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abstract

Software reliability is critical, as it directly affects every aspect of people’s daily life. Software

bugs are the primary factor that impairs the software reliability. Among all types of software

bugs, concurrency bugs are the most difficult to detect and the failures caused by them

occur randomly. That is because concurrent programs need to handle multiple tasks at the

same time, so meticulously designed synchronization is needed. It is difficult to have correct

synchronizations as they require non-sequential thinking, which is complicated to reason about.

As a result, programs are likely to contain concurrency bugs. Furthermore, concurrency bugs

manifest themselves only under rare timing, which makes them even harder to be reproduced

and understood. Concurrency bugs have caused real world damage, such as the 2003 Northeast

blackout. The concurrency bug problem is only getting worse because we are in a multi-core

era – servers, desktop computers, laptops and mobile devices are already.

To improve concurrent software reliability, this dissertation focuses on two aspects of

fighting concurrency bugs: (1) Bug detection, i.e., find the bugs before the software is released;

and (2) Failure recovery, i.e., help programs recover from failures caused by concurrency

bugs during production runs. Both are known to be difficult tasks. To detect them, existing

approaches focus on finding the root cause (i.e., buggy interleaving pattern) of the bug.

However, there are many different interleaving patterns; bug detectors designed for one type

will miss other types. This will lead to false negative problems. In addition, the interleaving

pattern in doubt might not be harmful and cause failures, thus it creates the false positive

problem. To recover from the failures, existing approaches checkpoint all threads and rollback

all of them upon a failure. This is clearly every expensive.

This dissertation takes a dramatically different perspective and makes the following three

contributions:

First, it conducts a comprehensive characteristics study to understand the effect of

concurrency bugs, i.e., types of errors and failures caused by concurrency bugs and how an

error propagates to a failure. This characteristics study nicely complements the existing

understanding of the causes of concurrency bugs to give a complete picture of a concurrency
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bug’s whole life cycle. The findings reveal several previously unknown characteristics of the

concurrency bugs’ error propagation process. In particular, three findings are made: (1)

Errors/Failures caused by concurrency bugs are similar to those by sequential bugs. (2)

Error propagation of concurrency bugs is usually within one thread. (3) Error propagation

distance is usually short. These three findings are instrumental in this dissertation because

they indicate that concurrency bugs’ effects are easier to understand and analyze compare to

their causes. Thus one could fight concurrency bugs using an effect-oriented approach rather

than the traditional cause-oriented approach.

Second, guided by the effect-oriented insight, this dissertation proposes bug detection tools

that are able to detect concurrency bugs with different types of root cause (e.g., data races,

atomicity violations, order violations and other types). Different from existing approaches

that use multi-threaded analysis to identify suspicious root causes; our approach starts from

potential failure/error sites in programs and conducts well-developed single-threaded analysis

before complicated multi-threaded analysis is applied. Our approach can detect many real-

world concurrency bugs and discover concurrency bugs that were never reported before. Our

tools achieve 10 times lower false positive rate than state of the art bug detection technologies,

while incurring reasonable runtime overhead for in-house testing.

Third, guided by this effect-oriented insight, this dissertation proposes a failure recovery

tool that is able to survive a wide variety of hidden concurrency bugs. Previous approaches

periodically checkpoint whole program states across all threads; on the contrary, our approach

only checkpoints program state for each single thread at places close to the potential failure

sites. Thus, it incurs negligible overhead and guarantees not to introduce any new bug.

Furthermore, it does not require any hardware or OS modifications.

The bug detection tools and failure recovery tool, guided by the effect-oriented principle,

complement each other to significantly improve concurrent software reliability.
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Terminology

In this thesis, we use the following definitions.

1. Software bug: A software bug is a flaw in a computer program that prevents the program

from producing the correct results.

2. Failure: A system failure [65] occurs when the delivered service deviates from fulfilling

the system function, the latter being what the system is aimed at.

3. Error : An error [65] is that part of the system state which is liable to lead to subsequent

failure: an error affecting the service is an indication that a failure occurs or has occurred.

4. Fault: The adjudged or hypothesized cause of an error is a fault [65].

5. Sequential bug: A sequential bug is a bug whose fault, error, and failure all involve only

one thread in a software.

6. Concurrency bug: A concurrency bug is a bug whose fault involves multiple threads.

7. Memory error : A memory error is an incorrect program state that leads to invalid

memory accesses. Invalid memory access occurs when an instruction references memory

that is logically or physically invalid [1].

8. Memory bug: A memory bug is a sequential bug that leads to a memory error.

9. Semantic bug: Any sequential bug that is not a memory bug is a semantic bug [137].

10. Semantic error : Errors caused by semantic bugs are semantic errors.

11. Critical read: A critical read is the first shared memory read that returns an incorrect

value as a result of a buggy interleaving.

12. Concurrency error : Concurrency errors are errors caused by concurrency bugs.

13. Error propagation process in concurrency bugs: We define error propagation process in

concurrency bugs as the propagation process from the critical read to the failure.
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1 introduction

1.1 Motivation

Software industry is a large industry, as of the year of 2007, it contributed over 260 billion

dollars to the US economy annually [95]. Software bugsmake software misbehave and cause

huge financial loss [90] and security breaches [16].

Compared to sequential bugs, concurrency bugs (we have defined concurrency bug in

the Terminology section) are much harder to find and avoid. Many concurrency bugs are

only manifested under very rare timing, thus they are called Heisenbugs [48]. Due to their

non-deterministic nature, concurrency bugs are very hard to reason about. Concurrency bugs

have caused severe real world damage. A concurrency bug in Thera-25 claimed several lives in

the 1980s [70]. A concurrency bug in the power grid caused the 2003 Northeast blackout [112],

which is arguably the worst power outage in American history. Most recently, the Facebook

IPO was delayed for half an hour, which caused over 500 million dollars of loss for the trading

firms [133]. It was later confirmed that a concurrency bug caused the delay [55].

Problems caused by concurrency bugs are projected to get worse because we are in a multi-

core era [3]. Moore’s law came to an end for single-core CPUs [37]. Soon any serious software

developer has to develop parallel code, explicitly or implicitly, to exploit the parallelism of

the hardware [3]. However, concurrent programming is notoriously hard to get right [52, 82].

Thus, it is increasingly important to improve concurrent software reliability.

This dissertation proposes novel bug detection techniques to help developers find con-

currency bugs before the software is released. This dissertation also proposes novel failure

recovery technique to help end users so that the software can transparently recover from

the failures caused by concurrency bugs. The proposed bug detection technique and failure

recovery technique complement each other to make concurrent software more reliable.
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1.2 Traditional approaches to improving concurrent software

reliability

Bug detection and failure recovery are two main approaches to improving concurrent software

reliability. Bug detection aims at detecting bugs before the software is released. To locate the

bug is the first step to correct the buggy program. Only when a bug is reported to developers

can it be fixed and a more robust program can be deployed. Failure recovery focuses on

hardening the production run software. It is very common for undetected bugs to slip into

production run and cause failures. The goal of failure recovery is to mask the failures during

the production run. It serves as the last defense against the bugs.

1.2.1 Concurrency bug detection

Existing concurrency bug detection techniques focus on understanding the root cause (i.e.

buggy interleaving1) of the concurrency bugs and detecting the abnormal interleaving patterns.

Among them, data race detection and deadlock detection are the most studied ones. A data

race occurs when different threads simultaneously access the same memory location and at

least one of the accesses is a memory write. A deadlock occurs when two or more threads

block each other by holding a lock that is acquired by the other thread. In the past three

decades, much effort has been devoted to find such bugs. However, they still widely exist [34].

Atomicity violation and order violation concurrency bugs also widely exist. Atomicity

violation [40, 75, 120, 73] is caused by the violation of the desired serializability among

multiple memory accesses. Figure 1.1 illustrates an atomicity violation bug example. The

null assignment to the shared pointer gCurrentScript from thread 2 breaks the atomicity

of accessing the same pointer in thread 1, a null pointer dereference occurs and causes the

program to crash. Order violation [74] happens when the desired order of two (groups of)

memory accesses is flipped. Figure 1.2 illustrates an order violation bug example. The

initialization of global pointer mThd in thread 2 comes late and the dereference of this

uninitialized pointer in thread 1 causes program to crash.
1Interleaving refers to the thread execution sequence in this dissertation.
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1 // Thread 1
2 void LoadScript ( nsSpt *aspt ){
3 Lock(l);
4 gCurrentScript = aspt;
5 LaunchLoad (aspt );
6 UnLock (L);
7 }
8
9 void OnLoadComplete (){

10 /* call back function of LaunchLoad */
11 Lock(l);
12 gCurrentScript -> compile ();
13 UnLock (l);
14 }

1 // Thread 2
2
3
4
5
6
7 Lock(l);
8 gCurrentScript = NULL;
9 UnLock (l);

Figure 1.1: A real bug in the Mozilla application suite, slightly simplified for illustration.
When thread 2 violates the atomicity of thread 1’s accesses to gCurrentScript, the program
crashes.

1 // Thread 1
2 Get (){
3 ...
4 tmp= GetState (mThd );
5 }
6
7 GetState (THD *thd)
8 {
9 return (thd -> state &

10 THREAD_DETACHED );
11 }

1 // Thread 2
2 // mThd is shared
3 // between two threads ;
4 // it is 0 before
5 // initialized below .
6
7 InitThd (){
8
9 mThd =

10 CreateThd (..);
11 }

Figure 1.2: A real bug in the Mozilla XPCOM module. Program crashes when the order
between thread 2 initializing the global pointer mThd and thread 1 dereferencing the same
pointer is not maintained.

Many concurrency bug detection research projects yield exciting results [92, 111, 32, 40,

75, 73]. However, two problems remain. The first one is the high false positive rate. According

to a recently study, only 2% – 10% reported data races are true bugs and cause the program

to fail [89], which means the rest are benign bugs that deserve no special attention. Under

the pressure of releasing software on time and facing a long list of bug reports, developers

are reluctant to study each of them and fix the few true bugs. The other problem is high

false negative rate. Concurrency bugs are caused by many different types of interleaving

patterns. Bug detectors designed for one specific pattern will inevitably miss bugs caused

by other patterns. For example, many atomicity violation bugs, such as the example shown

in Figure 1.1, are not data races; many order violation bugs, such as the example shown in

Figure 1.2, are not atomicity violations; and so on. In addition, there are still many real-world
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concurrency bugs caused by interleaving patterns that are not targeted by any bug detectors

yet (Chapter 4 will provide such examples).

1.2.2 Failure avoidance/recovery

Despite much effort recently spent on concurrency bug detection, concurrency bugs do slip into

the production run. It is mainly because that program state of a multi-threaded program is

extremely large and it is prohibitively expensive to check all these states and find all bugs. As

a result, many concurrency bugs go undetected and may cause failures. Thus, it is important

to either dynamically avoid the failures or automatically allow the software to recover from

the failures.

Failure avoidance Traditional approaches focus on proactively restraining thread schedul-

ing to disable the interleavings that might lead to failures. Among them, atomicity violation

failure avoidance is the most studied [79, 78]. Such an approach instruments the program

and restrains accesses to the same memory locations from different threads, thus enforcing

atomicity. Similar to the traditional concurrency bug detection approaches, this kind of scheme

suffers from the false positive problem because the interleavings it deems questionable may not

be harmful. It suffers a runtime performance penalty because it requires orchestrating different

threads to follow some specific scheduling order. Avoiding all such benign interleavings incurs

a large program runtime overhead, while does not improve software reliability at all. To

reduce the performance penalty, one has to modify the OS or the hardware. Such a scheme

also suffers from the false negative problems in that it is very difficult to design a scheme that

can avoid all harmful interleaving patterns.

Failure recovery Another genre of tackling production run failure problem is via failure

recovery approaches. This kind of approach periodically checkpoints the whole program

memory state [105, 87, 117, 122]. Upon a failure, the program is rolled back to the most

recent checkpoint. One benefit of this approach is that it can allow programs to recover from

many types of concurrency bugs, as long as it can identify the failure symptoms. However, the

cost of rollback and re-execution is usually high, as it needs to checkpoint the whole memory
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state, which is both time-consuming and space-consuming; and rollback all the threads, which

effectively stalls the whole program. To reduce the cost, one also needs to modify the OS [105]

or the hardware [87], which makes it impractical for the software that run on commodity

systems.

1.3 Contributions

1.3.1 Principles behind this dissertation

This dissertation studies both concurrency bug detection and concurrency failure recovery

problems. It tackles these two problems by using a simple principle – effect-oriented analysis.

The lifecycle of a software bug consists of three parts [65]: fault, error and failure. We

have defined fault, error and failure in the Terminology section. In this dissertation, the terms

fault and bug are used interchangeably. In the example shown in Figure 1.1, fault is the

atomicity violation; when the null pointer is loaded, the fault is triggered and the program is

in an error state; in the end the program crashes (i.e., fails). Fault is the cause of a software

bug, error and failure are the effect of a software bug, a complete software bug life cycle is

depicted in Figure 1.3.

