front is to use a brute-force method.
To ensure the validity of the program, one can use a brute-force method to obtain
a Pareto front and compare it with our sliced MOBB algorithm. Specifically,
in this thesis, we first write the result of brute-force and the result of a sliced
MOBB algorithm to two different files, and then use the Unix command dif f to
compare two files. The validity of the program is verified only if the two files are
exactly the same. Figure displays four Pareto fronts, which are calculated
by using brute-force, slice number equals to 1, 5 and 100 respectively.

4.3.2 Profiling of the program

After verifying the validity of the program, one needs to profile the program
to examine what is the bottle-neck of this program. We use Sun Studio Per-
formance Analyzer here to profile the program. Table ETlis the profiling of a
brute-force program working on a 1024 node problem. Table is the profiling
of a sliced-MOBB program working on a 3082 node problem(N.B. the nodes
in two problem sets have different constraints, therefore each node requires dif-
ferent time to solve). Both profilings show that the resolve() routine in CLP
solver is the one that takes most of time and ParetoFront related calculation
take very few time, in other words, the LP related calcuation is the bottle-neck.
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Figure 4.3: Four Pareto Fronts, calculated by using brute force, slice number
equals to 1,5 and 100.

resolve() is called each time a node needs to be solved, therefore, reducing the
number of nodes to solve while maintaining the validity of the program is the
key part of MOBB algorithm.

4.3.3 Workload comparison between brute-force and sliced-
MOBB

To compare the performance between the traditional brute-force and sliced-
MOBB, two tests are done: Table is the node number comparison between
brute-force and sliced-MOBB; Table E4lis the time comparison between brute-
force and sliced-MOBB.
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Function CPU Time(secs) | CPU Precentage
Total 9.907 100%
Clp:resolve() 9.487 95.8%
ParetoFront:addIntPoint() 0.1 1%
ParetoFront:isWorse() 0 0%
the rest 0.42 4.1%

Table 4.1: Profiling of brute force

Function CPU Time(secs) | CPU Precentage
Total 107.805 100%
Clp:resolve() 104.323 96.8%
ParetoFront:addIntPoint() 0.07 0.06%
ParetoFront:isWorse() 0 0%
the rest 3.412 3.14%

Table 4.2: Profiling of sliced-MOBB

Binary variable number | Brute-Force | Sliced-MOBB
22 4194 304 6365
24 16 777 216 6976
26 67 108 864 17467
28 268 435 456 34105
30 1073 741 824 72258

Table 4.3: Node number comparison between sliced-MOBB and brute force

Binary Variable Number | Brute-Force Time(secs) | Sliced-MOBB Time(sec)
22 2662 15
24 10506 16
26 41964 42
28 166789 85
30 648151 191

Table 4.4: Time comparison between sliced-MOBB and brute force
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4.3.4 Comparison between different slice number

The reason that multi-sliced MOBB algorithm is proposed rather than one-sliced
MOBB is because we hope the division into slice could help better bounding
and get to the final solution more quickly. Figure EZlshows on the same test
bench(with 0% continuous variables), the node number iterated by different
number of slices. Clearly seen from it, when slice gets bigger, the bounding gets
better, therefore the node number gets smaller.

14

Node number

8 10 12 14 16 18 20
Slice number

Figure 4.4: Node number comparison for different slice numbers

4.3.5 Workload growth

From the above discussion, it is easy to see that solving each node is the most
time consuming task in this algorithm. It is important to generalize how the
workload increases and decreases. After intensive test, it is shown that sliced-
MOBB algorithm always grows and dies out gradually, the shape of workload
growth resembles a bell shape. Figure EER shows a typical workload growth in a
sliced-MOBB algorithm. Such a workload growth implies that the workload in
MOBB always grow and die out gradually, without an oscillating fashion; such
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a property is of great importance for the later parallelization work.
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Figure 4.5: Workload growth of sliced-MOBB algorithm, 5 slices in total
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Test and analysis of sequential MOBB. N.B. simulation of parallel program in
a sequential way.
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CHAPTER 6

Parallel Computing

This chapter illustrates serveral fundamental aspects of parallel programming.
In this chapter, we first introduce how to evaluate a parallel program’s perfor-
mance; secondly, we categorize parallel programs based on the workload dis-
tribution; finally, we give a brief but thorough introduction to the state-of-art
parallel programming tools.

6.1 Amdahl’s law

In a parallel program, to evaluate the performance, Amdahl’s law [§] is the
criteria to apply. Amdahl’s law states that if P is the proportion of a pro-
gram that can be made parallel (benefit from parallelization), and (1 — P) is
the proportion that cannot be parallelized (remains serial), then the maximum
speedup that can be achieved by using N processors is ﬁ. Therefore, if one

N
can use as many processors as possible, the maximum speedup is obtained as
limy _ oo ﬁ = 125. In practice, it is very difficult to get a precise evalua-

N

tion of P, so one needs to estimate P based on speedup samplings. To estimate
P, one needs to test all the speedups given different Ns, and then find the max-

imum speedup of them all. Using that maximum speedup and the according N,
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one can calculate P.

One thing needs to be pointed out here is that according to Amdahl’s law,
the theoretical maximum speedup of using N processors would be N, namely
linear speedup. It is not uncommon to observe more than N times speedup on
a machine with N processors in practice, namely super linear speedup [§]. One
possible reason is the effect of cache aggregation. In parallel computers, not
only does the number of processors change, but so does the size of accumulated
caches from different processors. With the larger accumulated cache size, more
or even the entire data set can fit into caches, dramatically reducing memory
access time and producing an additional speedup beyond that arising from pure
computation.

