
Understanding the Interleaving-Space
Overlap across Inputs and Software Versions

Dongdong Deng Wei Zhang Borui Wang Peisen Zhao Shan Lu
University of Wisconsin, Madison

dongdong@cs.wisc.edu, wzh@cs.wisc.edu, bwang29@wisc.edu, pzhao5@wisc.edu, shanlu@cs.wisc.edu

Abstract
In the multi-core era, it is critical to effectively test multi-
threaded software and expose concurrency bugs before soft-
ware release. Previous work has made a lot of progress in
exercising the interleaving space and detecting concurrency
bugs under a given input. Unfortunately, since software of-
ten has many test inputs and constant pressure to release new
versions, existing techniques are still too expensive in prac-
tice. In this position paper, we use open-source software to
study how interleavings, data races and atomicity violations
particularly, overlap across test inputs and software versions.
We also conduct preliminary explorations to improve the
testing efficiency of multi-threaded software by avoiding re-
dundant analysis across inputs and software versions.

1. Introduction
The rise of the multi-core era dictates the prevalence of
multi-threaded software. Unfortunately, concurrency bugs
widely exist in multi-threaded software [22] and have caused
severe damages in the real world [51]. Therefore, effective
software testing techniques are needed to expose concur-
rency bugs before software release.

Exposing concurrency bugs is challenging, requiring not
only bug-triggering inputs but also special orders of share-
memory access (i.e., interleavings). Facing the huge input
space, interleaving space, and the pressure of releasing new
versions of software, existing in-house testing allows many
concurrency bugs to escape to production runs.

In today’s practice, concurrency-bug detection and test-
ing usually involve two steps for each version of software:
first, testers design a set of inputs to provide code coverage;
second, for each test input, the program is executed multiple
times to exercise different interleavings. A lot of research is
done to improve the second step by focusing on bug-prone
interleaving patterns, such as races [52], atomicity violations
[44], and others [40]. Unfortunately, even with state-of-the-
art techniques, the second phase still introduces 10X – 100X
slowdown, not affordable for a large set of test inputs and an
application with constant pressure to release new versions.

This position paper proposes to improve testing efficiency
by exploiting the interleaving-space overlap across test in-
puts and software versions. To support this proposal, Sec-
tion 2 will study how interleavings, races and atomicity vio-

lations in particular, overlap across inputs and software ver-
sions. Section 3 will discuss how to improve bug detection
across inputs and software versions by leveraging this over-
lap and avoiding redundant analysis.

2. Understand the interleaving-space overlap
2.1 Methodology
Applications As shown in Table 1, this study uses 5 open-
source applications that represent different types of software.
All applications are written in C/C++ and they use pthread
library as the underlying concurrency framework. None of
them requires a JIT compiler.

App. Description # inputs
Aget 0.4.1 A parallel-downloading application [1] 8
Click 1.8.0 A software router [9] 6
FFT A scientific computing benchmark [61] 8
Mozilla-js m10 A JavaScript engine [39] 8
PBZIP2 0.9.4 A parallel-compression application [18] 8

Table 1. Applications and test inputs in study

Test inputs Click and Mozilla-js both have test-input sets
designed by their developers. For Click, our study uses all
its test inputs that do not require OS-kernel changes. For
Mozilla-js, we randomly mix their test inputs into 8 groups
of multi-threaded JavaScript requests. For the other three
applications, we design 8 inputs for each to cover differ-
ent command line options and corresponding functionalities.
Our Aget inputs cover different Aget functionalities, such
as normal file downloading, download suspending, down-
load resuming, and others; our FFT inputs exercise different
FFT-computation settings and different functionalities, such
as normal FFT, inverse FFT, printing per-thread statistics,
and others; our PBZIP2 inputs exercise different options,
including compression, decompression, error-message sup-
pressing, compression-integrity testing, and others.