Fault	
   Error	
  
propagate 

Failure	
  
trigger 

Software bugs 
Hardware faults … 

Deviation from  
correct program state 

Visible to the users 

Figure 1.3: Bug life cycle: fault-error-failure

Existing research focuses on the root cause (fault) of concurrency bugs. It is shown that

there are many different types of causes for concurrency bugs, such as data races, atomicity

violations, order violations, and deadlocks. They are very different from the causes of sequential

bugs. Additionally, they are very difficult to understand. On the contrary, little research has

been done to understand the effect of a concurrency bug’s life cycle. Three key questions
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regarding the concurrency bug effect remained unanswered: (1) what kinds of errors are there,

(2) how does the failure manifest itself, and (3) how does an error propagate to a failure. This

dissertation first answers these three questions, then makes the observation that the effect of

concurrency bugs are much easier to understand, analyze, thus can be leveraged to solve bug

detection and failure recovery problems.

Overall, this dissertation makes three contributions:

1. A characteristics study that aims to understand the effect of concurrency bugs and

answer the above questions. The observations of this study will guide the other parts of

this dissertation.

2. Two concurrency-bug detection tools, ConMem and ConSeq, that conduct effect-oriented

bug detection, guided by the above characteristics study. These two tools complement

each other by handling two dominant types of errors caused by concurrency bugs. By

using the effect-oriented principle, ConMem and ConSeq are able to accurately detect

concurrency bugs of different root causes, regardless of data races, atomicity violations,

order violations, or other odd interleaving patterns. They can detect many real-world

concurrency bugs and discover concurrency bugs that were never reported before. And

they achieve 10 times lower false positive rate than the state of the art bug detection

technologies.

3. A failure recovery technique, named ConAir, that is able to help software recover from

a wide variety of unknown hidden concurrency bugs. ConAir also leverages the common

patterns of real-world concurrency bugs’ effect. It incurs negligible overhead, without

any hardware or OS modification.

The proposed concurrency bug detection technique and concurrency failure recovery

technique share the same design principle, which is supported by the characteristics study;

and complement each other to improve concurrent software reliability. The content of our

characteristics study, concurrency bug detection technique and concurrency failure recovery

technique are previewed in the following chapters.
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1.3.2 The characteristics of real-world concurrency bugs’ effects

As we will elaborate in Chapter 3, our characteristics study reveals that most concurrency

bugs have the following error propagation process (as shown in Figure 1.4): First, the error

is triggered by reading a bad shared variable value, which we will refer to as “critical read”.

The formal definition of critical read was given in the Terminology section. As an example, a

null pointer read in the examples shown in Figure 1.1 and Figure 1.2 is a critical read. Next,

error propagates for a short distance within one thread until the program fails. As discussed

in the Terminology section, we define error propagation process in concurrency bugs as the

propagation process from the critical read to the failure. In the end, program fails in the

same way as sequential program such as crashes due to memory errors, or assertion failures

due to semantic errors. We gave the definitions of memory error and semantic error in the

Terminology section.

Thread 2 

Thread 1 

Bug triggering Error propagation 
(intra-thread) 

Failure 

321

*gCurrentScript 
 thd->state 

Figure 1.4: Concurrency bug life cycle.

Three observations are made out of this error propagation process. They drive the design of

concurrency-bug detection technique and concurrency-bug failure recovery technique presented

in this dissertation:

Observation 1: The patterns of concurrency errors resemble those of sequential bugs’ errors,

including both memory errors and semantic errors. Furthermore, we have observed almost

all common patterns of memory errors, including null-pointer dereferences, dangling-pointer

dereferences, buffer overflows and uninitialized reads. This indicates that it is not difficult to

identify potential failure/error sites. For example, one can treat an assert call as the potential
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failure site for an assertion failure.

Observation 2: Error propagates within one thread, starting from the critical read and

ending at the failure site. This indicates that single-threaded analysis can be applied to

concurrency bug detection. In addition, to recover from concurrency-bug failures the program

often only needs to rollback one thread.

Observation 3: Error propagation distance is short. This indicates that even sophisticated

single-threaded analysis can be applied without scalability concerns. In addition, recovering

from concurrency-bug failures may not require a long rollback.

In a word, the observations indicate that we can start from the potential failure or error

sites of a program and leverage mature single-threaded analysis to the full-extent to tackle

the concurrency bug detection and failure recovery problem.

1.3.3 Effect-Oriented Concurrency-Bug Detection

The concurrency bug detection technique presented in this thesis consists of two pieces of work:

ConMem, which handles memory errors caused by concurrency bugs; and ConSeq, which

mainly handles semantic errors caused by concurrency bugs. ConSeq can also detect some

concurrency bugs that cause memory errors. For example, an uninitialized read, which is a

type of memory error, can lead to an assertion failure. Since ConSeq works from the potential

failure site (as discussed later in this chapter), it is able to identify a buggy interleaving that

can cause the assertion failure thus finds the same bug as ConMem does. Both ConMem

and ConSeq take an effect-oriented approach: start from potential failure/error sites (they

are structurally identifiable thanks to Obs1) of a program and detect concurrency bugs in a

backward fashion. Both of them leverage the findings that well-known single-threaded analysis

can be applied to facilitate the concurrency bug detection (thanks to the Obs2) and such

analysis is inexpensive (thanks to the Obs3).

ConMem ConMem is a toolset that starts from potential memory error sites (e.g., pointer

dereference) and conducts dynamic analysis to identify the buggy interleaving that leads to

the memory errors, such like null pointer dereferences, uninitialized reads, dangling pointers
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and buffer overflows. Such memory bugs usually cause severe failures (e.g., program crashes)

and they contribute to a significant portion of all concurrency bugs. There are 2 steps in

ConMem:

Step1 Structurally identify the potential critical reads (i.e., the superset of critical reads) for

memory errors in the program, including shared pointer dereferences, shared memory

reads, and shared buffer indexing.

Step2 After the potential critical reads are identified, ConMem explores which interleaving

causes the memory errors at the critical reads. For example, to find a null-pointer

deference error caused by a concurrency bug, ConMem does the following: it tries to

find a buggy interleaving that feeds the NULL value to a shared pointer. Once a buggy

interleaving is identified, ConMem has an additional component to insert artificial delays

at the corresponding places to automatically trigger the bug.

ConSeq ConSeq is a toolset that starts from potential failure sites (e.g., assertion failures),

and conducts intra-thread analysis to locate potential critical reads, and then identifies the

buggy interleaving that leads to such failures. Such bugs have explicit failure sites (e.g.,

assertion failure, error message display, etc) that can be structurally identified.

ConSeq conducts three steps to find such a bug.

Step 1 ConSeq locates potential failure sites.

Step 2 Starting from the failure sites, ConSeq analyzes the program backwards to locate the

potential critical reads.

Step 3 After the potential critical reads are identified, ConSeq searches for the buggy

interleaving that makes the critical reads get erroneous values and causes program to

fail. ConSeq conducts this step similar to ConMem.

Both ConMem and ConSeq achieve great results: for the set of real-world non-deadlock

concurrency bug benchmarks that we evaluated (10 for ConMem and 12 for ConSeq), the

result shows that both ConMem and ConSeq can find those bugs in the benchmark and
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moreover they can find bugs that were never reported. Also, they achieve 10 times lower false

positive rate than that of the state of the art race detector and atomicity violation detector,

while detecting many bugs that are missed by those tools.

Such a good result benefits from the effect-oriented design philosophy. ConMem/ConSeq

report the bugs that cause failures, thus they have much a smaller false positive problem.

ConMem/ConSeq report bugs regardless of their root cause, thus they have much a smaller

false negative problem compared to the existing bug detector that focuses on one specific type

of root cause.

Both tools incur at most 40 times runtime overhead, which is sufficiently low for the

in-house testing.

1.3.4 Featherweight concurrency-bug failure recovery

ConAir is a tool that transparently hardens software against failures caused by concurrency

bugs. It also leverages our three observations: (1) ConAir can identify potential failure sites

(such as the assert calls) caused by concurrency bugs in the same way as identify potential

failures caused by sequential bugs (implied by Obs1); (2) rolling back a single thread is

sufficient to recover from most concurrency-bug failures (implied by Obs2); (3) re-executing

a short code region (implied by Obs3) is sufficient to recover from many concurrency-bug

failures. ConAir workflow includes 3 steps:

Step 1 A static analysis component that automatically identifies potential failure sites.

Step 2 A static analysis component that automatically identifies the idempotent code regions2

around every failure site.

Step 3 A code-transformation component that inserts rollback-recovery code around the

identified idempotent regions.

ConAir also achieves great results. To evaluate Conair, we used 10 real-world concurrency

bugs, which represent different root causes and failure symptoms. The evaluation result shows
2More details about idempotent regions are presented in Chapter 5
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ConAir helps software survive all the failures caused by these bugs, while incurring negligible

run-time overhead (less than 1%) and short recovery time. ConAir can also help programs

recover from failures caused by unknown bugs. It guarantees that program semantics remain

unchanged and requires no change to operating systems or hardware.

Such a good result also benefits from the effect-oriented design philosophy and our key

observations: (1) ConAir can help harden a wide variety of potential failure sites by identifying

them as in the sequential programs. (2) ConAir incurs very little overhead because it leverages

the observations that re-executing a small code-region within the failure thread is sufficient to

survive many failures.

1.4 Dissertation Organization

Chapter 2 provides background and related work integral to this dissertation. Chapter 3

presents the characteristic study of concurrency bugs’ error propagation process. The findings

of this study are key to the design principle of this dissertation’s proposed techniques. Chapter

4 presents the design, implementation, and evaluation of ConMem and ConSeq. Chapter 5

presents the design, implementation, and evaluation of ConAir. Chapter 6 concludes.
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2 background and related work

This chapter presents the related work in the concurrent software reliability research literature.

Chapter 2.1 presents the related work of empirical studies of concurrency bugs. These works

are closely related to this dissertation’s Chapter 3. Chapter 2.2 presents related work of

concurrency bug detection. These works are closely related to this dissertation’s Chapter 4.

Chapter 2.3 presents related work of concurrency failure recovery and avoidance. These works

are closely related to this dissertation’s Chapter 5.

2.1 Empirical studies of concurrency bugs

Due to the lack of concurrency bug sources, only a few studies [38, 74] have been done, and

they mostly focus on the interleaving patterns. Most recently, interesting studies have been

conducted to evaluate how new synchronization primitives (such as Transactional Memory)

can be used in concurrent programs [109]. This dissertation complements previous studies by

looking at the error-propagation process of concurrency bugs.

2.2 Concurrency bug detection

2.2.1 Cause-oriented concurrency bug detection

Many techniques have been proposed to detect data races [111, 34, 136, 41], atomicity violations

[75, 19, 40, 73, 78, 60], and order violations [44, 76, 134, 116]. In general, ConMem/ConSeq

complement these tools by starting from effects rather than causes. ConMem/ConSeq have

a smaller false-positive rate than most traditional tools, and can effectively detect many

concurrency bugs caused by complicated interleavings that are difficult for traditional tools to

detect.

Recently, several invariant-based tools have been proposed for debugging concurrency

bugs with complicated causes, such as definition-use violations and order violations [116, 100].

These tools rely on observing many training runs to identify abnormal interleavings. As a
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result, insufficient training will cause false positives for them. Furthermore, they cannot report

bugs until the buggy interleavings are observed. On the contrary, ConMem/ConSeq requires

no training.

2.2.2 Interleaving testing

ConMem/ConSeq share the same goals of interleaving-testing tools [31, 85, 113, 99]. Such

tools all try to explore the interleaving space for each input provided by developers during

in-house testing. ConMem and ConSeq use synchronization analysis and perturbation-based

interleaving enforcement in common with some of these tools [99]. The difference between

this dissertation and previous tools is that this dissertation uses different methods to guide

its exploration of the interleaving space.

RaceFuzzer [113] and CTrigger [99] use race/atomicity-violation detection results to guide

their interleaving testing. ConMem and ConSeq can complement them by exposing concurrency

bugs that cannot be detected by race/atomicity detectors. In terms of performance, the high

false-positive rates of these bug-detection tools determine that RaceFuzzer and CTrigger will

need to test many more interleavings than ConMem and ConSeq for each input.