6.2 Category of parallel computing

Parallel programs[d] are often classified according to how often their subtasks
need to synchronize or communicate with each other. An application exhibits
fine-grained parallelism if its subtasks must communicate many times per
second; it exhibits coarse-grained parallelism if they do not communicate
many times per second, and it exhibits embarrassingly parallelism if they
rarely or never have to communicate. Embarrassingly parallel applications are
considered the easiest to parallelize for programmers, coarse-grained less easier,
whereas fine-grained the hardest.

6.3 Tools for parallel computing

A number of concurrent programming languages, libraries, APIs, and parallel
programming models have been created for programming parallel computers.
Among them, Message Passing Interface (MPI) is the most widely used message

passing system API, whereas , OpenMP is the most widely used shared memory
APIs.

6.3.1 MPI

MPI [0 is an implementation that allows many computers to communicate
with one another. It is the de facto standard for HPC computing. It can be
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used on both shared memory machines and distributed machines. This project
is primarily done using MPI APIs.

6.3.1.1 Data and communicators in MPI

(1) Communicator: A communicator is a MPI handle that defines a group of
processes that are permitted to communicate with one another. MPI automati-
cally provides a basic communicator called MPI_COMM_WORLD, which is the
communicator consisting of all processors. Using MPI. COMM_WORLD, ev-
ery processor can communicate with every other processor. Throughout this
project, MPI. COMM._ WORLD is used as the only communicator.

(2) Primitive Datatype: All the primitive data types in C' + + are defined in
MPI, among them, MPI_INT and MPI_DOUBLE are the most used primitive
data types in this project.

(3) Derived-datatypes: Creating a derived datatype and to use it just once
before freeing it can be a bit wasteful. It is more effective to create derived
datatypes that describe recurring patterns of access and then reuse them for
each occurrence of that pattern of access. But it can be only used when the size
of the derived data type is fixed.

(4) Messages: In MPI, unlike OpenMP where all the data are visible to ev-
ery CPU, the local data is only visible to its CPU host. Therefore, to share the
data, message passing is the only way to do it. Message, in MPI, consists of
two parts: envelope and message body. The envelope has 4 parts: 1. Source —
the sending process, 2. Destination — the receiving process, 3. Communicator
— specifies a group of processes to which both source and destination belong, 4.
Tag — used to classify messages. The message body has three parts: 1. Buffer —
the message data, 2. Datatype — the type of the message data, 3. Count — the
number of elements in buffer.

6.3.1.2 Methods in MPI

There are several methods of particular interest for this project.The review be-
low serves as a primal to MPI [IT], so later chapters can solely focus on the
algorithm part.



48 Parallel Computing

The first 4 methods are about how to initiate, obtain communicator information
and terminate MPI programs. They are the methods need be called by every
MPI program. They serve to initiate data structures, allocate CPU and memory
resources, and finally release all the resources.

(1) int MPI_Init(int arge, char** argv): This method establishes the MPT envi-
ronment and will return an error code if there is a problem. Once this method
is called, the operating system will dispatch the number of CPUs based on the
parameter passed by argv, and also the limit of the CPUs available upon that
time. It is the first method to call in every MPI program.

(2)int MPI_Comm_ rank(MPI_Comm comm, int *rank) Within each commu-
nicator, processors are numbered consecutively (starting at 0). This identifying
number is known as the rank of the processor in that communicator. The rank
is also used to specify the source and destination in send and receive calls.

(3)int MPI_Comm_size(MPI_Comm comm, int *size): The argument comm is
of type MPI_.COMM, a communicator. The second argument is the address of
the integer variable size. Size is the number of CPUs available for this program.

(4)MPI_Finalize(): It is the last MPI routine called in a program. It termi-
nates the program by cleaning up all MPI data structures, canceling operations
that never completed, and so on. MPI_Flinalize() must be called by all pro-
cesses. Once MPI Finalize() has been called, no other MPI routines may be
called.

The next 6 methods are about how to pass messages in MPI. There are two ma-
jor communication fashions: blocking and non-blocking. Blocking is to block the
calling process until the communication operation is completed. That is to say
the sending/receiving will hang if they are not finished and all the statements af-
ter them cannot be reached until communication is finished. Non-blocking is the
send and receive operations that do not block the calling process. It is possible
to separate the initiation of a send or receive operation from its completion by
making two separate calls to MPI. The first call initiates the operation, and the
second call completes it. In practice, blocking and nonblocking communication
can be mixed together. The source processor might use a blocking send and the
destination process could use a nonblocking receive process, or vice-versa.

(5) int MPI_Send(void *buf, int count, MPI_Datatype dtype, int dest, int tag,
MPI_Comm comm): MPI_Send is the blocking sending method. As discussed
before, the first 3 parameters are message body, and the latter 3 parameters are
envelope(the sender rank is defined implicitly as it is the rank of this process).

(6)int MPI_Recv(void *buf, int count, MPI_. Datatype dtype, int source, int
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tag, MPI_Comm comm, MPI_Status *status): MPI_Recv is the blocking reciev-
ing method. As discussed before, the first 3 parameters are message body, and
the latter 3 parameters are envelope(the receiver rank is defined implicitly as it
is the rank of this process). The output argument status is to keep a track of
receiving status.

(7) int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int dest, int tag,
MPI_Comm comm, MPI_Request *request): MPI_Isend posts a non-blocking
send message. The calling sequence is similar to the calling sequence for the
blocking routine MPI_Send but includes an additional output argument, a re-
quest handle. The request handle can be used to check the status of the posted
send or to wait for its completion.