Interleaving counting Our study focuses on two most
common types of interleaving patterns: data races [42, 50]
and single-variable atomicity violations [15, 33, 44, 58]. We
use a tool implemented in PIN [36] to collect per-thread
execution traces of global/heap memory accesses and syn-
chronization operations. We then analyze traces to detect

1 2012/4/30

0

4

8

i1

i2

i3

i4

i5

i6

i7

i8

(a) Aget

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

i1
i2

i3
i4

i5
i6

(b) Click

0

1
0

2
0

3
0

4
0

5
0

i1
i2

i3
i4

i5
i6

i7
i8

(c) FFT

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

i1
i2

i3
i4

i5
i6

i7
i8

(d) Mozilla-js

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

i1

i2

i3

i4

i5

i6

i7

i8

(e) PBZIP2

Figure 1. Data-race overlaps across inputs (The Y-Axis shows the number of data races. Each bar represents races detected by
one test input. The dotted line in each sub-figure marks the total number of unique races reported by all inputs. Colorless strips
represent races exposed by 1 input; light-gray strips represent races exposed by 2–4 inputs or 2–3 inputs in Click; dark-gray
strips represent races exposed by 5–7 inputs or 4–5 inputs in Click; black strips represent races exposed by all inputs.)

0 6

i1
i2

i3
i4

i5
i6

i7
i8

(a) Aget

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

i1
i2

i3
i4

i5
i6

(b) Click

0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

i1
i2

i3
i4

i5
i6

i7
i8

(c) FFT

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

i1
i2

i3
i4

i5
i6

i7
i8

(d) Mozilla-js

0

1
5

3
0

4
5

6
0

7
5

9
0

i1
i2

i3
i4

i5
i6

i7
i8

(e) PBZIP2

Figure 2. Atomicity-violation overlaps across inputs (The Y-Axis, X-Axis, bars, strips, and the dotted lines have the same
meanings as those in Figure 1.)

data races and potential atomicity violations. Our race detec-
tion uses a lock-set/happens-before hybrid algorithm, simi-
lar to those in many open-source race detectors [41, 56]. Our
atomicity-violation detection follows an algorithm described
in CTrigger [44]. Both detectors have been implemented and
used in our previous work [44, 65, 66].

We count each unique pair of static race instructions as
one unique data race; we count each unique triplet of static
instructions that compose a single-variable atomicity viola-
tion as one unique atomicity violation. The results are stable
across runs for each input. We tried our best to eliminate the
background noise effect. For example, for the Click experi-
ments, under each test input, we conducted our experiment
using its previously stored workload trace.

Our detectors recognize thread synchronization calls such
like pthread mutex (un)lock, pthread create , pthread join ,
and the barrier macro in SPLASH2 [61]. Like almost all
other detectors, our detectors do not recognize custom syn-
chronizations and can have false positives and negatives.

2.2 Interleaving spaces across inputs
Figure 1 shows how races detected by different inputs over-
lap. As demonstrated by the colorless strips in Figure 1, data
races exposed by only one input out of the test-input set are
not common in most applications. They contribute to fewer
than 18% of unique data races in Aget, FFT, Mozilla, and
PBZIP2. In the same time, there are 14% – 67% of unique
data races in these five applications that are exposed by all
test inputs, as shown by the black strips in the figure. There
are also many races covered by some, yet not all, test inputs,
as demonstrated by gray strips in Figure 1.

Figure 2 illustrates single-variable atomicity violations
detected by different inputs. The trend here is similar to that
of data races. All applications, except Click, have 0–30%
of unique atomicity violations that are exposed by only one
input (white strips in Figure 2). Meanwhile, all applications,
except PBZIP2, have more than 20% of unique atomicity
violations that are exposed by all test inputs (black strips in
Figure 2).

Theoretically, a race or an atomicity violation may lead
to failures under one input and maintain benign under an-
other input. Therefore, we further investigate which races

2 2012/4/30

0

1

2

3

1

2

3

4

5

6

7

8

(a) Aget

0

1

2

3

4

5

1

2

3

4

5

6

7

8

(b) FFT

0

2

4

6

8

1
0

1
2

1
4

1

2

3

4

5

6

7

8

(c) Mozilla-js

0

2

4

6

8

1
0

1

2

3

4

5

6

7

8

(d) PBZIP2

Figure 3. Failure-inducing data-race overlaps across inputs. We use the same graphical representation as in Figure 1.