CHESS [85] guides its interleaving testing by bounding the number of preempting context

switches. Although this is an effective heuristic, CHESS still faces the challenge of balancing

coverage and performance, because its testing space increases exponentially in the number of

potential context-switch points during the whole execution. If it considers each shared memory

access to be a potential context-switch point, CHESS still cannot effectively explore the large

interleaving space of applications like MySQL, as shown in previous work [125]. Therefore,

CHESS often limits context switches only to synchronization points. This constraint will fail

to expose many concurrency bugs, including many bugs discussed in this paper. Recently,

people also proposed using randomized schedulers [11] to probabilistically expose concurrency

bugs. It works very well for simple concurrency bugs, such as many order-violation bugs, but

will be ineffective for many other bugs in large applications, such as atomicity-violations or

more complicated bugs.
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In general, ConMem/ConSeq and previous interleaving-testing tools complement each

other by looking at the interleaving space from different perspectives.

2.2.3 Concurrent program analysis and model checking

Much inspiring research has been conducted on static analysis and model checking of concurrent

programs. A recent study [20] inventively proposes leveraging race detection to improve data-

flow analysis in concurrent programs. The idea is promising; however, due to pointer-aliasing

and other issues, there are still as many as 40% of all pointer dereferences in the program

that cannot be proved to be safe in their experiments. ConMem/ConSeq have a completely

different design goal from static-analysis tools. ConMem/ConSeq do not aim to provide any

guarantee. However, as dynamic bug-detection tools, ConMem/Conseq naturally have the

advantage of no pointer-aliasing problem and can achieve better accuracy and scalability.

Model checking can also be used to validate certain properties in concurrent programs.

Significant progress has been made [45, 103, 43, 85] in model checking large concurrent

programs. However, the state-space-explosion problem still exists. We expect the effect-

oriented approach and the error-propagation characteristics studied in this dissertation will

help provide heuristics that can be used in future model checkers.

2.2.4 Input generation and symbolic execution

ConMem/ConSeq and other testing tools [31, 85, 113, 99] all rely on input test-case generation

to provide good test suites. Recently, symbolic execution [14, 138, 46, 115] has been used to

generate high-coverage inputs for unit testing. DDT [63] and ESD [138] further extended this

approach for concurrent programs. Using symbolic execution, DDT can detect synchronization

problems caused by untimely interrupts in device drivers, and ESD can generate bug-triggering

inputs and interleavings based on core-dumps from deadlock situations. These inspiring works

can potentially help all testing and diagnosis tools, including ConMem/ConSeq. However, due

to the scalability constraints of symbolic execution and theorem provers, previous work only

experimented with relatively small applications or relatively simple interleaving problems.
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2.3 Failure recovery and failure avoidance

2.3.1 Failure recovery

Software checkpoint and replay

Checkpoint and replay are useful techniques for failure recovery. Many techniques have

been proposed to checkpoint and replay multi-threaded software deterministically or non-

deterministically [2, 62, 54, 67]. To achieve good performance, these techniques often require

sophisticated operating-system support or hardware support. ConAir only rolls back an

idempotent region in one thread and does not require these sophisticated techniques.

Rollback recovery

Several rollback-recovery systems have been built before, such as Rx [105], ASSURE [117],

and Frost [122]. They all change operating systems to support whole program checkpoint and

rollback. Rx changes the program environment during reexecution to handle deterministic

bugs. ASSURE rolls back a failed software to an existing error-handling path. It is designed

to mitigate the impact of deterministic bugs, and cannot help software generate correct results

after the manifestation of a non-deterministic concurrency bug. Frost [122] proposes a novel

solution to survive data races. With OS support, it executes multiple replicas of the program

with complementary thread schedules at the same time. Periodically, it compares the states

of different replicas and tries to survive state divergence caused by data races. In general,

these systems all require checkpointing the whole program states and rolling back all threads

during a failure. Consequently, they all require sophisticated changes to operating systems.

Microreboot [15] is a recovery technique that reboots only application components, instead

of the whole program, when failures occur. To benefit from microreboot, the programmers

have to manually separate their systems into components (groups of objects) that can be

individually restarted, such as Enterprise Java Beans components in J2EE applications.

ConAir shares a common high-level philosophy with microreboot of not rolling back the

whole program. However, the similarity ends there. ConAir focuses on concurrency-bug
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failure recovery. It works on any C/C++ multi-threaded software without manual changes. It

automatically identifies reexecution points and conducts automated code transformation.

Apart from rollback recovery, a recent work studies the phenomenon that some software is

able to automatically recover from state corruption, because they overwrite the corrupted

states with new input data. This type of software is called self-stabilizing programs [33]. To

some extent, ConAir can transform a multi-threaded program to become self-stabilizing.

Idempotency

While the idea of leveraging idempotency for recovery is not new [25, 27, 39, 81, 50, 24, 61, 26,

107], ConAir is the first to apply it towards the problem of recovery from concurrency bugs.

Additionally, most previous work on idempotency has assumed hardware support for recovery

with a focus on hardware exceptions [25, 81, 50], hardware faults [39, 24], and hardware

mis-speculation [61]. ConAir requires no hardware support. While the general paradigm of

idempotent processing [27], which allows programs to be executed entirely as sequences of

idempotent regions, does not strictly require hardware support to enable various features,

such technique does not work for general multi-threaded programs. This technique allows an

idempotent region to store to shared variables. Such a region cannot be considered idempotent

in the presence of data races and hence their algorithm cannot be used. Instead of splitting

the entire program into idempotent regions, ConAir only identifies idempotent regions that

end at potential concurrency-bug failure sites. This focused approach allows ConAir to achieve

negligible overhead (<1%), while previous work could incur more than 10% overhead [27].

2.3.2 Failure avoidance

Run-time failure avoidance has also been studied for concurrency bugs. Dimmunix [59] learns

lessons from previous deadlocks to avoid future deadlocks. Compared to ConAir, Dimmunix

focuses on a specific root cause (i.e. deadlocks), where ConAir works for bugs of many different

root causes. Atom-Aid [79] and PSet [134] provide ways to survive concurrency bugs by

prohibiting certain patterns of interleavings at run-time through hardware support, whereas
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ConAir works directly on commodity hardware. Aviso [77] is a cooperative approach to avoiding

failures caused by concurrency bugs. Aviso requires a much more controlled environment

(e.g., many copies of deployed software, centralized failure information collection/distribution

server, etc) and incurs a relatively large runtime overhead (up to 30%).

Deterministic execution [28, 72, 4, 7, 96, 22] pushes failure recovery to an extreme.

Software-only tools like Grace [8] and Kendo [97] achieve similar goals for certain types of

multi-threaded programs at run-time. This promising approach still faces challenges, such

as overhead, integration with system non-determinism, language design, etc. In general,

these tools address different problems from ConAir. Even inside a deterministic run time,

concurrency bugs can still occur and require recovery.
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3 characteristics study of concurrency bug life cycle

3.1 Overview

3.1.1 Motivation

Previous work focuses on understanding the interleaving patterns of concurrency bugs (aka the

root cause of concurrency bugs). It turns out the interleaving patterns are very hard to reason

about. On the contrary, very little work has been done to study the effect of concurrency

bugs.

This dissertation is the first work, to our best knowledge, that studies the error-propagation

process of concurrency bugs’ life cycle. The findings of this study can help both concurrency

bug detection and failure recovery.

3.1.2 Methodology

We manually studied a set of 70 non-deadlock concurrency bugs, collected in a previous study

[74]. All of these 70 bugs are reported by users and fixed by developers from four widely used

C/C++ open-source applications: Apache HTTP server, MySQL database server, Mozilla

web browser, and OpenOffice office tool-kits. These bugs are collected by previous researchers

through random sampling among all fixed bugs in the bug databases. We choose to focus on

non-deadlock concurrency bugs, because deadlocks have much more regular effects and are

better understood and addressed than non-deadlock bugs. Specifically, we have 40 bugs from

Mozilla, 15 from MySQL, 10 from Apache, and 5 from OpenOffice.

3.2 Background and terminology

Concurrency bug life-cycle A concurrent program’s execution is a mix of inter-thread

communication and intra-thread calculation. Consequently, in rough terms the life-cycle of

concurrency bugs consists of three phases: triggering phase, propagation phase and the failure

phase. We can better understand these three phases by looking at a real-world bug example
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in Mozilla. This bug is depicted in Figure 3.1. In this example, there are two shared variables

– InProgress and URL . InProgress is a flag that is true when the web browser has something

to work on. URL is a pointer, which points to the website that the browser is working on.

Thus when InProgress is true, URL should be a non-null pointer. When InProgress is false,

URL should be a null pointer. These two variables are correlated and need to be accessed

in the same atomic region. However this atomicity is not enforced. In a buggy interleaving,

thread 2 can see InProgress be true but URL be a null pointer, thus this assertion fails.

// Thread 1
S1: runningURL = NULL;

S2: InProgress = FALSE ;

// Thread 2

S3: if( InProgress )
isBusy = TRUE;

if( isBusy )
S4: NS_ASSERT ( runningURL );

Figure 3.1: A concurrency bug in Mozilla

In this example, the corresponding three phases are as shown in Figure 3.2.

Figure 3.2: Error propagation in a concurrency bug.

Phase 1 is the triggering phase (aka the root cause phase). A concurrency bug is triggered

by a specific execution order among a set of shared memory accesses (referred to as a buggy

interleaving).

Phase 2 is the propagation phase. It starts with critical reads that fetch problematic

values from shared memory locations as a result of the buggy interleaving. The effect

of these values begins to propagate, usually within one thread, through data and control

dependences. Note that the corresponding thread may read many shared variables during

the error-propagation phase, but only those that impact the failure through control/data
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dependences are considered to be ‘critical’. In this dissertation, we measure the distance

of error propagation through data- or control-dependence edges. During this phase, some

variable values begin to deviate from the correct program state. These are called errors. Note

that races and atomicity violations do not belong to our definition of an error.

Phase 3 is the failure phase. Propagation leads to more severe errors, and finally to

an error with an externally visible symptom (i.e., a failure) such as a crash or a hung

process. To simplify the discussion, the rest of the dissertation will refer to instructions where

failures/errors occur as failure/error sites. We refer to the same set of instructions as

potential error/failure sites during correct runs, because they indicate sites of errors that

might occur in a different interleaving.

Phase 1 is the cause part of a concurrency bug life’s cycle. It always involves multiple

threads. Phase 2 and Phase 3 are the effect part of a concurrency bug’s life cycle. Usually

only the failure thread is involved in phase 2 and phase 3. Critical reads separate the life-cycle

of concurrency bugs to two stages: concurrent stage (phase 1) and sequential stage (phase 2

and phase 3). Figure 3.3 depicts these three phases in a concurrency bug’s life cycle.

Understanding the life-cycle of a concurrency bug is important for both bug detection and

failure recovery. Because the goal of concurrency bug detection is to find an interleaving that

can lead the program to an error state and cause program to fail; the goal of concurrency

failure recovery it is to rollback and re-execute a program in a correct interleaving that will

not lead to an error/failure.

3.3 Characteristics study and the findings

In this chapter, we will try to answer several research questions regarding three aspects of

concurrency bugs: errors caused by concurrency bugs, failures caused by concurrency bugs,

and the error propagation of concurrency bugs.

3.3.1 Errors caused by concurrency bugs

Question 1: What types of errors are caused by concurrency bugs?
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Figure 3.3: The common three-phase error-propagation process for most concurrency bugs.

Error is the starting point of the effect part of a concurrency bug’s life-cycle. Is error

caused by concurrency bug similar to those caused by sequential bugs? If so, we then could

easily recognize them by leveraging techniques that are applicable to the sequential bugs.

Little previous research literature surveyed this question.

Our characteristics study finds that errors caused by concurrency bugs can be categorized

as two classes: memory errors and semantic errors. Table 3.1 shows the breakdown of each

type of errors. All concurrency bugs in the benchmarks cause errors of these two types:

Concurrency memory bugs are concurrency bugs that lead to memory errors (see the

Terminology section for the definition of memory errors). Concurrency memory errors occur

when the buggy intereleaving changes the execution order of a set of shared memory operations

and these operations directly instantiate a memory bug. Figure 3.4 illustrates such an example:

a buggy interleaving can cause thread 1 to dereference a shared pointer, which was already

nullified by another thread. Further study shows that there are four types of such concurrency

memory bugs: NULL pointer dereferences, uninitialized reads, dangling pointers and buffer
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overflows. Table 3.2 shows the number of each concurrency memory error type in our

benchmarks.