(8) MPLIrecv(void *buf, int count, MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Request *request): A process calls the routine MPI_Irecv
to post a non-blocking receive . The calling sequence is similar to the calling se-
quence for the blocking routine MPI_Recv, but the status argument is replaced
by a request handle; both are output arguments. The request handle identifies
the receive operation that was posted and can be used to check the status of
the posted receive or to wait for its completion.

(9)int MPI_Wait( MPI_Request *request, MPI_ Status *status ): A process
that has posted a send or receive by calling a nonblocking routine (for instance,
MPI.Isend or MPI Irecv) can subsequently wait for the posted operation to
complete by calling MPI_Wait . The posted send or receive is identified by
passing a request handle. The arguments for the MPI_Wait routine are: request
— a request handle (returned when the send or receive was posted; status — for
receive, information on the message received).

(10) int MPI_Test( MPI_Request *request, int *flag, MPI_Status *status ): A
process that has posted a send or receive by calling a nonblocking routine can
subsequently test for the posted operation’s completion by calling MPI_Test.
The posted send or receive is identified by passing a request handle. The ar-
guments for the MPI_Test routine are: request — a request handle (returned
when the send or receive was posted), flag — ”true” if the send or receive has
completed; status — undefined if flag equals "false”. Otherwise, it is just like
MPI_Wait. In addition, an error code is returned.

The above 10 methods can construct almost all the MPI programs. Besides
the above 10 methods, there are many other methods available in MPI, such
like those dealing with collective communications, virtual topologies; however,
they are not particularly useful to serve the purpose of this thesis, therefore,
they are not discussed further.
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6.3.1.3 Runtime Behavior

The runtime behavior in this subsection is specifically refered to the blocking
communication runtime behavior. when a message is sent using MPI_Send one
of two things may happen:(1) The message may be copied into an MPI internal
buffer and transferred to its destination later, in the background, or (2) The
message may be left where it is, in the program’s variables, until the destina-
tion process is ready to receive it. At that time, the message is transferred to
its destination. In the first case, the sending process is allowed to move on to
other things after the copy is completed. That is to say, it is asynchronized
sending /receiving. Such a property can lead to certain ”communication delay”
— for instance, Process A first sends a message to Process B and then sends a
message to Process C, due to the runtime behavior discussed above, Process C
might receive its message before Process B. Such a behavior can cause several
problems, thus some approaches are needed to solve these problems. Those ap-
proaches will be further discussed in Chapter8.

The most common pitfall in MPI program is the deadlock[I3] problem. Suppose
such a senario—process A waits for a message from process B and then sends a
message to process B; in the mean time, process B waits for a message from
process A and then sends a message to process A. In this senario, either process
can move on only when it receives message from the other, therefore, a deadlock
is generated.

6.3.2 OpenMP

The OpenMP (Open Multi-Processing) [[2] is an application programming in-
terface (API) that supports multi-platform shared memory multiprocessing pro-
gramming in C/C++ and Fortran on many architectures, including Unix and
Microsoft Windows platforms. It is comprised of three complementary compo-
nents: (1) a set of directives used by the programmer to instruct the compiler
on parallelism; (2) a runtime library which enables the setting and querying
of parallel parameters such as number of participating threads and the thread
number. (3) a limited number of environment variables that can be used to
define runtime system parallel parameters such as the number of threads. It is
by far the best API for parallel programming on shared-memory machines. The
most common pitfall in OpenMP is data racing [I3], in which shared variables
are falsely updated or accessed by different threads. Due to the time limit, an
OpenMP implementation of this thesis project was not finished. Therefore, no
further introduction on OpenMP is presented in this thesis.
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CHAPTER 7

Coarse Parallel MOBB

MPI provides a simpler interface to construct parallel programs that applies to
MOBB problem. So it has been the primary choice during this thesis work.
Two version of parallel programs have been developed— coarse-grained version
and fine-grained version.

In coarse-grained version, it is a straightforward mapping from the sequential
version to parallel version. Suppose N CPUs are available, 1 of them can serve
as the ParetoFront handler, which handles the isWorse inquiry and addInteger-
Point inquiry; while the other N — 1 CPUs serve as the Slice Solvers.

7.1 Design and Implementation

7.1.1 How to migrate from sequential version to parallel
version

In the sequential version of MOBB, each SliceSolver instance shares the same
ParetoFront instance, so when they need to call isWorse() or addIntegerPoint(),
they can just use that ParetoFront instance because it is shared by each Slice-
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Solver. However, when we move to MPI programs, we need to separate the
ParetoFront instance from each SliceSolver instance. Therefore, the most im-
portant migration in this algorithm is to use MPI to pass messages between
SliceSolver and ParetoFront. Since there are only two methods that need to
be communicated, the messages are therefore very straightforward to code: (1)
For isWorse() , only the relaxed z value(as the sliceID is implicitly passed by
the sender rank) need to be transferred to ParetoFront, and ParetoFront then
passes a boolean value back. (2) For addIntegerPoint() , the integer point as a
whole(an double array of size 2) needs to be transferred to ParetoFront and no
response need be transferred back.

It would be sufficient to just send the above two messages in this algorithm,
however, there is a problem in such a design — while SliceSolver terminates
when it enumerates all the nodes in its tree, ParetoFront does not know when
to terminate itself. To solve this, before SliceSolver terminates itself, it needs
to send a finish message to ParetoFront. When ParetoFront has received all the
finish messages, it then can terminate.