0

1

2

3

4

5

6

1

2

3

4

5

6

7

8

(a) FFT

0

2

4

6

8

1
0

1

2

3

4

5

6

7

8

(b) Mozilla-js

0

2

4

6

8

1
0

1

2

3

4

5

6

7

8

(c) PBZIP2

Figure 4. Failure-inducing atomicity-violation overlaps across inputs. We use the same graphical representation as in Figure2.

and atomicity violations could lead to software failures un-
der which inputs. We found that the goodness/badness of a
race/atomicity-violation is always the same under different
inputs in the studied applications and test sets. Furthermore,
failure-inducing races/atomicity-violations are all exposed
by more than one input, as shown in Figure 1 and Figure 2.

Similar to Figure 1 and Figure 2, Figure 3 and Figure 4
illustrate how failure-inducing races and atomicity violations
overlap across inputs. As can be seen from these two figures,
the same failure-inducing race or atomicity violation can be
repeatedly detected in many different inputs, similar to the
non-failure-inducing ones.

2.3 Interleaving spaces across software versions
This study takes a close look at open-source software Aget, a
utility program designed for parallel downloading [1]. Aget
is a widely used benchmark for concurrent software re-
liability research [34][65][10], because it contained some
rather interesting concurrency bugs. Since its initial release
in 2002, Aget has been updated for 4 times, with its lat-
est update in 2009. To emulate the history of concurrent
bug detection and study how the (buggy) interleaving spaces
evolve through different versions, we applied race detection
and atomicity-violation detection to all five versions of Aget,
with the result illustrated in Figure 5.

0 4 8

V0.2

V0.2p1

V0.39

V0.4

V0.4.1

inherited new

(a) Races

0 3 6

V0.2

V0.2p1

V0.39

V0.4

V0.4.1
inherited new

(b) Atomicity violations

Figure 5. How interleavings evolve along software versions

As shown in Figure 5(a) and Figure 5(b), among the four
updates in Aget, only one update has introduced new atom-
icity violations and only two updates have introduced new
races. The biggest interleaving-space change came at the
second update. This update (v0.39) doubled the code size
of Aget and introduced a significant amount of code refac-
toring and new functionality, such as download suspension
and download resuming. It also brought 3 new races and 5
new atomicity violations among newly introduced code.

There have been two failure-inducing races in Aget1.
They are both introduced by the third update (version 0.4).
Each race is between two instructions that access a newly
introduced shared variable within old code regions.

1 Sequential consistency memory model is assumed here.

3 2012/4/30

Summary Interleaving patterns, such as races and atom-
icity violations, overlap significantly across inputs and soft-
ware versions. Interleaving testing and concurrency-bug de-
tection would waste a lot of effort, if they are not coordinated
across inputs and software versions.

3. Exploit the interleaving-space overlap

Race-Testing Runs # Atom-Testing Runs
App. Base* Strawman# Base Strawman

Aget 80 12 32 5
Click 1798 820 1026 420
FFT 392 84 423 83
Mozilla 5524 1010 1486 345
PBZIP2 550 132 273 82

Table 2. Removing unnecessary testing by the strawman (*:
twice the number of all race reports; #: twice the number of unique races)

3.1 A strawman approach
A strawman approach to improving race-guided testing [52]
and atomicity-guided testing [44] is simply recording what
race orders and atomicity violations have been tested, and
then avoiding the same race orders or atomicity violations
during the testing runs of different inputs or different code
versions. If we consider baselines as interleaving-testing
frameworks [44] that use one program run to test one race-
order/atomicity-violation under each test input, the straw-
man approach can save a significant number of interleaving-
testing runs. Actually, it can reduce 54–85% of testing runs
for applications described in Section 2.1 (Table 3), and save
up to 100% of runs across multiple versions of Aget.

3.2 A better approach for cross-input bug detection
The limitation of the strawman approach is that it relies on
detecting data races and atomicity violations under each in-
put, which often incurs 10X – 100X [49] slowdown and is
unaffordable for large sets of inputs in practice. In the fol-
lowing, we explore how to coordinate race detection across
inputs.

3.2.1 Design
We aim to coordinate race detection and avoid reporting data
races already reported by previous inputs. The challenge
is to predict which part of memory-access monitoring and
synchronization analysis will end up with redundant race
reports before any heavy-weight monitoring and analysis.