// Thread 1
S1:if(thd -> proc_info ){

S2: fputs (thd ->proc_info , ...);

}

// Thread 2

S3: thd -> proc_info = NULL;

Figure 3.4: A concurrency memory bug example

concurrency memory errors concurrency semantic errors
Mozilla 21 19
MySQL 5 10
Apache 6 4
OpenOffice 2 3
ALL 34 36

Table 3.1: Breakdown of concurrency memory bugs and concurrency semantics bugs

NULL UnInit Dangling Overflow
Mozilla 9 0 8 4
MySQL 3 1 1 0
Apache 2 0 3 1
OpenOffi 1 1 0 0
ALL 15 2 12 5

Table 3.2: Breakdown of concurrency memory errors

Concurrency semantics bugs cause semantic errors (see the Terminology section for the

definition of semantic errors). Concurrency semantic errors occur when the buggy intereleaving

causes new and unexpected program states that are not handled by the program. The failures

caused by semantic bugs usually are assertion failures, error messages, wrong outputs and

hangs. Figure 3.1 shows such a bug example. As we can see, the buggy interleaving does not

immediately lead to a failure; rather it propagates to the failure within a few steps (i.e., in

thread 2, check InProgress->set isBusy->check isBusy->assert on runningURL).

3.3.2 Failures caused by concurrency bugs

Question 2: What types of failures are caused by concurrency bugs?
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Failure is the ending point of the effect of a concurrency bug’s life-cycle. Similar to the

motivation of studying errors caused by concurrency bugs, we want to investigate what kind

of failures are caused by concurrency bugs.

Based on bugs’ failure symptoms, we categorize the failure types as crash, hang, and

wrong functionalities. Table 3.3 gives the number of each failure type in our benchmarks.

Crash Hang Wrong Func. Total
Mozilla 24 4 12 40
MySQL 5 0 10 15
Apache 7 2 1 10
OpenOffice 1 1 3 5
ALL 37 7 26 70

Table 3.3: Failure types of concurrency bugs

Further study leads to two additional findings: (1) Crashes are mostly related to the

memory errors, in fact 31 out of 37 crash bugs cause memory errors. The rest crashes are

usually caused by assertion violation. (2) The wrong function bugs include three common

types: wrong outputs, error messages and infinite loops. As we can see, all these failure types

are similar to those caused by sequential bugs.

Finding 1: The patterns of concurrency errors resemble those of sequential

bugs’ errors, including both memory errors and semantic errors. Furthermore,

we have observed almost all common patterns of memory errors, including null-pointer

dereferences, dangling-pointer dereferences, buffer overflows and uninitialized reads. This

indicates for concurrency bug detection and failure recovery, we can identify the (potential)

error or failure sites just as how we identify them in a sequential program.

3.3.3 Error propagation process

Question 3: Do concurrency-bug errors propagate and fail in one thread?

After answering the questions regarding the starting and ending points of effect part of

concurrency bug life cycle, we need to further study the error propagation process itself to

examine how complicated it is. We raise Question 3 because we want to understand whether
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the error propagation process involves multiple threads and is hard to reason about, just like

the root cause of concurrency bugs.

In our study, we find in 66 out of the 70 examined bugs, error propagates and triggers

failures in one thread. The only exceptions are four MySQL bugs that cause inconsistent

behavior between two threads: the thread that completes a database operation first finishes

its logging second. The behavior of each thread is correct. Only when comparing them with

each other would we notice the misbehavior – the global log puts them in a different order

from what really happened. For most bugs, propagation starts with multiple threads and

ends with one thread, as shown in Figure 3.3.

Question 4: Can software recover from a concurrency bug by rolling back the failure thread?

After studying Question 3, we know that most concurrency bugs propagate and fail in one

thread. Therefore, we ask whether rolling back this single failure thread can help software

recover from failures caused by these bugs. We study atomicity violations, order violations,

and deadlock bugs one by one to answer this question.

Recovering from atomicity-violation bugs Atomicity violations contribute to about 70%

of real-world non-deadlock bugs [35]. They occur when two code regions R1 and R2 from

two threads interleave unserializably, which violates the expected atomicity of one or both

regions. Clearly, if we can rollback and reexecute any one involved thread, the execution

of R1 and R2 will be serialized and the failure will be survived. Therefore, to understand

whether single-threaded recovery works, we need to know whether the failing thread is involved

in the unserializable interleaving. We checked all 50 real-world atomicity-violation bugs in

our benchmark set. About 92% of them cause failures in a thread that is involved in the

unserializable interleaving. Re-executing one of the two threads will effectively make it happen

after the other thread, thus code region R1 and R2 are executed atomically with respect to

each other. This implies that failures caused by atomicity violation can potentially be survived

by single-threaded recovery. The above observation can be better understood through bug

examples shown in Figure 3.5. This figure depicts the most common types of real-world

atomicity violations [75]. As we can see, an atomicity violation usually causes an involved
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/* Thread 1*/
log= CLOSE ;
log=OPEN;

/* Thread 2*/
if(log != OPEN)

{// output failure }

(a) Violating WAW atomicity (Roll-
back Thread 2 to recover)

/* Thread 1*/
ptr=aptr;
tmp =* ptr;

/* Thread 2*/

ptr=NULL;

(b) Violating RAW atomic-
ity (Rollback Thread 1 to
recover)

/* Thread 1*/
if(ptr)

fputs (ptr );

/* Thread 2*/

ptr=NULL;

(c) Violating RAR atomicity
(Rollback Thd 1 to recover)

/* Thread 1*/
cnt += deposit1 ;
printf (" Balance =%d",cnt );

/* Thread 2*/

cnt += deposit2 ;

(d) Violating WAR atomicity (Rollback
Thread 1 to recover)

Figure 3.5: Most failures caused by atomicity violations can be recovered by rolling back
one thread, the failing thread (Different checkpoint/sandbox techniques may be needed to
guarantee correctness.).

thread to read an unexpected value from a shared variable, such as log in Figure 3.5a, ptr in

Figure 3.5b and Figure 3.5c, and cnt in Figure 3.5d. This incorrect value quickly leads to a

failure in that thread. Clearly, rolling back and reexecuting that thread can recover from the

failure.

Recovering from order-violation bugs Order violations contribute to nearly 30% of real-

world non-deadlock concurrency bugs [35]. They occur when an operation A is expected to

execute before an operation B, but instead executes after B due to lack of synchronization.

Clearly, if we can rollback and reexecute the thread of B, the occurrence of B will be effectively

delayed and the failure will be recovered. Since single-threaded recovery always rolls back

the failing thread, we need to understand whether the thread of B is the failing thread. We

checked all 20 real-world order-violation bugs in our benchmark set. We found that about

50% of order-violation bugs lead to failures in the thread of B, and hence can be recovered

by the single-threaded recovery. Failures of the other bugs manifest in the thread of A and

occasionally some other threads. To better understand this observation, one can consider

a common type of order-violation bugs: thread tB reads a shared-variable V before V is

initialized by thread tA. In this case, the uninitialized value in V usually leads to a failure in

tB. By rolling back tB, we can postpone the read of V until V is initialized.

Recovering from deadlock bugs Deadlock contributes to about 40% of all concurrency bugs

[74]. Our bug benchmark set does not contain deadlocks. In fact, every deadlock bug fails in
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more than one thread. However, recovering from deadlock bugs only requires rolling back one

thread. That is because when a deadlock occurs, making any thread release a resource will

break the circular dependence and remove the deadlock.

In summary, single-thread rollback-recovery can help recover from all deadlocks, almost

all atomicity violations (46 among the 50 studied), and half of the order violations (10 among

the 20 studied).

Finding 2: Error usually propagates within a thread. Rolling back one thread

can help recover from many concurrency bug failures. This finding implies that we

can apply many mature single-threaded techniques to concurrency bug detection and failure

recovery problem.

Question 5: How long is the error propagation process?

From finding 1 and finding 2, we know that we can start from the potential error or

failure sites and apply single-threaded bug detection or failure recovery technique. To further

understand how costly these techniques may be and how much overhead they may incur, we

further study the length of the error propagation process. The longer the error propagation

process is, the higher the cost is; and vice versa.

For 59 out of the 70 bugs, after the critical read, failure occurs before the current

function exits. This trend is consistent across different applications and different types of

failures. Of course, the distance is also frequently more than one data/control dependence

step. The rationale behind this observation is that there are usually operations within a few

dependence steps that have the potential to cause an internal error to be visible externally.

These include pointer operations, I/Os, and sanity checks inserted by programmers. This

observation about concurrency bugs is consistent with previous observations about other types

of software/system defects [49, 71] that have guided previous work on failure recovery [105]

and software replay [101].

Finding 3: Error propagation distance is short. This finding implies the single-

threaded analysis is not going to be too expensive for bug detection and re-executing a short

code region may survive many failures.
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3.4 Summary

3.4.1 Implication for concurrency bug detection

Traditional concurrency bug detection approaches solve the problem by looking forward

along the concurrency bug’s lifecycle – they focus on the complicated root cause and analyze

complicated interleaving patterns to find the abnormal one. The detected abnormal interleaving

may or may not be related to the critical read, thus may or may not cause a program to fail.

The characteristics study suggests that one can take a backward approach, specifically, we

can start from identifying potential failure sites or error sites, whichever is easier. Thanks

to our finding 1, it is easy to do, e.g., find all asserts or pointer dereferences. Then we can

use sequential static analysis to locate the potential critical reads – because of finding 2 and

finding 3, we do not have to analyze backwards very far in the same thread, thus this analysis

is cheap. We then can use dynamic analysis to monitor potential critical reads and other

related operations in the program run to check which interleaving might lead to wrong values

at critical reads. In this way, the false positive is low, because when we report a bug, it is a

bug that can cause program to fail. The false negative is also low, because we report bugs

regardless of their root cause, on the contrary, existing bug detector is designed for one specific

root cause.

3.4.2 Implication for concurrency bug failure recovery

We can first identify potential failures sites in a program, this is easy because of finding 1.

Finding 2 implies that single-threaded rollback can allow programs to recover from most

concurrency bug failures. Finding 3 implies that the checkpoint can be lightweight. In fact,

we can leverage this observation and take the steps further so that no checkpoint is needed

(details will be discussed in Chapter 5).

The following two chapters are based on the above implications and present our bug

detection and failure recovery work in detail.
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4 effect-oriented concurrency-bug detection

As discussed in Chapter 1, concurrency bugs cause severe damages in the real world. Effective

approaches to detecting the concurrency bugs before the software is released are critical to

concurrent software reliability. Existing techniques for detecting concurrency bugs focus on

detecting the abnormal interleaving patterns (aka root causes) of concurrency bugs. Such

techniques have two problems: false positives (reported bugs may not lead to any failure) and

false negatives (bug detector designed for one specific interleaving pattern may not work for

another).

This chapter will present ConMem and ConSeq, two new concurrency bug detection

techniques, that provide a novel solution to concurrency bug detection problem. Guided by

previous characteristics study of real-world concurrency bug life cycle (Chapter 3), ConMem

and ConSeq share the same design philosophy and take the effect-oriented approach: they

start from potential error or failure sites and detect concurrency bugs that can lead to those

errors or failures. Such an approach differentiates ConMem and ConSeq from all the existing

concurrency bug detection techniques.

ConMem detects memory errors caused by concurrency bugs. ConSeq (mainly) detects

semantic errors caused by concurrency bugs. Together, they are able to find many real-world

concurrency bugs of different root causes and severe failure symptoms. Some of the detected

bugs have never been reported before.

4.1 Introduction

4.1.1 Motivation

A fundamental challenge in concurrency-bug detection is the enormous size of concurrent

programs’ interleaving space (exponential in the execution length for each input). Thoroughly

checking this large space is crucial because concurrency bugs are only manifested under certain

interleavings. Unfortunately, due to limited computational resources, software-development
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teams can only afford to check a small part of this large space. Determining which part of the

interleaving space should be checked is a critical open problem.

To address the above challenge, previous tools for concurrency bug detection and testing

focus on certain interleaving patterns that are prone to concurrency bugs. Widely used

patterns include data races (un-synchronized conflicting accesses to shared variables) [93, 111,

136, 41], atomicity violations (an interleaving that makes certain code regions unserializable)

[40, 130, 75, 17, 42, 110].

Although great progress has been made, previous work still leaves some issues unsolved.

First, false negatives (are there other patterns of buggy interleavings?). Many patterns

have been proposed, while common real-world bugs that cannot be covered by traditional

patterns keep emerging, such as multi-variable concurrency bugs [73, 76, 60] and order

violations [74, 134], as shown in Figure 4.1.

Figure 4.1: Bugs caused by various types of interleavings. (Solid and dotted arrows represent
incorrect and correct interleavings, respectively. *: In (c), S1→S2→S3→S4 is a correct and
feasible execution order, because InProgress could be set to TRUE and runningURL to a
non-NULL URL string in between the execution of S2 and S3 by code not shown in the
figure.)

Second, a high false-positive rate could cause programmers to give up on using a tool.