7.1.2 State Transition graph

To better illustrate the design, state transition graphs are made to represent
how a state is changed within one process. Dashed lines are used to represent
non-blocking communication, while solid lines are used to represent blocking
communication. Red is used to mark slave process, while green is used to mark
master process; for example, a red edge in the state transition graph of master
process means at this point the communication peer is the slave process. In
one communication, the talking peers are labeled with the same number, while
sending peer with the number and receiving peer with the number and its prime
, for example 1 and 1’ mark two talking peers in the same round.
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Figure 7.1: State transition graph for Master CPU .

Figure [Tl is the state transition graph of the master process. It is divided
to 3 parts:(1) Path StateA — StateB — StateE is to handle an isWorse
message. The master will call the isWorse() routine of its ParetoFront instance
to generate a response for this message. (2) Path StateA — StateC is to
handle an addIntegerPoint message. The master will call the addIntegerPoint()
routine of its ParetoFront to add the received integer point. (3) Path StateA —
StateD — StateF is to handle a finish message from one slave process. If the
master collects the finish messages from all the slave processes then it terminates.
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Figure 7.2: State transition graph for Slave CPU .

Figure is the state transition graph of the slave process. It is divided to
3 parts: (1) Path StateA — StateB — StateC is all the calculations before
calling isWorse(), as in the sequential MOBB, and sends the isWorse message
to the master; (2) Path StateD — StateF is all the calculations between call-
ing isWorse() and addIntegerPoint(), as in the sequential MOBB, and sends
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the addIntegerPoint message to the master; (3) Path StateF < StateG is
all the remaining calculation in solving a node, as in the sequential MOBB.
Path StateG — StateA is taken if there are more nodes in the tree; Path
StateG — StateH is taken if all the nodes are solved, StateH is to send the
finish message to the master. Statel is the termination state.

7.1.3 Implementation
7.1.3.1 Communication

All these three receiving communications are implemented as non-blocking mes-
sages. Each communication follows the pattern in algorithm That is to say
the message receiver first posts a non-blocking receiving and then periodically
checks if the desired message is received, if so it will handle the message and
then post another non-blocking receiving, otherwise, it will keep going on. Such
a pattern will be repeatedly used throughout this project.

Theoretically, the coarse-grained version’s master can be modeled as block-

Algorithm 9 non blocking communication

1: msg < MPI_Irecv() > post non-blocking receive

2: while true do

3:  MPI Test(...,&flag) t> test if the message has been received yet

4. if lag==RECEIVED then

5 handle the received msg t> handle the message

6: msg «— MPI_Irecv() > continue to post this non-blocking receive
7. end if

8: end while

ing communication. To do so, the master is always receiving one format of
message. To ensure isWorse(), addIntegerPoint(), and finish() message can be
all formatted in the same pattern, one has to first find the largest message size,
which is 2 by addIntegerPoint(), as it needs to send the z1 and 22 value; second,
one needs to pad one more number for isWorse() and finish() message so that
all three formats are consistent; finallly, one needs to add one more bit of ID
after each message so that the master could distinguish what each message is
for. Algorithm [0 describes such an algorithm. Obviously it requires more
communication space and is less flexible. Using blocking communication can
serve the parallelization purpose in this simple case, it will not hold true in a
later more complex case.
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Algorithm 10 blocking communication master
1: finish < 0
2: slaveNum « (size — 1)
3: while finish < slaveNum do
4:  msg — MPI_Recv() > blocking receive
5 if msg.ID == isWorse then
6 handle isWorse message
7. else if msg.ID == addIntegerPoint then
8
9

handle add-integer-point message
else
10: finish — (finish + 1) > finish message
11:  end if
12: end while
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7.2 Test and Analysis

7.2.1 Execution time and Speed up
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Figure 7.3: Coarse-grained Execution Time

Figure [[3is the execution time when CPU number grows from 8 to 20. It has
shown the execution time drops very quickly; however, as discussed before, it
is also because when the slice number is different, the sequential algorithm has
very different execution time. To better evaluate the performance, we shall use
the Amdahl’s law.

Figure [[4is the speed up when CPU number grows from 8 to 20. Clearly,
we can see that the speed up in this case is bound to only a little over 2, the
parallelization factor is 68%, given Amdahl’s law, the speed up can achieve no
more than 3.12.

7.2.2 Workload Distribution

The reason that the speed up is not very high in coarse-grained implementation
is because the workload is not evenly distributed. Figure is the work load
distribution of a testbench when CPU = 8. It is clearly seen that the workload
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Figure 7.4: Coarse-grained Speed-up

distribution is very unevenly distributed. It might be a very rare case, however,
it clearly indicates the weakness of this implementation.



7.2 Test and Analysis

61

12

Node number
(2]
T

1 2 3 4 5
CPU rank

Figure 7.5: Coarse-grained

work load




62

Coarse Parallel MOBB




CHAPTER 8

Fine parallel MOBB

This chapter further investigates how to better utilize CPU recourses. To ac-
complish this, a better load-balancing scheme is designed and implemented.
Then, a thorough test and analysis of this design is presented.

8.1 Design and Implementation

8.1.1 How to improve load balance

The essential problem that occured in the coarse load balancing algorithm, is
that when a lightly-loaded slave process finishes working, it will just exit and its
CPU becomes idle. So the total execution time is dependent on the last finished
slave process. To mitigate this effect, a mechanism need to be designed, that,
once a slave process finishes its workload, it can check with the master process
to see if it can get some extra work from other slave processees, and if so, it
will talk to the targeted slave process and get the work from it and continue
until all the slave processes are finished. Such a strategy could lead to a better
performance and is also based on the fact that transmitting a tree in MPI is
much faster than solving a tree.
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Therefore, the master process must keep a record of how many nodes each
slave process’s tree contains, so that it can allocate trees when a requirement
is made. In theory, only one master process is needed to do both work alloca-
tion and pareto front calculation. However, it is of great importance to update
pareto front quickly; therefore it is better to assign 2 masters, one of which is to
do the workload allocation, while the other is to do the pareto front calculation.