To address this challenge, we propose coordinating race
detection with a metric that characterizes interleaving spaces
at a coarse granularity and hence is light-weight to measure.
Our preliminary exploration designs such a metric: Concur-
rent Function Pairs (CFP). We define CFP as the set of all
function pairs that can execute in parallel with each other.

Our CFP-guided race detection includes three steps for a
set of inputs. The first step executes every input and obtains

the CFP of each input. The second step selects the smallest
set of inputs that can cover all unique concurrent function
pairs. The output of this step includes a list of selected inputs
and one list of selected functions for each selected input. The
third step applies a race detector to selected functions under
each selected input.

3.2.2 Implementation
For the first step of CFP-guided race detection, our prelimi-
nary implementation calculates the CFP of an input by ana-
lyzing the run-time log of the entrance and the exit of every
function call. We implemented an LLVM-based tool to con-
duct the logging for every input. Our trace analysis considers
an invocation of function f1 to be concurrent with an invoca-
tion of function f2 from a different thread, if and only if the
entrance, or exit, of f1 and the entrance, or exit, of f2 have
concurrent logical timestamps2 and are not protected by the
same lock. Experiment results show that the reported CFP
are very stable across testing runs. Even in the extreme cases
like Click where thousands of concurrent function pairs are
reported each time, we don’t see more than 1% fluctuation
between each run. Since the fluctuation is small, we only run
each program once under each input to collect the CFP.

Given the list of concurrent function pairs of each input,
selecting the smallest set of inputs to cover all pairs is ac-
tually an NP-hard problem. We tried two implementations:
one based on branch-and-bound algorithm [29] that provides
optimal results and one that provides approximated results.
We ended up with the latter, because the former is too expen-
sive in our experiments. Our approximated algorithm first se-
lects the input that covers the most concurrent function pairs
among all inputs. It then keeps selecting the input that covers
the most uncovered pairs, until all pairs are covered.

For the third step, we slightly modified the race detector
described in Section 2.1 to monitor only specified functions.

3.2.3 Preliminary evaluation

App. Speedup Race False Bad-Race Trace Re-
(X) Negative(%) False Neg.(%) duction (%)

Aget 0.76* 0% 0% 94%
Click 2.14 0.2% N/A 64%
FFT 7.13 0% 0% 83%
Mozilla 1.27 4% 0% 33%
PBZIP2 1.72 3% 0% 44%

Table 3. Overall results of CFP-guided race detection, with
the traditional full race detection as the baseline (*: a slow-
down due to the I/O intensive nature of Aget).

Our preliminary experiments compare two approaches of
race detection. One is the traditional approach that applies
race detection to each and every test input. It uses the race
detector described in Section 2.1 and will be referred to as
full detection. The other is our CFP-guided approach.

2 We compute logical timestamps based on synchronization operations such
as barriers, thread creations, and thread joins.

4 2012/4/30

Overall results As shown in Table 3, through cross-input
coordination, our CFP approach effectively reduces trace
sizes (33 – 94% of reduction) and improves the performance
of all but one benchmark (up to 7X speedup), with only 0 –
4% false-negative rates among all races and no false negative
among failure-inducing races. These results demonstrate the
potential of coordinating bug detection across inputs.

Redundancy avoidance Our CFP-guided approach tries to
avoid reporting one data race under multiple inputs. Table 4
shows how this goal is achieved by selecting inputs and func-
tions in race detection. As shown in the table, 1 – 7 out of
8 inputs are selected for Aget, FFT, Mozilla, and PBZIP2.
All 6 test inputs are selected for Click race detection. Fortu-
nately, only a few functions need to be monitored for most of
these inputs, which significantly reduces the trace size from
127 MB to 46 MB.

By selecting inputs and functions, our CFP approach has
successfully decreased the average number of inputs under
which each race is reported from 2.19 – 6.67 to 1.0 – 2.73
(the Overlap columns of Table 4). The reason that we failed
to decrease the Overlap to 1 can be explained by an example.
Suppose we choose input i1 to cover a concurrent function
pair {f2, f3}, and i2 to cover pairs {f1 , f3} and {f1 , f2}.
Under this selection scheme, a race between instructions in
f2 and f3 could be reported by both i1 and i2, because
f2 and f3 are monitored in both inputs. Future work can
design better monitoring schemes or input/function selection
schemes to further decrease the Overlap.