Previous research [89, 12] observes that only approximately 2–10% of real data races are

harmful; a similar trend is also seen among unserializable interleavings [99]. Interleavings

are complicated to reason about. It is usually difficult for developers to judge whether a

suspicious-looking interleaving is truly a bug, and if so, what type of failure symptoms it

can cause. Some commercial bug-detection tools choose not to flag concurrency errors solely

because the reported buggy interleavings are too difficult to explain to developers [9]!
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Benign Minor issues Wrong output Hangs Crashes … 

Atomicity Violations 

Order Violations 

Data Races 
… 

Causes 

Failures 

Scope of existing techniques 

Scope of this dissertation 

(a) Cause vs Failure

Benign Minor issues Memory errors Semantic Errors … 

Atomicity Violations 

Order Violations 

Data Races 
… 

Causes 

Errors 

Scope of existing techniques 

Scope of this dissertation 

(b) Cause vs Error

Figure 4.2: A conceptual two-dimensional depiction of approaches to finding flaws in concurrent
programs

Finally, not all bugs represent equally harmful end effects, yet the different effects of

different bugs are not considered during existing bug-detection processes. Recall that our

characteristics study in Chapter 3 implies there is no correlation between bug root causes and

their failure symptoms.

Figure 4.2 depicts the limitations of previous work (and our opportunities) by projecting

a concurrent program’s interleavings onto a two-dimensional space. The x-axis of Figure 4.2a

represents the failure symptoms of concurrency bugs, the x-axis of Figure 4.2b represents the

errors of concurrency bugs. The y-axis of Figure 4.2a and Figure 4.2b represent different

patterns of interleavings (i.e., faults ). Note that this is only a conceptual projection. The

different categories along the y-axis can actually overlap; some horizontal stripes may have

larger portions of benign effects than others.

Previous work has considered different horizontal stripes of the above 2-D space. These

horizontal approaches inevitably suffer from the following limitations.

First, lack of good coverage for certain type of failures. Developers naturally want

to know about all (or most) interleavings that can cause certain classes of negative effects,

such as software crashes. Unfortunately, interleavings that cause certain effects span vertically

in the space and are difficult to capture adequately through a horizontal approach.

Second, a large number of false positives. This is observed in the real world [12, 89, 99],

and is reflected in Figure 4.2, where each horizontal stripe inevitably covers interleavings with

benign effects.
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We can deepen our understanding of the false positive and severity issues by connecting

our findings of cause–effect chains in concurrent programs from our characteristics study in

Chapter 3 with Figure 4.2. Interleaving patterns like data races and atomicity violations

are only the start of potential error propagation chains. Some interleaving patterns do not

propagate to any incorrect states (e.g., not every piece of code is intended to be atomic).

For those that do cause incorrect states, their intermediate errors might be masked during

further propagation (e.g., due to redundant paths [89]), or end up as a minor issue hardly

visible to users. In many such cases, data races or unserializable interleavings are intentionally

left there by developers for better performance (e.g., conflicting accesses to a performance

counter [136]).

The false-positive issue has already caught the attention of many researchers. Various

innovative approaches, such as training [75], automated testing [99, 113] and heuristics-based

ranking, have been proposed to mitigate this problem. However, without changing the

underlying horizontal mechanism, these proposals still require significant manual effort for

specification writing and test-oracle design, as well as a large amount of computational

resources to perform many rounds of testing or training.

In summary, this chapter presents a bug-detection approach that focuses on certain

vertical stripes of the interleaving space, which cause severe failures, that spans across all

kinds of (horizontal) interleaving patterns. This vertical approach will complement existing

bug detectors and provide better guidance to expose severe concurrency bugs.

4.1.2 Highlights

Different from existing concurrency bug detection approaches, the approach proposed in this

chapter uses potential software errors/failures to guide its search of the interleaving space. It

uses an effect-oriented approach to bug detection, which starts from this observation1:

Concurrency and sequential bugs have drastically different causes but have mostly

similar effects.
1All the observations and characteristics mentioned here were discussed in more detail in Chapter 3.
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For example, the three bugs in Figure 4.1 all start with complicated interleavings, which

cannot be detected by many existing detectors [73], and end up as common errors and failures

similar to sequential bugs. The bug in Figure 4.1(a) is caused by an atomicity violation and

cannot be detected by race detectors [75]; it causes a NULL-pointer dereference, and crashes

in thread 1. The bug in Figure 4.1(b) is caused by an order violation: S2 could unexpectedly

execute before S1, in which case the FALSE value of pending would be overwritten too early.

This problem cannot be fixed by locks, and cannot be correctly detected by atomicity-violation

or race detectors [74]. It causes an infinite loop in thread 1. The bug in Figure 4.1(c) has

a different cause from the above two bugs. Since S1→S2→S3→S4 and S3→S4→S1→S2 are

both correct interleavings, the specific order between S1’s and S4’s accesses to runningUrl

is not responsible for the software failure. Similarly, the specific order between S2 and S3

does not matter. It is the unsynchronized accesses to two correlated shared variables that

lead to an assertion failure. Sophisticated multi-variable concurrency-bug detectors [73] were

designed to detect this type of bug.

Recall our characteristics study summarizes the following observations on the error prop-

agation of most concurrency bugs: After being triggered by an incorrect execution order

across multiple threads, a concurrency bug usually propagates in one thread through a short

data/control-dependence chain, similar to one for a sequential bug [49]. The erroneous internal

state is propagated until an externally visible failure occurs. At the end, concurrency and

sequential bugs are almost indistinguishable: no matter what the cause, a crash is often

preceded by a thread touching an invalid memory location or violating an assertion; a hung

thread is often caused by an infinite loop; incorrect outputs are emitted by one thread, etc.

The only major class of concurrency errors that have substantially different characteristics is

deadlocks, which fortunately have been thoroughly studied [59, 124].

Given the above observation and the trouble presented by the enormous space of inter-

leavings, we naturally ask, “How can we leverage the sequential aspects of concurrency bugs?

Can we reverse the bug-propagation process and start bug detection from the potential points

of failure?” This approach, if doable, has the potential to leverage common error-propagation
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patterns shared between concurrency and sequential bugs:

• In terms of false positives, the questions ‘is this a bug?’ and ‘how harmful is this bug?’

are easier to answer with this technique, because causing a failure is the criterion used

for deciding whether or not to report a bug.

• In terms of false negatives, it can provide a nice complement to existing cause/interleaving-

oriented detectors, because what this approach detects is not limited to any specific

interleaving pattern.

• The bug reports are likely to be more accessible to developers who are familiar with

the effects/symptoms of sequential bugs. Moreover, developers can now contribute to

the bug-detection process by writing per-thread consistency checks, and by specifying

which potential failures are worth more attention.

The effect-oriented approach to bug detection presents many challenges. Backward analysis

might be straightforward for failure replay and diagnosis [2, 138, 29, 125, 101] when the failure

has already occurred. However, it is much more difficult for bug-detection and testing, where

we need to identify potential points of bugs and failures. The problem we face is more similar

to proving whether a specific property in a concurrent program could be violated. This is

known to be a hard problem in software verification, even when attempted on small programs,

and explains why little work has been done in this direction.

In this dissertation, we propose a general framework that leverages the findings in the

characteristics study presented in Chapter 3 and takes the effect-oriented approach. There are

three major steps in this framework and work backwards along the life-cycle of a concurrency

bug life-cycle. Step 1, identifying potential error/failure site. According to our characteristics

study, such potential error or failure sites are similar to those in the sequential program and

easy to identify. Step 2, identifying critical reads. According to our characteristics study, the

distance from the critical reads to the failure sites are short, thus the search is feasible. Step 3,

identifying suspicious interleavings. We use dynamic analysis to explore the interleaving space

to narrow down the interleavings that cause critical reads to read wrong values. In addition,

an optional bug exposing and validation step is provided to the developers to further prune
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out the false positives and reliably trigger the bug. Figure 4.3 illustrates the work-flow of this

framework along the error propagation process of concurrency bugs. Traditional approach

takes a forward approach which starts from the faults of the concurrency bugs, whereas this

dissertation takes a backward approach which starts from the potential error/failure sites.

Thread 2 

Thread 1 

Step 1 Step 2 

Step 3 
1 2 3 

Bug triggering by  
Inter-thread interleaving Error propagation  

by intra-thread  
data/control flow Failure in 

one thread 

? propagation phase 
shared memory access 
error/failure 

interleaving 
Intra-thread flow 

Figure 4.3: Effect-oriented concurrency bug detection framework workflow

Based on this general framework, two tools – ConMem and ConSeq – are instantiated.

ConMem detects concurrency memory bugs and ConSeq (mainly) detects concurrency se-

mantic bugs. Concurrency memory bugs and concurrency semantic bugs have different error

propagation patterns, thus they require different detection techniques:

Per concurrency memory bugs’ definition (Chapter 3.3.1), the critical reads and the

potential memory error sites overlap and the error propagation distance is either 0 or 12. To

identify the critical reads, one can just identify potential memory error sites. Such sites can

be structurally identified in a program, e.g., shared pointer dereference and shared buffer

indexing. In comparison, concurrency semantic bugs’ critical reads do not overlap with

anything structurally identifiable. However, the failures caused by concurrency semantic

bugs are structurally identifiable, as they are assert calls, error message display functions,
2For null pointer, dangling pointer and buffer overflow bugs, the error propagation distance is 1; for

uninitialized read bugs, the distance is 0, as we treat the uninitialized memory reads as the potential
error/failure sites.
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output functions and the loop back-edges. Thanks to our characteristics study that the error

propagation distance is short, it is feasible to locate concurrency semantic bugs’ critical reads

by conducting backward program slicing from the potential failure sites.

After the critical reads are identified, ConMem and ConSeq follow the similar steps to

identify and expose the buggy interleaving. Table 4.1 summarizes what types of errors and

failures each tool detects and the error propagation distance each tool allows.

Tool Error type Failure type Error propagation distance

ConMem

null pointer dereferences

crash 0 or 1uninitialized reads
dangling pointers
buffer overflows

ConSeq (mainly) semantic errors

assertion failures
wrong outputs Configurable,
error messages currently set as 4
hangs

Table 4.1: The errors, failures, and error propagation distance handled by ConMem and
ConSeq

In our evaluation, we show that it is possible to apply the proposed techniques to large,

real-world C/C++ programs (with millions of lines of source code and object files tens of

megabytes long) and find the (unknown) bugs. In the following, Chapter 4.2 presents the

details of ConMem. Chapter 4.3 presents the details of ConSeq. Chapter 4.4 concludes

effect-oriented concurrency bug detection.

4.2 ConMem

4.2.1 Overview

ConMem detects concurrency bugs that cause memory errors. According to our characteristics

study in Chapter 3, there are four major types of concurrency memory errors (concurrency

memory errors are memory errors caused by concurrency bugs) – null pointer dereferences,

uninitialized reads, dangling pointers, and buffer overflows. ConMem includes four dynamic

bug-detection modules that are responsible for detecting each of those four types of memory

bugs: Con-NULL, Con-UnInit, Con-Dangling, and Con-Overflow bugs, respectively. The

design of ConMem is guided by the findings of our characteristics study, and follows the
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effect-oriented design principle. Instead of interleaving-oriented, ConMem tries not to analyze

an interleaving pattern unless it is related to concurrency-memory errors. Moreover, ConMem

does not limit itself to any specific interleaving pattern.

ConMem also has following design goals: (1)Predictive bug detection. ConMem bug

detection is not limited to the monitored interleaving. Instead, it aims to report concurrency

bugs that could occur under future interleavings. This property is critical due to concurrent

programs’ non-determinism. (2) Balance between analysis accuracy and complexity. Because

the optional validation step can help prune out false positives, ConMem has the luxury of

trading accuracy for simplicity, when necessary.

To follow the design principle and achieve the design goals, ConMem dynamically and

predicatively detects concurrency-memory errors in two steps.

First, it identifies basic ingredients of concurrency-memory errors from a monitored program

execution. The basic ingredients are memory operations, such as a pointer dereference, a NULL

assignment, a buffer deallocation, etc. Their existence is necessary to a concurrency-memory

error and is (fortunately) usually insensitive to interleavings. They will be detected by the

memory checking part of ConMem.

Second, it analyzes whether special timing conditions can be satisfied among those basic

ingredients during future execution. Special timing, such as de-allocating a memory object

before another thread accesses it, can turn a set of memory operations into a true bug. Whether

a timing condition can be satisfied in future interleavings depends on the synchronization

operations in the program. The synchronization-analysis part of ConMem is responsible for

making this decision and reporting bugs.

A summary of the ingredient-and-timing conditions for each sub-type of concurrency-

memory error is shown in Table 4.2. The following chapters will elaborate on how to detect

each sub-type of concurrency-memory error.
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Error Conditions Can synchronization avoid the error?
Basic Ingredients Timing Condition Order Synch.* Mutual Exclusion

Con- (1) rp: from t1, reads pointer ptr (1) wp executes before rp Yes Yes
NULL (2) wp: from t2, (2) No write to ptr

writes NULL to ptr between rp, wp
(1) r: from t1, reads variable v

Con- (2) @w: from t1, writes v before r r executes before w Yes Not by itself
UnInit (3) w: from t2, initializes v,

usually before r
Con- (1) a: from t1, accesses memory m a executes after Free(M) Yes Not by itself
Dangling (2) Free(M): from t2, m ∈ M

(1) v: a buffer-index/boundary var. Data race between
Con- (1) a1: from t1, accesses v a1 and a2 Yes Yes
Overflow (2) a2: from t2, accesses v (approximated condition)

Table 4.2: The conditions for Concurrency-Memory errors. (*: order synchronization represents
barrier-style synchronizations).