Overall, 3 major classes are needed — Pareto Front Master process, Schedul-
ing process, and Worker Process.

8.1.2 Design

The scheduling master process is a brand new process. It essentially has three
tasks: (1) keep a record of the tree size of each working process. (2) re-allocate
workload. (3) signaling Pareto front process and each Slave process to terminate.

The Pareto front master process is the process that calculates the pareto front.
It does almost the same work as the master process in Coarse version. The only
difference is that it stops only when signaled by the scheduling master process.

The slave process is still the working process that does most of the linear relax-
ation, branch and bound job. It will, however, not stop when it finishes solving
all the nodes in its tree; but rather solicit the scheduling master to require more
jobs from another slave process. It will only stop when there are no more trees
in other slave processes available.

As in the previous chapter, state transition graphs are made to represent how
state is changed within one process. Dashed lines are used to represent non-
blocking communication, while solid lines are used to represent blocking com-
munication. Red is used to mark slave process, green is used to mark pareto
front master process, blue is used to mark scheduling master process. In one
communication, the talking peers are labeled with the same number, while send-
ing peer with the number and receiving peer with the number and its prime ,
for example 1 and 1’ mark two talking peers in the same round.
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Figure 8.1: State transition graph for ParetoFront Master

8.1.2.1 Pareto Front Master

Figure shows the state transition of the Pareto front master. It is divided
to 3 major parts:(1) StateA — StateB < StateD is that master receives an is-
WorseMessage from an arbitrary slave process, handles this message by calling
ParetoFront’s isWorse routine and returns the response. (2) StateA — StateC
is that master receives an addIntegerPoint message from an arbitrary slave pro-
cess and then calls the addIntegerPoint routine in ParetoFront to handle it. (3)
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StateA — StateE is that when master receives message from Scheduling master
and then terminates.

8.1.2.2 Scheduler Master

Figurd®2 shows the Scheduling master. It is responsible for recording and
scheduling the workload. It is divided into 3 parts:

(1) StateA — StateB is that Scheduling master receives an updated tree size
message from an arbitrary slave process and updates this message in its tree
size table.

(2) StateA — StateC — StateD — StateE — StateK is when the scheduler
gets all the termination acknowledge message from slave processes and then send
out the final termination message to all communication entities. StateC' is when
the scheduler cannot find any other slave process that has extra nodes to solve,
thus it realizes that all the work has been finished. The states after this state is
that scheduler starts to send termination signals to the Pareto front master and
all the slave processes. StateD is that the Scheduling master sends termination
messages to each slave process. StateF is that the Scheduling master sends
termination message to the Pareto front master. StateK is that the Scheduling
master terminates itself.

(3) StateF — {StateG, StateH} — Statel is that how the Scheduling mas-
ter handles a message of requiring a tree contributor from an arbitrary slave
process when this slave process’ tree is empty. StateF is that the Scheduling
master receives a tree size request and looks for the biggest tree size in its table.
StateG is that when all the tree sizes in its table are 0 and then it sends a —1
as a termination message to the slave process. StateH is that when not all the
tree sizes in its table are 0 and then it sends the rank of the slave process that
possesses the biggest tree to the message-sending slave process. Statel is that
when the scheduling master finishes sending the tree-size-response message to
the slave process.

The reason that the scheduler master, in part(2) , needs to collect all the termi-
nation acknowledge messages before it sends out the final termination message
is further explained in the subsection
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8.1.2.3 Slave Slice Solver

The Slave Slice Solver is the solver process to solve the nodes. Generally speak-
ing, it solves all the nodes in its tree and solicit more nodes when its own tree
dies out. Figure shows the state transition graph of a slave process.

To better elaborate the whole strategy, this state transition graph is divided into
3 parts— (a) solving a node, (b) tree transmitting and (c) solver re-Initiation,
and termination.

(A)Solving a node: Brown-colored part in Figurd®@lis the solve-node-state tran-
sition graph.

{StateG, StateH, Statel, StateJ, State K, StateL} together serve the purpose of
LP-related programming, as in the coarse-grained slave process. Among these
states, StateH, Statel are the states in which isWorse message is sent and the
response for isWorse is received; StateK is the state in which an addIntegerPoint
message is sent; all the other states are the auxilary states for LP calculation.
StateM is when a node is solved and then updates the slave’s tree size to the
scheduling master.

StateN is when the slave process decides whether it will continue to solve nodes
in its tree (provided that there are more nodes in tree), in this case it will go
back to StateA; or requesting a new tree (provided that there are no more nodes
in its tree), in this case, it will move to StateO. In StateO, it will send the tree
size request to the scheduling master. After acquiring the scheduling master, if
a positive message is received (i.e. a valid rank is received), the slave process
will follow the path StateR < StateS — StateT (which will be discussed later)
to request a tree from the slave process of the responded rank; otherwise, the
slave process will follow the path StateP — StateQ) — StateA. StateP sets an
internal signal justWait. justWait means the slave process from now on will
not solve any node or request any tree, but rather waits for the finish signal from
the scheduling master or handle a tree request from other slave processes. The
reason that a slave process might still receive a tree request from other slave
processes even if the scheduling master has issued a negative response is that
due to certain communication delay, it is possible that slave process A initially
got a positive response to talk to process B while B has finished solve all its
nodes and also got a negative response message from the scheduing master. Fig-
ure B0 shows such a senario. Suppose a slave process skips StateP and State()
and terminates itself, then if another slave process is requiring a tree from this
slave process, such a request will never be answered, thus a starvation occurs(in
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Figurd®H processB quits at timeb2 before the requesting message arrives at
timeb3 ). Therefore, in State@ the slave process needs to send the termination
acknowledge message, so that all the slave processes will have to wait at the
same barrier to finish to prevent a starvation.