Overlap #Used Inputs Trace Size (MB)
App. Full CFP Full CFP Full CFP
Aget 6.67 1.00 8 3 11.4 0.63
Click 2.19 1.64 6 6 127 45.5
FFT 4.67 1.00 8 1 34.2 5.98
Mozilla 5.47 2.73 8 7 12.4 8.35
PBZIP2 4.17 1.16 8 2 402 227

Table 4. Input/function selection and overlap reduction
(Overlap = # all race reports

unique race reports)

False negatives Our CFP-guided detection has missed
very few races reported by full race detection, with 0 – 4%
false-negative rates. Furthermore, there is no false negative
among failure-inducing races. Almost all false negatives oc-
cur when different inputs cover different basic blocks of a
function and the input selected by us happens to miss the
race-containing blocks.

Performance The speedup of CFP is mainly determined
by the input/function selection. Intuitively, the fewer input-
s/functions selected, the faster is the CFP-guided race detec-
tion. For example, the CFP approach is 7 times as fast as the
baseline full race detection for FFT, because only 1 out of 8
test inputs is selected for race detection. On the other hand,
only 1.27X speedup is achieved in Mozilla, because 7 out of

8 test inputs and 67% of full-detection traces remain in CFP-
guided detection. The detailed performance breakdowns of
all benchmarks are shown in Table 5.

Among all benchmarks, Aget is a special case. Although
the CFP approach effectively selects inputs and decreases
the race-report overlap from 6.67 to 1, it is actually slower
than full race detection. The reason is that the current CFP
approach requires one run of each input to calculate CFP. In
most applications, this CFP-calculation time is compensated
by the reduction of race-detection time. Unfortunately, this
does not apply for Aget, whose I/O-intensive nature gives it a
low full race-detection overhead, 11%, to compete with. This
shows that the current CFP approach may not help some I/O
intensive applications that have low race-detection overhead.
Of course, since CFP incurs negligible overhead to collect in
these applications, collecting them are still worthwhile for
software with many test inputs and for coordinating other
types of concurrency-bug detection.

App. Full CFP
Step1 Step2 Step3 Total

Aget 1.11 1.05 0.000035 0.40 1.45
Click 313 1.87 0.49 144 146.36
FFT 211 1.85 0.09 27.7 29.64
Mozilla 260 29.5 5.07 175 209.57
PBZIP2 4.38 1.02 0.0016 1.55 2.57

Table 5. The total testing time across all inputs (For each
application, the total execution time of all test inputs w/o
any instrumentation is considered as 1)

The Step 1 and 2 in Table 5 show the time spent col-
lecting function-entrance/exit traces of all inputs, calculate
the CFP, and select inputs accordingly. In general, they in-
cur relatively small overhead. Mozilla is the outlier here, be-
cause it has many utility functions with zero or just a few
share-memory accesses. These functions lead to huge over-
head in CFP monitoring, CFP calculation, and input selec-
tion. We expect the performance of Step 1 and 2 to sig-
nificantly improve by pruning local-access functions, merg-
ing utility functions with their callers, and parallelizing our
single-threaded trace-analysis and input-selection programs.
The Step 3 in Table 5 corresponds to the overhead for race
detection on the inputs and functions selected in Step 2. Fi-
nally, the Column “Total” represents the end-to-end time us-
ing CFP approach, which sums up the time from Step 1 to
Step 3. Evidently, CFP is a significantly cheaper approach
than the traditional approach, this speedup was also given in
the second column of Table 3.

3.2.4 Discussion
What presented above is just a starting point to cross-input
concurrency-bug detection. We believe there is a lot of room
for improvement. First, not all functions and function pairs
matter. In our current implementation, many functions that
access no global/heap variable are involved in CFP monitor-

5 2012/4/30

ing and analysis. Getting rid of these functions can bring sig-
nificant performance improvement. Static analysis can fur-
ther help remove pairs of functions that cannot access the
same variable from CFP calculation, and further improve the
quality of our cross-input coordination.