4.2.2 Con-NULL Detection

What is a Con-NULL bug?

Con-NULLs are NULL-pointer dereference errors directly caused by buggy interleavings.

An example of Con-NULL is shown in Figure 3.4. As we can see there, S2 from thread 1

dereferences a shared pointer variable thd→ proc_info, and S3 from thread 1 assigns NULL

to the same variable. Under a buggy interleaving, S3 executes right between S1 and S2,

immediately causing a NULL-pointer dereference and MySQL crashes. Of course, the above

buggy interleaving occurs only rarely, and MySQL behaves correctly most of the time.

In general, the basic ingredients of Con-NULL bugs include two pointer accesses, denoted

as wp and rp. wp writes NULL to a shared pointer variable ptr, and rp reads ptr from a

different thread that later performs a pointer dereference. We consider each {wp,rp} pair to

be a bug suspect.

The timing condition of Con-NULL is to execute wp before rp with no other write to ptr

in between. A bug suspect is reported only if the timing condition can be satisfied.

Con-NULL detection algorithm

The algorithm includes two parts.

Detecting the basic ingredients Building a run-time monitoring tool to identify {wp,

rp} pairs is straightforward using binary instrumentation. Specifically, for every heap/global
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access, 3 ConMem collects its thread-id, program counter, memory location, and store-value

information at run-time. Analyzing this information can easily reveal Con-NULL suspects.

The only issue remaining is to differentiate memory locations that hold pointers from those

that hold normal integer or Boolean variables. This matter will be discussed later.

Checking the timing condition After a Con-NULL error suspect (i.e., a {wp,rp} pair)

is discovered, the next step is to check whether the synchronization operations in the program

allow wp to execute before rp without another interfering definition in between.

Without losing generality, ConMem separately considers mutual-exclusion synchronization

and order synchronization. If the timing condition explained above is not prohibited by either

of them, the corresponding suspect will be reported as a Con-NULL bug.

Order-synchronization operations [93, 99], such as barriers, set up a happens-before partial

order among all accesses in the concurrent execution. Under this happens-before order, two

accesses are either strictly ordered or concurrent with one another.

Order synchronization could make a Con-NULL timing condition infeasible if and only

if one of these two conditions are satisfied: (1) the NULL-assignment is strictly ordered

after the pointer read; or (2) another write to the pointer is strictly ordered between the

NULL-assignment and the read. The ‘order’ here is determined by the happens-before

relationship.

Mutual exclusion, such as locks and transactions, prevents those code regions that are

protected by the same lock or covered in transactions from interfering with one another.

Mutual exclusion could protect the {wp,rp} pair and prevent a Con-NULL error in two

ways: (1) rp and an earlier write to ptr from the same thread are atomic with respect to wp;

or (2) wp and a later write to ptr from the same thread are atomic with respect to rp. In the

former case, rp always uses a definition from its own thread, instead of wp. In the latter case,

wp’s assignments are always overwritten before reaching rp.

ConMem monitors mutual-exclusion and order synchronizations at run time. By checking

against the above conditions, ConMem can identify Con-NULL suspects that are properly
3Data stored on the stack is not usually shared across threads and is therefore ignored in our current

prototype.
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protected and report the remaining suspects as Con-NULL bugs.

Note that, the above analysis is different from traditional data race checkings. A {wp,rp}

pair does not need to be a data race in order to be a Con-NULL bug. As discussed above, a

Con-NULL bug could occur between a wp and a strictly happened-after rp, which is not a

data race; a Con-NULL bug could also occur between a wp and a rp that are protected by

the same lock variable. The same is true for Con-UnInit and Con-Dangling. In fact, ConMem

can detect many bugs that cannot be caught by race detectors, as shown in the Table 4.11.

Of course, our synchronization analysis is neither sound nor complete, because it does not

consider potential control-flow changes under future interleavings. We believe it provides a

good balance between analysis complexity and analysis accuracy, as shown by our experimental

results in Chapter 4.2.9.

Implementation

ConMem implements the above algorithm using run-time recording (with PIN [80] binary

instrumentation) and off-line trace analysis. We choose trace analysis over pure run-time

detection due to the algorithm complexity.

The run-time component logs three types of information. The first type is information

about accesses to a global or to heap memory, which is used to identify basic ingredients

(i.e., {wp, rp}). The second type is the synchronization operations, including barrier,

pthread_mutex_(un)lock, pthread_create/join, etc. This part is used to check suspects’

timing conditions. The last type is information about all malloc/free operations. Since virtual

addresses could be recycled through malloc/free, the latter information helps us to identify

which memory locations are truly holding the same memory object. The recycling issue is

similarly handled in the three remaining detection modules.

Con-NULL only needs to record and analyze memory accesses to pointer variables. Our

current implementation differentiates pointers from non-pointer variables based on the value

stored in a memory location. That is, an access to a memory location m is ignored by

Con-NULL if the value stored in m is neither 0 nor within the range of the stack, the heap,
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or the global data region. This scheme works well in practice.

The trace-analysis includes three major steps: (1) identify all {wp,rp} pairs; (2) analyze

mutual-exclusion synchronization; and (3) analyze order synchronization.

The first step is straightforward. By checking the memory-address, thread-id, and store-

value information in the trace, we can easily find all Con-NULL suspects.

The second step is to analyze mutual-exclusion synchronization. Following our earlier

discussion, for every suspect {wp, rp} pair, ConMem identifies the preceding write of rp

(refer to as rp-p) and the follow-up write of wp (refer to as wp-f) from the trace. It then

calculates the lock-sets that protect rp, {rp-p,rp}, wp, and {wp,wp-f}. Any lock-set overlap

between {rp-p,rp} and wp or overlap between {wp,wp-f} and rp indicates that this suspect is

well-protected and should not be reported as a bug.

The last step is to determine whether order synchronizations can protect a {wp, rp}

pair from NULL-pointer dereference. This analysis is conducted through vector timestamp

comparisons.

Our run-time updates and logs the vector timestamp of each thread right after every order-

enforcing synchronization operation, including pthread_mutex_create/join and barriers,

based on the Lamport logical-timestamp algorithm [64]. During trace analysis, we can easily

obtain the vector timestamp of each memory access a in thread t, which is the latest timestamp

logged before a in the log of t.

With the timestamp information, we want to check (1) whether wp will always execute

after rp, and (2) whether wp will always be overwritten before it reaches rp. If neither is

true, a Con-NULL bug is reported. This checking could be time-consuming, because for

each suspect {wp, rp} pair that accesses memory location ptr, it requires comparing their

timestamps with the timestamp of every write access to ptr. Our implementation simplifies

this checking using a heuristic: if there exists a ptr-definition that is strictly ordered between

wp and rp, it usually comes from either the thread of wp or the thread of rp. Using this

heuristic, we only need to check two candidates that might sit between rp and wp: the write to

ptr on rp’s thread right before rp and the write to ptr on wp’s thread right after wp. Overall,
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our implementation has a modest complexity, linear in the number of suspect {wp, rp} pairs,

and works well in our bug-detection experiments, never introducing false positives.

Discussions Con-NULL predicts concurrency bugs that could occur in the future based

on the observation of one program execution. This prediction inevitably has false positives

and false negatives.

The false positives of Con-NULL detection mainly have two sources. The first is unidentified

custom synchronization, an issue shared with many previous concurrency-bug-detection

tools [111]. Without knowledge about some custom synchronization operations, such as

spin loops and producer-consumer queues, ConMem will mistakenly consider some timing

conditions as feasible and report false positives. Chapter 4.2.6 discusses how to prune some of

these false positives. The second sources of false positives are due to simplifications made by

our implementation. One simplification that has not yet been mentioned is that we do not

check whether a pointer read is used for dereferencing. Sometimes, a pointer read is used for

condition-checking, where reading a NULL-valued pointer does not cause any problem. We

prune out this type of false positive by checking whether a pointer read has a NULL value

during the monitored run. If it does, we do not report the bug. This pruning has been very

effective, as we will see in Chapter 4.2.9.

The false negatives of Con-NULL detection mainly come from the code/path coverage

problem. Under a fixed input and different interleavings, the predicate variable of a branch

could have different values and lead to different execution paths. If an instruction is executed

only under rare interleavings or if two instructions access the same memory location only

under rare interleavings, ConMem may miss the basic ingredients of potential Con-NULL

bugs and have false negatives. This type of false negatives exist in all ConMem detection

algorithms and also previous work that tries to predict future interleavings based on one

observed interleaving [111, 40, 17, 58, 131, 99]. Fortunately, it rarely occurs in practice, based

on our experience. In addition, this problem can be mitigated by making ConMem observe

more than one run of the program under the same input and analyze each run independently.

If one of the runs reaches a path that can only be observed in a rare interleaving, then
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ConMem is able to report bugs on this path. ConMem can also benefit from techniques that

improve the testing code coverage in concurrent programs [114].

Finally, trace size is a potential concern for all trace-based analysis tools. Since Con-NULL

only records heap/global memory accesses that touch (likely) pointer variables, its traces will

be significantly smaller than those generated by deterministic replay tools [101]. Based on our

experience, it is rarely a problem for Con-NULL, as shown in Chapter 4.2.9. One could also

split the trace of a long-running program into several sub-traces and apply the Con-NULL

algorithm to each sub-trace.

4.2.3 Con-UnInit Detection

What is a Con-UnInit bug?

h = malloc();

S1 h−>band = tr_bandNew(h);

/* h is shared; S1 is expected to initialize h−>band */

assert(is_band(h−>band));S2

Thread 1 Thread 2

Figure 4.4: A concurrency bug that leads to an undefined read and finally causes crash (from
Transmission-1.42)

Con-UnInit bugs are un-initialized memory reads directly caused by buggy interleavings.

An example of a Con-UnInit bug is shown in Figure 4.4. In this example, a shared variable

h→ bandwidth is initialized at S1 in thread 1. Read accesses to this variable are supposed to

occur after S1. Unfortunately, without proper synchronization, S2 in thread 2 can execute

before S1 and read an uninitialized value, which causes an assertion failure later.

The basic ingredients of a Con-UnInit bug typically include a read access, denoted as r

(e.g., S2 in Figure 4.4), to a memory location that should be initialized by another thread.

The timing condition for a Con-UnInit bug is to execute r before the initializations by another

thread.

Note that, when we observe an r reading a value defined by its own thread, an un-initialized

read is unlikely to happen under a different interleaving. However, there could be exceptions.
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For example, future interleavings could change the execution path and make the local definition

disappear. This goes beyond our definition of concurrency-memory errors and is not considered

here.

Detection algorithm & implementation

Con-UnInit’s detection algorithm is simpler than Con-NULL’s and is implemented via run-time

detection without trace analysis.

Detecting the basic ingredients This task identifies a shared-memory read, the target

memory location of which is not defined earlier in its own thread, but in another thread. Such

reads will be considered as Con-UnInit suspects.

This task is quite straight forward to implement during dynamic monitoring. Relying on

the PIN instrumentation framework, we use a hash-table Initializer to maintain the per-thread

information about which memory locations are already initialized in this thread. Specifically,

Initializer is indexed by memory locations. Whenever a write to memory location v occurs,

Initializer is checked to determine whether this is the first write to v from that thread. If it is,

the information of this write is inserted into the table. Looking up Initializer at every read

access to a heap variable will reveal all Con-UnInit suspects.

Checking the timing condition At run-time, whenever a read suspect r is discovered,

ConMem must conduct a synchronization analysis and decide whether there exists a remote

initialization that is strictly ordered before r. Mutual exclusion cannot help to avoid this type

of bug and is not considered here.

Conducting this task at run-time requires several pieces of information. Suppose that the

suspect r accesses memory location v. The first piece of information we need is the vector

timestamp of r. ConMem maintains the vector timestamp for each thread at run-time, by

intercepting order synchronizations (i.e., barrier and pthread_create/join) and analyzing

them based on the classic Lamport algorithm [64]. The timestamp of r can be easily retrieved

from the current timestamp of its own thread.

The second piece of information is the vector timestamp of all the initializations to v from
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other threads. This information is kept in the Initializer table mentioned above. Specifically,

when a write access is found to be the first write to v from thread t, t’s current timestamp is

inserted into Initializer.