(B) Send a tree: the brown-colored part in Figure is the tree-transmission-
state graph. An ACK is needed so that it won’t generate a deadlock when two
slave processes are trying to request trees from each other. There is only one
case that these state transition graphs won’t handle well, that is when all slave
processes are finished, and one slave process obtains one node from others, and
this node grows to a very large tree late. This case is highly impossible though,
given the node number always follows a growing and dying out fashion.

The path StateA — StateB — StateC — StateD — StateE — StateF is
when a slave process receives a message from another slave process to send a
tree. StateB is to split its own tree. The current strategy is to split a tree
to two trees of equal size. If the current tree has only one node, then it keeps
this node to itself and later sends an empty tree. StateC is to update the split
tree size to the scheduling master. StateD is to send an acknowledgement to
the tree-requiring slave process. StateE is to actually transfer the tree to the
tree-requiring slave process. This transferring is a rather complicated procedure,
please refer to subsection B3l for details.

The path StateR — StateS — StateT is when a slave process runs out of nodes
and receives a positive response from the scheduling master and then requires
a tree from the designated slave process (i.e. the tree contributor). StateR is
to send the tree requesting message to the designated slave process. StateS is
to receive the acknowledgement message from the tree contributor. StateT is
to receive a tree from the tree contributor, this procedure is the counter part of
tree transferring, which is also explained more in details in subsection
The reason an acknowledgement message is needed is that due to the commu-
nication delay (something similar to the situation in the Figure B, there is a
potential senario in which slave process A and B are requiring a tree from each
other, then the algorithm will generate a deadlock. That is the reason why there
is a dashed line from StateS to StateB, because even when a slave process is
waiting to receive a tree, it might still get some tree requests from other slave
processes and it needs to handle such messages promptly.

(C) Termination: In Figure B3 the path StateA — StateU is when a slave
process receives the termination message from the scheduling master and then
it finally quits. The whole program is finished from this point.
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8.1.3 Implementation

8.1.3.1 Transmitting a tree

Obviously, a MobbTree instance can not be represented by a simple array, there-
fore it cannot be transmitted in the primitive data type provided by MPI. Ide-
ally, it would be efficient to pack up a new M PI_Datatype and transmit the
instance of such a type. However, as discussed in subsection B3 TTl the premise
of packing up this new datatype is the size of such a type is fixed. This is evi-
dently not the case in the senario of MobbTree, as the size of the transmitted
tree is not determined each time. The tree size grows or shrinks during each
slave process solving; and even for two trees of the same size, their memory
footprint may most likely be different because the EscapeConstraints are dif-
ferent in each node. In conclusion, it is impossible to predifine a size to pack
up the tree. So the only feasible way to pack up a tree is to "serialize” a tree
using arrays of MPI primitive datatypes. Considering a class that needs to be
serialized as a graph(in Graph theory), each vertex on this graph needs to be
serialized. There are two issues involved with serialization: serialization of each
vertex and in what order to traverse each vertex.

Serialization of each vertex: To serialize a MOBB Tree, all the member
field must be serialized. In the design of class MobbTree, there are no self-
referenced data members, that is to say there is no cycle in the graph; therefore,
if all member fields are serializable, the whole tree can be serialized. MobbN-
ode is the fundamental ”vertex” to serialize. MobbNode has 3 member fieds to
serialize: a vector of binary variable indices of size m(i.e. m fixed values), a
vector of fixed values of size m, and a vector of EscapeConstraints of size N (i.e.
N fixed values or the number of all the binary variables in a MOBB problem,
which is a constant number unlike m, and N > m). Apparently, the first two
elements can be both serialized as integer arrays of size m. To serialize an Es-
capeConstraints, the most straightforward way is to use one integer array of size
N to record it. However, assume for each node that it has m fixed-value binary
variables and n EscapeConstraints of size IV, the total communciation memory
cost would be m x 24+ n x N integers. Considering the upper bound of n is 2V
and N > m, it would be more efficient if such a cost could be reduced. A bet-
ter strategy is to represent a fixed-value-series 1, z2, 3, ..., xn (x; € B)using a
single number X. Such a strategy is similar to convert a binary variable to a
decimal variable. Algorithm [l and Algorithm [[2 describes how to code such an
EscapeConstraint to X and how to convert it back. Given the value of number
X grows exponentially with IV, it is not feasible to represent X using data type
of integer, instead, we should use double. Using such a strategy, the memory
cost of communication is significantly reduced to m x 2 + N, which is nearly n
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times better than the original proposal. Given the fact that the upper bound of
n is 2%, such a reduction is very desired.
How to traverse each vertex:To traverse each vertex, there are two ways:

Algorithm 11 code(bin)

Require: bin is a binary number
Ensure: decimal representation of bin
bitNum < bit number of bin
dec — 0
for all ¢ such that 0 <14 < (bitNum — 1) do
dec « bin.at(i + 1) x 2¢ > bin.at(x) refers to the xth bit of bin
end for
return dec

Algorithm 12 decode(dec)
Require: dec is a decimal number
Ensure: binary representation of dec
1: bin « 0 > bin is implemented as a vector