Second, a function may not be the best unit for interleaving-
space depiction. Sometimes, a function may be too small
as a monitoring/analysis unit. In fact, monitoring the en-
trances and exits of utility functions that only have a couple
of global/heap memory accesses leads to huge overhead.
Sometimes, a function may be too big as a unit. For exam-
ple, synchronization operations inside a function can cause
different parts of a function to have different logical times-
tamps, making CFP measurement inaccurate. Some large
functions may include different paths accessing completely
different global/heap variables. Many false negatives in our
current implementation occur within these big functions.

Finally, new metrics similar to CFP are needed to coordi-
nate the detection of other types of concurrency bugs.

3.3 Opportunities for across-version bug detection
We could use CFP to guide the race detection across soft-
ware versions. Specifically, we can first calculate the CFP
covered by test inputs in the new version, and then focus
race detection on function pairs not covered by old versions.

We could also use the CFP metric in a smarter way. In
Aget, the failure-inducing races are introduced when devel-
opers insert statements that access the same variable into
function http get and save log . These two functions are a
pair of concurrent functions in older versions of Aget. Since
no synchronization is changed/inserted in the new version,
we can tell that the inserted statements race with each other
without any traditional race analysis! We leave further ex-
ploration along this direction to future work.

4. Related Work
A lot of tools are designed to detect data races [8, 16, 42,
50, 64], atomicity violations [7, 15, 32, 33, 58, 62], and
other types of concurrency bugs [17, 28, 30, 35, 57, 63,
65, 66]. Techniques, such as sampling [4, 14, 27, 37, 38]
and hardware support [45, 46, 60], have been proposed to
improve the performance of each concurrency-bug detection
run. This paper has a different perspective with the above
sampling methods. Specifically, all the previous works are
oblivious to the selection of input. This paper prioritizes
testing inputs by their potential to cover the most unexplored
concurrent function pairs.

This paper is also orthogonal to some of the performance-
enhancing techniques. Recent work such as DataCollider[14]
has significantly reduced the data race detector overhead
by leveraging hardware watchpoints. Our approach can
help further reduce the overhead. For example, DataCol-
lider could leverage information about which program loca-
tions are likely to participate in a previously unknown race
through some prior analysis provided by this paper. More-

over, based on our experience, cross-input and cross-version
overlaps also apply to other types of concurrency bugs.

Many techniques are proposed [5, 12, 40, 44, 53] to effec-
tively explore the interleaving space of each input. Different
from these techniques, this paper tries to coordinate testing
across inputs and software versions.

Deterministic systems [2, 3, 31, 43] force software to de-
terministically follow one interleaving under an input. Since
the schedule can be affected by subtle issues in these sys-
tems, such as the number of (write) instructions [11, 43] or
synchronization operations [31] executed by a thread, prob-
lems like how to co-design input testing and interleaving
testing and how to estimate the interleaving impact of a code
change could become more interesting.

Symbolic execution has been used for testing sequential
software [6, 21, 55] and unit testing multi-threaded software
[54]. Model checking for multi-threaded software has been
well studied [13, 19, 20, 23–25, 47, 48, 59]. The observation
that interleavings overlap across inputs is not new in model
checking and partial-order reduction is often used to avoid
repeatedly exploring the same state. Unfortunately, this ob-
servation has never been studied in the context of dynamic
concurrency-bug detection and related testing. Due to the
different goals and approaches in these two fields, new ap-
proaches are needed to exploit interleaving-space overlap.

Recently, people start to pay attention to regression test-
ing for concurrent software. CAPP[26] describes extensive
heuristics for regression testing on concurrent JAVA soft-
ware and their effectiveness. We studied the interleaving
space overlap across different versions of an open-source ap-
plication written in C/C++. Our study provides more moti-
vation for regression testing in multi-threaded software, and
points out heuristics that can be applied to concurrency-bug
detection in an evolving software.