Finally, after obtaining the above information, ConMem compares the timestamp of r

with the timestamps of remote initializers. A Con-UnInit bug is reported when r is concurrent

with all the recorded initialization timestamps.

As an optimization, we only conduct the above check for the first read from each thread

to a memory location v. This is sufficient to detect Con-UnInit bugs on v, if they exist.

Discussions The sources of false negatives and false positives for Con-UnInit detection are

similar to those of Con-NULL, except for one unique source of false positives. That is, some

un-initialized reads may not cause negative effects, a property different from NULL-pointer

dereferences, dangling pointers, and buffer-overflows. Previous sequential bug detectors, such

as Valgrind [91], have considered this and choose to report bugs only when the un-initialized

value is used for critical operations, including system calls, condition checking, and memory-

address calculation. ConMem could borrow this idea to prune this set of false positives, but

this is not included in the present implementation.

In contrast with Con-NULL, Con-UnInit does not dump traces and does not have the

trace-size issue. However, since Con-UnInit conducts all its analysis on-line, its run-time

analysis will consume more memory than Con-NULL. The memory consumption of Con-UnInit

is mainly for storing the initialization timestamp for each active heap/global memory location.

It is linear in the heap/global memory footprint of a program, like many previous dynamic

bug detectors [75]. It will not increase with longer executions, as long as the program’s active

memory consumption does not change.

4.2.4 Con-Dangling Detection

What is a Con-Dangling bug?

A Con-Dangling bug occurs when buggy interleavings directly cause dangling pointer accesses.

Figure 4.5 demonstrates a bug from PBZIP2. In this example, pointer q (a local variable in
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S1 delete q;

while (!fifo−>empty) {S2
   ...

}

Thread 1 (main thread) Thread 2 (worker thread )

q is a pointer local to thread 1; it points to the memory region that contains fifo−>empty

Figure 4.5: A concurrency bug that leads to a dangling pointer and finally causes crash (from
PBZIP2-0.9.4)

thread 1) points to a heap object shared by thread 1 and thread 2 (fifo in thread 2 points to

the same object). Due to lack of synchronization, thread 2 can access the shared object at S2

when it is already deleted by thread 1 at S1, which can cause PBZIP2 to crash.

As we can see, the basic ingredients of a Con-Dangling bug is a memory access whose target

memory location is de-allocated by a different thread. The timing condition of Con-Dangling

is to conduct the memory access after the de-allocation.

Detection algorithm & implementation

Similar to Con-UnInit detection, Con-Dangling is implemented in PIN as a pure run-time

bug detector with no trace analysis.

The algorithms of detecting basic ingredients and checking timing conditions are

straightforward here. For the first task, we must identify all memory accesses whose target

memory locations are de-allocated by a different thread. For the second task, we must analyze

order synchronizations to determine whether the accesses are concurrent with the de-allocation

operation. Just like with Con-UnInit, mutual exclusion itself cannot avoid Con-Dangling bugs

and is not considered in the following.

In our PIN-based implementation, every malloc and free invocation is intercepted, in

addition to every order synchronization and heap access. A map Malloc_Map is used to

maintain a list of currently active heap memory regions, ordered by their starting addresses. A

new entry is inserted in Malloc_Map at every malloc. At every heap access, ConMem looks up

Malloc_Map with the accessed heap address to find the corresponding entry, and then updates

the entry to record the latest access from each thread to each memory region. Whenever a

free is invoked, the timestamp of this free will be compared with the timestamps of the
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latest accesses to this to-be de-allocated memory region from each thread. A Con-Dangling

bug is reported when we find a concurrent access (based on timestamps) from a different

thread.

4.2.5 Con-Overflow Detection

What is a Con-Overflow bug?

Buffer overflow occurs when a buffer access goes beyond the buffer boundary. In concurrent

programs, interleavings can cause additional buffer-overflow problems when buffer-index or

buffer-boundary variables are shared among different threads.

    ...

    memcpy (&buf[buf−−>cnt], str, len);
    ...

S1

}else {

if ( buf−−>cnt + len > LOG_SIZE ) {
buf−>cnt += len;S2

  }

Thread 1 Thread 2

buf−>cnt is a shared variable that represents the current index of a buffer

Figure 4.6: A concurrency bug that can lead to a buffer overflow and subsequent crash (from
Apache-2.0.45)

Figure 4.6 shows an example of a typical Con-Overflow bug. Thread 1 conducts a sanity

check at S1 on buffer index variable buf→cnt to ensure that the later memcpy will not overflow

the buffer buf. Unfortunately, the index variable is shared with thread 2. Due to lack of

synchronization, thread 2 can change the buffer index between the sanity check and the real

buffer access, thus causing a buffer overflow.

Accurately reporting Con-Overflow bugs is difficult because exposing buffer-overflow bugs

requires not only a certain order of memory operations, but also certain variable values. Even

when an index variable is unexpectedly corrupted by a different thread, buffer overflow may

not occur, depending on the new value stored into the index. In the future, symbolic-execution

and constraint-solving techniques [13] can potentially address the issue of identifying whether

problematic values can arise.

In our current prototype, we only consider a common subset of Con-Overflow bugs:

conflicting accesses to shared buffer-index variables cause buffer overflows. Specifically, we

report all data races on shared buffer-index variables as potential Con-Overflow bugs, and
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we rely on our ConMem-validator (Chapter 4.2.7) to prune out false positives. We leave the

more general Con-overflow detection problem to future work.

Detection algorithm & implementation

Con-Overflow detection includes two steps. The first step detects data races in the execution.

The second step attempts to identify accesses to buffer-index variables among those data

races.

The first step is conducted through an existing lock-set algorithm [111]. The second

step can be conducted in different ways. Our solution is based on the heuristic that an

index variable should be used to generate buffer-access addresses sooner or later. Currently,

we implement this step as an additional run of dynamic data-dependence analysis. That

is, after we have information about data races in hand, the program is executed a second

time. Whenever a memory location involved in a race is read, the dependence analysis starts,

tracking the data flow to determine whether the read value would be used to generate a

global/heap address within a threshold number of steps. In addition, we also make sure the

read value itself is not already a global/heap address. Full dependence-analysis has large

overhead, since we need to keep track of both local and shared memory accesses. Fortunately,

we only need to track those accesses and memory locations related to races and currently we

set the number of steps to track as 3. Therefore, the overhead is acceptable.

Our current implementation of Con-Overflow requires two runs of the program – one

to find races and one to perform dependence analysis. We expect that the second run is

not always necessary. After one variable or one instruction is marked as accessing (or not

accessing) a buffer index, this information can be kept for future use. Static analysis can also

help identify instructions that access buffer-index variables and potentially remove the second

run of the program.

In summary, ConMem bug detection includes four sub-tools. Con-UnInit and Con-Dangling

bugs are detected and reported at run-time. Con-NULLs and Con-Overflow bugs are reported

after a post-mortem analysis. It is also conceivable to combine all these four modules into one
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big run-time bug-detection tool in the future.

4.2.6 Handling Spin-Loop Synchronizations

As discussed in Chapters 4.2.2 and 4.2.3, a major source of false positives in ConMem is

custom-synchronization operations, as demonstrated by Figure 4.7(a). We here discuss how to

handle one common type of custom synchronization, synchronization loops (also called spin

loops). The algorithm presented below is an optional step in ConMem. It is neither sound

nor complete. Its usage in practice will be evaluated in Chapter 4.2.9.
Thread 1 Thread 2

S2:  thd_stop=TRUE;
lock (L);

lock (L);
S3:  while (! thd_stop){

}
unlock (L);

S4:  thd=NULL;

Happens−before Order
forced by loop+lock

unlock (L);
S1:  thd−>proc_info="...";

signal(cond);

cond_wait(cond, L);

Thread 1 Thread 2

        

(a) (b)

S2:  thd_stop=TRUE;

S1:  thd−>proc_info="...";

S3:  while (! thd_stop){
...

}
S4:  thd=NULL;

Happens−before Order
forced by while−loop

Figure 4.7: Examples of spin-loop synchronization (thd_stop is a volatile variable). (a) A
NULL-pointer dereference can never occur between S4 and S1, because thread 1 cannot
execute S4 until its S3-loop is terminated by S2 in thread 2. (b) Synchronization is achieved
by a spin loop and locks. Without locks, the execution order between S1 and S4 is not fixed;
with locks, S1 will always be executed before S4 just as that in (a). Note, cond_wait implicitly
releases the lock L, thus there is no potential deadlock.

Spin-loop identification

This analysis algorithm is inspired by SyncFinder [129], and involves two steps.

First, identifying loops. This step is conducted through CodeSurfer/x86 [5], a static-

analysis framework for x86 executables. CodeSurfer/x86 identifies every loop in the program’s

control-flow graph. To identify nested loops, it implements Bourdoncles’s algorithm [10], which

recursively decomposes an SCC into sub-SCCs, etc. For each loop, we use CodeSurfer/x86 to

identify all (conditional) jump instructions that jump out of the loop, referred to as loop-exit

jumps. We then use static slicing, also a functionality supported by CodeSurfer/x86, to

find all read instructions in the loop for which there is a path of control-dependence or
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data-dependence edges from the read to a loop-exit jump. We refer to these read instructions

as potential loop-exit reads.

Second, identifying synchronization loops. This step is conducted through run-time

analysis — a loop that is always terminated by reading a value defined by a different thread

is considered to be a synchronization loop.

To conduct this analysis, we record a trace of three types of instructions at run-time: (1)

all potential loop-exit reads; (2) all loop-exit jumps; (3) all instructions in the program that

write global or heap variables.

In trace analysis, we first identify the loop-exit read r for each loop L — a potential

loop-exit read that obtains the same value from a variable v in all but the last iteration of L.

We then identify the write w that defines the value read by r in the last loop iteration. L

is considered to be a synchronization loop if w always comes from a different thread than

r. In that case, w, such as S2 in Figure 4.7(a), is marked as a synchronization write, and

the loop-exit read, such as S3 in Figure 4.7(a), is marked as a synchronization read. We

can execute the program several times to prune false positives. If a loop is ever observed

to be terminated by a definition from the same thread, it will never be considered to be a

synchronization loop. If the value of v changes from non-loop-exiting to loop-exiting for more

than once in one run, the corresponding loop will never be considered to be a synchronization

loop. Actually, this type of loop likely belongs to a custom lock implementation, which our

current implementation does not handle.

Note that, how to accurately identify all custom-synchronization operations is an open prob-

lem in concurrency-bug detection [118, 17, 129]. Our approach is inspired by SyncFinder [129].

SyncFinder identifies synchronization loops purely based on static analysis. We use dynamic

analysis at the second step, which suits the dynamic nature of ConMem. Dynamic analysis

also gets us around the challenges of pointer alias analysis and statically figuring out which

code regions could execute concurrently.

Like previous work that tries to identify custom-synchronization operations [118, 17, 129],

our analysis is neither sound nor complete, because it makes decisions based only on the runs
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that are observed in the run-time analysis. A loop that can be terminated by a write from its

own thread may never be observed to exit in that manner, and thus will be mistaken for a

synchronization loop. A loop that is sometimes used for synchronization and sometimes not

is always considered to be a non-synchronization loop by us.

Integrating synchronization-loops into ConMem

A synchronization loop is one type of ‘order synchronization’ discussed in Table 4.2 — it forces

a happens-before order between operations before the synchronization write in one thread

and operations after the synchronization loop in another thread. Because the synchronization

analysis in ConMem already covers order-synchronization operations, here we only discuss

how to adjust the logical time-stamps given synchronization-loop information. After properly

adjusting the time-stamps, ConMem can easily prune the false positives that would otherwise

be reported for the examples in Figure 4.7.

When ConMem monitors a test run, we instrument not only normal synchronization oper-

ations, such as pthread_mutex_(un)lock and pthread_join, but also every synchronization

read/write and exit jump of each synchronization loop. At run-time, we maintain a hash-table

indexed by memory locations. Whenever a synchronization write w is executed by thread t on

memory location m, the m entry in the hash-table is updated with {t, t’s current time-stamp}.

Whenever a synchronization read in thread t ′ is executed, we look up the information about

its definition write in the hash-table. This information will be used to update t ′’s time-stamp,

whenever it exits a synchronization loop.

Sometimes, locks can be used together with spin-loops to achieve synchronization, as

demonstrated in Figure 4.7(b). ConMem considers this interaction between mutual-exclusion

synchronization and order synchronization, and adjusts the time-stamp update accordingly.

We provide the above analysis as an option to ConMem users. We evaluate its effect in

Chapter 4.2.9.
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4.2.7 Bug Exposing and Validation

ConMem-v is the bug validator component of ConMem. The design of ConMem-v is inspired by

previous tools that validate data-race [98] and atomicity-violation bug reports [99]. ConMem-v

takes every bug report from ConMem as its input. It tries to trigger the buggy interleavings

predicted in ConMem’s bug reports by carefully perturbing the concurrent execution. The

whole process is automated.