2: bitNum «— bit number of bin

3: bigNum «— 2%itNum

4: residue «— dec

5: for all ¢ such that 0 <14 < (bitNum — 1) do

6:  tmp «— residue X 2

7. if tmp > bigNum then

8: bin.set(i+1,1) > bin.set(x,y) is to assign the value of y to the xth bit
of bin

9: tmp — (tmp — bigNum)

10: else

11: bin.set(i + 1,0)

12:  end if

13:  residue «— tmp

14: end for

15: return bin

depth-first and breadth-first. Generally speaking, serialization adopts depth-
first.In practice, a different strategy(i.e. breath-first) is used, there are two
reasons to do so: (1) MobbTree is composed of MobbNode instances, MobbN-
ode class is coded in both integer and double types. It is only economical to
transmit integers as MPI_Int and doubles as MPI_Double. The maneuver to
only use MPI_Double to code a MOBBNode instance is not desirable. There-
fore, if one needs to serialize MobbNode using different data types and in each
sending/receiving round only one data type can be specified in MPI specifi-
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cation, depth-first is not the way to go. (2)In the current implementation, a
tree-transmission is always finished within one round, i.e. there is no need to
chop a tree into chunks to transmit. Yet, in the future research work, a tree
might get so large that it exceeds the MPI limit for finishing one round of tranm-
sission. Then, a tree needs to be divided into piece and later assembled. In such
a case, depth-first will require the algorithm to look through each MobbNode
to figure out how to best divide the tree. Yet, using breath-first strategy only
requires to divide serveral MPI primitive data type arrays, which is considerably
faster.

After discussing how to serialize a MobbTree, now it comes to how to transmit
the serialized data using MPI. It is clear that three key elements(indices and
values of FVB(Fixed Value Binary), EscapeConstraints) need be transmitted.
So the program first needs to concatenate these three elements in each MobbN-
ode. Secondly, the size of each element is required to be known. Therefore, the
transmitting process is clearly divided into 5 phases: (1) size of FVB(in fact, the
slicelD of this tree is piggy-packed too, for the reason, please refer to subsection-
sec:reinit), (2) indices of FVB, (3) values of FVB, (4) size of EscapeConstraint,
(5) values of EscapeConstraints. The above discussion can ensure a valid trans-
mittion of a tree. However, since the selection rule of each node is based on their
z value. So to ensure the consistency with the sequential program, each node’s
z need be transmitted. If in the future, a better selection strategy is adopted,
the data structure related to that strategy need be transmitted too.

Figure shows the handshake of the sending/receving processes. When the
receiving part receives these elements, it can re-construct the MobbTree, the
procedure of which is a reverse of serialization, i.e. the de-serialization.

8.1.3.2 Re-initiation

After a slave process receives a tree from another slave process. It needs to
reinitiate its CLP solver to operate on the tree, because the tree is only valid
given its binding sliceID. Therefore, throughout the calculation, one slave pro-
cess maintains the same MPI rank, but its sliceID may vary from time to time.
To re-initiate the CLP solver is straight-forward: firstly, remove the old up-
per/lower bound and objective function; secondly, add the new upper bound,
lower bound and the objective function.
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8.2 Test and Analysis

8.2.1 Execution time and Speed up

Figure is the execution time when CPU number grows from 8 to 20. As in
the coarse-grained implementation, it has shown the execution time drops very
quickly; however, as discussed before, it is also because when the slice number is
different, the sequential algorithm has very different execution time. To better
evaluate the performance, we shall use Amdahl’s law.

Figure B3 is the speed up when CPU number grows from 8 to 20. Clearly,
a very high speed up is achieved. When CPU number equals to 8, 10, a super-
linear speed up is even achieved. That is because sequential programming, the
program needs to load the data into cache in different rounds; while in the par-
allel programming, the data can be fit into cache more efficiently. We can see
the speed up maintains very high even when CPU number gets larger.

8.2.2 Workload Distribution

The reason that the speed up is very high in fine-grained implementation is
because the workload is evenly distributed. Figure is the work load distri-
bution of a testbench when CPU = 8. Compared to the work load distribution
in the coarse-grained implementation (see Figure [CH), It is clearly seen that
the workload distribution is almost evenly distributed. Therefore, it leads to a
very big improvement compared to the coarse-grained implementation.
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CHAPTER 9

Software architecture of this
project

After describing the theories, data structures, and algorithms. This chapter
will present the software architecture of this project. In fact, this software
architecture was designed before all the actual coding was started. However, it
is only sensible to present it here after all the theories and jargons are explained
in this thesis. Figure @dlis the UML [T4] graph of the whole project. Only the
core parts of the project are shown in this UML graph.

9.1 Collaboration between each class

The whole project is mainly divided to three major parts: SliceSolver group(SliceSolver
related classes), ParetoFront group(ParetoFront related classes) and X X X Scheduler
clique(class SeqM obbScheduler, class Par M PICoarseScheduler, class ParM PIFineScheduler)

SliceSolver group is the key part of the whole algorithm. class SliceSolver con-
tains an instance of class MobbT'ree, an instance of class StatisticsTracker(to
keep record of several key estimator data) and an instance of class ConstraintsH elper
to calculate upper/lower bound and objective function. Class SliceSolver is also
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the parent class M PICoarseSliceSolver and class M PIFineAgent, which are
both the solver class in parallelization implementation. For class M PIFineAgent,
it needs to resort to class M PI Adapter and class M PITransmitter to transmit
trees.