5. Conclusions
This position paper proposes a new direction to improve
the quality of concurrency-bug detection and multi-threaded
software testing by avoiding redundant analysis across in-
puts and software versions. Our study of open-source appli-
cations shows that a significant number of races and single-
variable atomicity violations overlap across inputs and soft-
ware versions. Our preliminary exploration also shows the
potential of leveraging these overlaps to improve the perfor-
mance of bug-detection and testing. We expect future work
to design better metrics to help coordinate cross-input bug
detection and design better change-impact analysis to effi-
ciently detect concurrency bugs brought by code changes.

6. Acknowledgments
We would like to thank anonymous reviewers for their in-
valuable feedback. Shan Lu is supported by a Claire Boothe
Luce faculty fellowship, and her research group is supported
by NSF grant CCF-1018180 and CCF-1054616.

6 2012/4/30

References
[1] Aget. Multithreaded http download accelerator.

www.enderunix.org/aget, 2011.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In OSDI, 2010.

[3] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOS. In OSDI, 2010.

[4] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional detection of data races. In PLDI, 2010.

[5] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A randomized scheduler with probabilistic guarantees of find-
ing bugs. In ASPLOS, 2010.

[6] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In OSDI, pages 209–224, 2008.

[7] F. Chen, T. F. Serbanuta, and G. Rosu. jpredictor: a predictive
runtime analysis tool for java. In ICSE ’08: Proceedings of the
30th international conference on Software engineering, 2008.

[8] J.-D. Choi et al. Efficient and precise datarace detection for
multithreaded object-oriented programs. In PLDI, 2002.

[9] Click. The Click Modular Router Projec.
http://read.cs.ucla.edu/click/click.

[10] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient
deterministic multithreading through schedule relaxation. In
Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles, SOSP ’11, pages 337–351, New York,
NY, USA, 2011. ACM.

[11] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: determin-
istic shared memory multiprocessing. In ASPLOS, 2009.

[12] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multi-
threaded java program test generation. IBM Systems Journal,
2002.

[13] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded
scheduling. In POPL, 2011.

[14] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In Proceedings of
the 9th USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–16, Berkeley, CA, USA,
2010. USENIX Association.

[15] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL, 2004.

[16] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise
dynamic race detection. In PLDI, 2009.

[17] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin. 2ndstrike:
toward manifesting hidden concurrency typestate bugs. In
ASPLOS, 2011.

[18] J. Gilchrist. Parallel BZIP2, Data Compression Software.
http://compression.ca/pbzip2/.

[19] P. Godefroid. Partial-Order Methods for the Verification
of Concurrent Systems: An Approach to the State-Explosion
Problem. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1996.

[20] P. Godefroid. Model checking for programming languages
using verisoft. In POPL, 1997.

[21] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed auto-
mated random testing. In PLDI, pages 213–223, 2005.

[22] P. Godefroid and N. Nagappan. Concurrency at microsoft
an exploratory survey. Technical report, Microsoft Research,
MSR-TR-2008-75, May 2008.

[23] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[24] R. Iosif. Exploiting heap symmetries in explicit-state model
checking of software. In ASE ’01: Proceedings of the 16th
IEEE international conference on Automated software engi-
neering, page 254, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[25] C. N. Ip and D. L. Dill. Better verification through symmetry.
Form. Methods Syst. Des., 9(1-2):41–75, 1996.

[26] V. Jagannath, Q. Luo, and D. Marinov. Change-aware pre-
emption prioritization. In Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, ISSTA
’11, pages 133–143, New York, NY, USA, 2011. ACM.

[27] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and
sampling strategies for Cooperative Concurrency Bug Iso-
lation. In Proceedingsof the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2010), 2010.

[28] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized
dynamic program analysis technique for detecting real dead-
locks. In PLDI, 2009.

[29] A. H. Land and A. G. Doig. An automatic method of solving
discrete programming problems. Econometrica, 28(3):497–
520, 1960.

[30] T. Li, C. Ellis, A. Lebeck, and D. Sorin. On-demand and
semantic-free dynamic deadlock detection with speculative
execution. In USENIX Annual Technical Conference, 2005.

[31] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient
deterministic multithreading. In SOSP, 2011.

[32] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa,
and Y. Zhou. MUVI: Automatically inferring multi-variable
access correlations and detecting related semantic and con-
currency bugs. In the 21st ACM Symposium on Operating
Systems Principles (SOSP07), October 2007.