ParetoFront group is the part in which ParetoFront related algorithms are
implemented. class ParetoFront has an instance of ConstraintsHelper to
calculate each slice’s upper/lower bound and objective function. In paralleliza-
tion implementation, class M PICoarseM aster and class M PIFinePF Master
both contain an instance of class ParetoFront to facilitate calculation. Class
M PIFineScheduler is a special class to faciliate sequential simulation of fine-
grained parallelization.

X X X Scheduler group refers to class SeqM obbScheduler, class Par M PICoarseScheduler,
and class ParM PIFineScheduler. All these classes are the entry to the whole

program, which initiates SliceSolver group and ParetoFront group and then

orchestras them to work.

9.2 Object-Oriented Design [15]

This project is done in C' + +, an OO language, so there are some OO features
used. Among OO features, Inheritance and encapuslation are the mostly used.
Inheritance refers to inherit attributes and behaviors from their parent classes,
and can introduce their own methods by overloading the parent methods. En-
capsulation refers to conceal the functional details of a class from objects that
communicate with it, therefore to guarantee the used class is not modified. En-
capsulation vs. Inheritance is therefore also called Is-a vs. Has-a relationship.

9.2.1 Inheritance

Throughout this project, there are two places where inheritance is used. One
place is for the class Point and its derived classes Integer Point and SemiN adir Point.
As discussed in chapter 4, Point is to keep record of the two objectives of MOBB,
namely z1 and 22, and also to maintain the numerical stability. So once class
Point is implemented and tested, the other two classes only need very little
modification.

The other place for inheritance in this project is the class SliceSolver, and
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its derived classes M PICoarseSliceSolver and M PIFineAgent. SliceSolver
is the core class of the whole algorithm, it implements the core algorithm. So
once SliceSolver is coded and tested, one only needs to add the parallelization
implementation in its derived classes. Inheritance turns out to be a very power-
ful tool in this case— even in the class M PIFineAgent, only a number of lines
of code need to be added. In the future work, if one decides to use OpenMP (or
any other parallel tools supported by C++) one can simply inherit this class
and add the parallelization related code.

9.2.2 Encapsulation

Encapsulation is also a very powerful tool. Compared to inheritance, encap-
sulation does not inherit any class, rather, it uses another class as its member
field. Encapsulation is used when a class has a very close relationship with
another class, but not a direct deriviation of another class. So it will not have
any effect on the encapsulated class but only use the existant interface. In this
project, both M PICoarseMaster and M PIFinePF Master have an instance
of ParetoFront, but neither of them is a derived class of ParetoFront. It is
because that to use the facility offered in ParetoFront, one does not need to
change anything; all the existent interfaces in class ParetoFront are sufficient
for later parallelization.

9.3 Test and Parallel simulation

The parallel implementation is considerably more difficult than its sequential
counter-part due to the fact that the total execution sequence is not deter-
ministic. To lower the risk of generating bugs in parallel implementation, one
needs to first rigorously test all the algorithm related code. For each above
class XX X, a TestX X X is accordingly implemented to test the class so that
it will have the desired result. Once the algorithm is tested to work, we can
make some parallel simulation in the sequential program before actually imple-
menting the parallel code. In this project, SeqMobbScheduler is such a class,
in which several methods are implemented to simulate parallelization—(1) ex-
ecuteRandom(), in this method, the SeqMobbScheduler will randomly choose
a SliceSolver with non-empty tree to solve a node. (2) executeFine(), in this
method, SeqM obbScheduler will randomly choose a SliceSolver, if it has a
non-empty tree, then this solver solves a node, otherwise, it will solicit a tree
from another SliceSolver. Evidently, executeRandom() is a parallel simula-
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tion of Coarse-grained parallel implementation, while executeFine() is a parallel
simulation of Fine-grained parallel implementation. To simulate parallelization
could help to reduce the risk of algorithm fault. For example, in Fine-grained
parallel implementation, re-initialization and tree-transmitting are both delicate
issues. To simulate this, one can make sure all the OR-related parts are working
fine, which would leave programmer to only deal with the parallelization issue
in later parallelization work.
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CHAPTER 1 O

Conclusion and future work

10.1 Conclusion

This thesis project has finished several tasks:

e Implement the sliced-MOBB algorithm.Test the algorithm and show it is
generally much better than the traditional brute force algorithm and slic-
ing the feasible region gives much better bounding.

e Implement a coarse-grained MOBB parallelization program in MPI. Test
the implementation and shows that it gives reasonable performance, but
it cannot achieve better performance even when CPU number gets larger
than a certain threshold.

e Implement a fine-grained MOBB parallelization program in MPI. Test the
implementation and show that it gives a very good performance, in some
cases, it even achieves a super-linear speedup. Such a parallelization al-
gorithm can be applied to any general branch-and-bound-like program.
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e Overall, parallel MOBB algorithm displays a great improvement of solv-
ing MOMIP problems, the excellent performance is a combination of both
better bounding scheme in MOBB and also a well-designed parallel algo-
rithm. Such a result might lead to a major breakthrough in OR research.

10.2 Future work

e 21 can be modeled not only by binary variables but also a mix of binary
and continuous variables.

e Problem domain can be improved to more than 2 objectives.

e Branch and cut technology may be applied to MOBB algorithm so that
the sequential program could even achieve better performance.

e Parallelization can be implemented in OpenMP, so several problems such
like transferring a tree would be significantly reduced; as in OpenMP, one
only need to transfer a pointer to the tree.

Minimize {z} (10.1)
Subject to (10.2)
z = cx (10.3)
Az > b (10.4)
z = 0 (10.5)
Minimize {z1,22} (10.6)
Subject to (10.7)
z1 = Zc%xi,w, where x; € B (10.8)
22 = > i, Vi (10.9)
i

Az > b (10.10)
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