[33] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomic-
ity violations via access interleaving invariants. In ASPLOS,
2006.

[34] B. Lucia and L. Ceze. Finding concurrency bugs with context-
aware communication graphs. In Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 42, pages 553–563, New York, NY, USA, 2009.
ACM.

[35] B. Lucia and L. Ceze. Finding concurrency bugs with context-
aware communication graphs. In MICRO, 2009.

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumen-
tation. In PLDI, 2005.

[37] D. Marino, M. Musuvathi, and S. Narayanasamy. Effective
sampling for lightweight data-race detection. In PLDI, 2009.

7 2012/4/30

[38] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace:
effective sampling for lightweight data-race detection. In Pro-
ceedings of the 2009 ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’09, pages
134–143, New York, NY, USA, 2009. ACM.

[39] Mozilla Developer Network. Spider-
Monkey, Mozilla’s JavaScript engine.
https://developer.mozilla.org/en/SpiderMonkey.

[40] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent
programs. In OSDI, 2008.

[41] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. SIGPLAN Not.,
42(6):89–100, 2007.

[42] R. H. B. Netzer and B. P. Miller. Improving the accuracy of
data race detection. In PPoPP, 1991.

[43] M. Olszewski, J. Ansel, and S. P. Amarasinghe. Kendo:
efficient deterministic multithreading in software. In ASPLOS,
2009.

[44] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing atomicity
violation bugs from their finding places. In The 14th Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS09), March 2009.

[45] M. Prvulovic. Cord:cost-effective (and nearly overhead-free)
order-reordering and data race detection. In HPCA, 2006.

[46] M. Prvulovic and J. Torrellas. ReEnact: Using thread-level
speculation mechanisms to debug data races in multithreaded
codes. In ISCA, 2003.

[47] S. Qadeer and D. Wu. Kiss: keep it simple and sequential. In
PLDI, 2004.

[48] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach (2nd Edition). Prentice Hall, 2002.

[49] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas.
Accurate and efficient filtering for the intel thread checker
race detector. In Proceedings of the 1st workshop on Archi-
tectural and system support for improving software depend-
ability, ASID ’06, pages 34–41, New York, NY, USA, 2006.
ACM.

[50] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM TOCS, 1997.

[51] SecurityFocus. Software bug contributed to blackout.
http://www.securityfocus.com/news/8016.

[52] K. Sen. Race directed random testing of concurrent programs.
In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN confer-
ence on Programming language design and implementation,
pages 11–21, New York, NY, USA, 2008. ACM.

[53] K. Sen. Race directed random testing of concurrent programs.
In PLDI, 2008.

[54] K. Sen and G. Agha. Automated systematic testing of open
distributed programs. In FSE, 2006.

[55] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing
engine for c. In ESEC/SIGSOFT FSE, pages 263–272, 2005.

[56] K. Serebryany and T. Iskhodzhanov. Thread-
sanitizer, a valgrind-based detector of data races.
http://code.google.com/p/data-race-test/wiki/ThreadSanitizer.

[57] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and
W. Zheng. Do i use the wrong definition? defuse: Definition-
use invariants for detecting concurrency and sequential bugs.
In OOPSLA, 2010.

[58] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In POPL,
2006.

[59] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering Jour-
nal, 10(2), 2003.

[60] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Fal-
safi, P. B. Gibbons, and T. C. Mowry. Paralog: enabling and
accelerating online parallel monitoring of multithreaded ap-
plications. In ASPLOS, 2010.

[61] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In ISCA, 1995.

[62] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation
detector for shared-memory server programs. In PLDI, 2005.

[63] J. Yu and S. Narayanasamy. A case for an interleaving con-
strained shared-memory multi-processor. In ISCA, 2009.

[64] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient
detection of data race conditions via adaptive tracking. In
SOSP, 2005.

[65] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu,
and T. Reps. ConSeq: Detecting concurrency bugs through
sequential errors. In ASPLOS, 2011.

[66] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting severe
concurrency bugs through an effect-oriented approach. In
ASPLOS, 2010.

8 2012/4/30