ConMem-v serves two purposes. The first is to prune false positives that are caused by

customized synchronization and by some of the approximations made by ConMem’s detection

algorithms. The second is to provide developers with a reliable way to repeat the true bugs

reported by ConMem.

In the following, we discuss the design and implementation of ConMem-v, explaining

what is the interleaving enforcement target and how to provoke a specific timing condition.

ConMem-v is implemented using PIN [80] binary instrumentation. For the sake of brevity,

some implementation details are omitted.

Validating Con-NULL reports From a {wp,rp} pair of a Con-NULL bug report, ConMem-v

aims to execute wp before rp, with minimized timing distance in between.

To enforce such a timing condition, ConMem-v instruments the binary code right before

and after wp and rp. At run-time, whenever wp or rp is to be executed, ConMem-v checks

whether the other instruction has already ‘arrived’. If so, wp will be arranged to execute first,

immediately followed by rp. If not, an artificial delay (several iterations of usleep) is added

to the current thread, in the hope that the other instruction will arrive from a different thread.

This process is illustrated in Figure 4.8 (consider A as wp, B as rp).

A
B

B
the first arrival

delay

the real execution
point

Figure 4.8: Illustration of how ConMem-v perturbs execution

Note that, as a general principle in ConMem-v, ConMem-v only improves the chances of a



53

bug to occur and does not provide any guarantee. All the delays inserted by ConMem-v have

time-outs, so that the program will not hang.

Validating Con-UnInit reports The input to Con-UnInit validation is a list of instruction

pairs {w,r} from the Con-UnInit bug report. w is an instruction that initializes a memory

location that is later read by r from a different thread.

ConMem-v’s target here is to execute w after r. To achieve this target, ConMem-v

instruments the binary code to postpone the execution of w in an attempt to wait for r to

execute first (consider r as A and w as B in Figure 4.8). ConMem-v can keep track of all

heap/global writes to know whether an uninitialized read has truly occurred. In practice,

just observing whether r is executed before w very likely already tells users whether the

Con-UnInit bug report is a true bug.

Validating Con-Dangling reports The input to Con-Dangling validation is a list of

instruction pairs {F,a}. F is a call instruction that invokes a de-allocation operation on a

memory region that contains the memory location accessed by a from a different thread.

ConMem-v’s target here is to postpone the execution of a in an attempt to have the F

occur first, as illustrated in Figure 4.8 (F is A, a is B). To know whether a dangling pointer

has been produced, ConMem-v records and compares the memory address accessed by a and

the range of the memory region freed by F.

Validating Con-Overflow reports The input to Con-Overflow validation is a list of data-

race pairs {i1,i2}. i1 and i2 race upon a shared buffer-index variable. The target of ConMem-v

is to make the race truly occur (i.e., first execute i1 right before i2 without any other instruction

in the middle and then i2 right before i1) and observe what happens after the race.

ConMem-v’s perturbation strategy for Con-Overflow bugs is similar to those for the three

discussed above. The unique complexity of Con-Overflows is that even if a buffer index is

corrupted to an incorrect value through a data race, overflow may not happen. In our current

validator, we look for fail-stop symptoms (crash or assertion failure) to tell whether buffer

overflow has happened, which can be improved by more accurate buffer-overflow detection

techniques designed for sequential programs [91, 51].
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In the end, a ConMem bug report is generated. It includes the conflicting instruction

pair, their corresponding call stacks, and the bug category (Con-NULL/Con-UnInit/Con-

Dangling/Con-Overflow). When ConMem-v successfully exposes the bug, the bug report also

includes the corresponding failure-triggering thread-scheduling, i.e. where and how long are

the injected delays.

Discussion Two types of interleaving-enforcement approaches were proposed before. One is

to execute programs on single-core machines and control the scheduling [85, 113]; the other is

to insert artificial delays [99, 31]. ConMem-v chooses the latter for more effective use of the

existing multi-core machines.

In summary, ConMem-v does not report false positives. In addition, benefiting from the

clear error-pattern of memory bugs, ConMem-v does not need manually written oracles to

judge whether a bug has occurred. ConMem-v could have false negatives: it may miss some

bugs whose manifestation requires very sophisticated interleaving manipulation.

4.2.8 Evaluation Methodology

Applications ConMem is evaluated using 7 widely-used C/C++ applications, including

3 server (Apache HTTP server, MySQL data base server, and Cherokee HTTP server), 3

desktop (Mozilla web browser, PBZIP2 parallel decompressor, and Transmission bittorrent

client) and 1 scientific application from SPLASH2 (FFT) [128].

Apart from these 7 applications, ConMem is also evaluated on the latest version of a

multi-threaded software system, Click [21], for which no concurrency bug was previously

known. ConMem uses the standard test inputs released by Click developers and is able to

find previously unknown concurrency bugs. The detailed set-up and results are presented in

Chapter 4.2.9.

Bugs in evaluation For evaluation, we use 10 real-world concurrency bugs4 that were

introduced by the original developers of the above 7 applications. 9 out of these 10 bugs

can cause client and server crashes. We carefully set up this bug set to make sure it is
4One of these 10 bugs, PBZIP2-2, was not reported in previous documents. It was first detected in our

ConMem experiments. It can be fixed by the same patch that fixes PBZIP2-1.
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representative, covering different types of faults and error-propagation patterns, as shown

in Table 4.10. One of these 10 bugs does not lead to software crash. It was introduced by

external library developers of FFT. This FFT bug will help measure the false-positive rate

and overhead of ConMem on scientific applications.
Bug-ID Causes Effect Description Software version
MySQL-1 Atom. Server crash at NULL-ptr dereference MySQL-4.0.19
MySQL-2 Atom. Server crash at NULL-ptr dereference MySQL-5.1.28
PBZIP2-1 Order/Atom. Crash at NULL-ptr dereference Pbzip2-0.94
Apache-1 Multi-Atom. Crash due to dangling ptr Apache-2.0.46
Mozilla Multi-Atom. Crash due to dangling ptr Mozilla-JS1.5
PBZIP2-2 Order Crash due to dangling ptr Pbzip2-0.94
Apache-2 Atom. Crash/corrupted-log due to overflow Apache-2.0.46
Cherokee Atom. Crash/wrong-message due to overflow Cherokee-0.9.2
Transmission Order Crash due to uninitialized read Transmission-1.42
FFT Order/Atom. Wrong output due to uninitialized read N/A

Table 4.3: 10 bugs in evaluation (Atom.: single-variable atomicity violation; Order: order
violation; Multi-Atom.: multi-variable involved atomicity violation.)

Experiment setup The experiments are conducted on dual quad-core Intel Xeon

(2.67GHz) machines, with Linux, version 2.6.18. We use the PIN [80] binary instrumentation

framework for all our tools. We use Valgrind–Helgrind [91] as the race-detection front-end for

Con-Overflow.

Our experiments use bug-triggering inputs reported by the user, like previous dynamic

concurrency-bug detectors [130, 75]. Note that the bugs never manifest during our bug-

detection runs. Actually, many concurrency bugs do not manifest even after multiple days’

worth of execution with bug-triggering inputs [99, 85], which is exactly why ConMem’s

predictive detection will be useful.

Our evaluation executes each bug-triggering input (or a set of bug-triggering client requests)

to the end in order to measure both false positives and performance. The reported performance

numbers are the averages across multiple runs. By default, the special algorithm for custom-

synchronization (Chapter 4.2.6) is not applied. We evaluate how that algorithm further

improves the accuracy of ConMem in Chapter 4.2.9.

ConMem includes four sub-tools for four types of concurrency-memory errors. Each

application was executed with the bug-triggering input once for each sub-tool. We present
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the bug-detection results for each sub-tool. When ConMem is compared with other detection

tools, the true bugs as well as the false positives from all four sub-tools are put together. The

artificial delay used by ConMem-v is 1 millisecond at a time.

We also compare ConMem with two state-of-the-art interleaving checking approaches:

race-based (denoted by Race) and atomicity-violation-based (denoted by Atom). Race is a

lock-set–happens-before hybrid race detector [30, 94], originally implemented in the widely-

used Valgrind-Helgrind detector [91] and slightly modified by us for better race coverage.

Atom was implemented by us based on an algorithm described in previous work [99]. It

predictively identifies each static memory instruction that can be unserializably interleaved

with its preceding access to the same memory location from the same thread (the most common

type of atomicity bug [74, 121, 75]). There are other race and atomicity bug detectors, such

as happens-before race detectors [93] and training-based atomicity detectors [75]. We did not

choose them, because their training requirement or interleaving-sensitive design makes for an

apples-to-oranges comparison.

4.2.9 Experimental Results

Overall Results

Overall, as shown in Table 4.11, ConMem can detect 9 out of 10 tested concurrency bugs,

showing a good coverage on this set of concurrency memory bugs. In comparison, Race and

Atom detect 4 and 6 out of the 10 bugs, respectively5.

ConMem shows a good bug-detection capability on these evaluated bugs, because it

effectively captures the most common pattern among concurrency bugs with crash-effects.

Specifically, three bugs (MySQL-1, MySQL-2, and PBZIP2) are detected by Con-NULL;

Apache-1 and PBZIP2-2 are detected by Con-Dangling; Apache-2 and Cherokee are detected

by Con-Overflow; Transmission and FFT are detected by Con-UnInit.
5We treat these 10 known bugs as the ground truth in our experiment. Admittedly, there could be some

unknown bugs lurking and hence some missed false negative problems, which unfortunately has no conceivable
way to accurately measure.
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Bug-ID ConMem Race Atom
MySQL-1 X X X
MySQL-2 X × X
PBZIP2 X X X
Apache-1 X × ×
Mozilla × × ×
PBZIP2-2 X × ×
Apache-2 X X X
Cherokee X X X
Transmission X × ×
FFT X × X

Table 4.4: Bug-detection results (Key: X– bug was detected; × – bug not detected.)

App. # ShrMem Inst Races Atom. Null Dangling UnInit Overflow ConMem Total
Static Dynamic #F:#B #F:#B #F:#B #F:#B #F:#B #F:#B #F:#B

Apache 297 76540 14 : 1 157 : 2 4 : 0 6 : 3 0 : 0 0 : 1 10 : 4
MySQL 1086 17379 267 : 2 155 : 2 4 : 2 1 : 0 11 : 0 0 : 0 16 : 2
Transm. 507 978 42 : 0 33 : 0 2 : 0 3 : 0 3 : 1 0 : 0 8 : 1
PBZIP2 93 1744 17 : 6 21 : 4 6 : 6 0 : 2 3 : 0 0 : 0 9 : 8
FFT 205 182532 8 : 0 16 : 5 0 : 0 0 : 0 0 : 4 0 : 0 0 : 4
Cherokee 598 48502 8 : 2 28 : 2 0 : 0 0 : 0 0 : 0 0 : 1 0 : 1
Mozilla 76 18330 13 : 0 48 : 0 0 : 0 0 : 0 2 : 0 0 : 0 2 : 0
False Positive Rates 369:11 458:15 16:8 10:5 19:5 0:2 45:20

Table 4.5: Bug reports and false positives before ConMem-v pruning (Note: 1. the bug report
number here is larger than that in Table 4.11, because some bug reports share one root cause.
There are 9 distinct root causes of these 20 bug reports. 2. #F: # of false positives; #B: #
of bugs; #ShrMem Inst: instructions that access variables truly shared among threads. 3.
The special ConMem algorithm to handle custom synchronization is not applied here. It will
be discussed in connection with Table 4.6)

ConMem still misses one bug in Mozilla. This is a complicated concurrency bug that

requires more than one rare timing condition to manifest it. Specifically, a rare atomicity

violation among accesses to a shared pointer first causes two threads to mistakenly read from

the same heap object, which does not lead to any visible software failure. Later on, another

rare timing could cause one thread to delete this heap object while the other thread is still

using it, which finally causes the program to crash. This complicated bug is not detected by

ConMem, because the buggy interleaving does not directly lead to memory errors. It cannot

be detected by Race or Atom either, because it is a multi-variable bug. Note that, Apache-1

bug is also a multi-variable atomicity-violation bug. It can be detected by ConMem, because

its manifestation only requires one rare timing between a deletion and a heap-object read

access.
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Atom and Race failed to detect 3 and 4 concurrency bugs, respectively, are detected

by ConMem, mainly because these bugs are not caused by data races or simple atomicity

violations. For example, Apache-1 is caused by conflicting accesses to multiple variables.

Therefore, it is not detected by either Race or Atom. PBZIP2-2 and Transmission are both

caused by order-violation problems and are missed by Atom. In addition, the heuristics used

in the Valgrind-Helgrind algorithm to prune false positives also lead to some false negatives

in Race.

Overall, ConMem has good coverage on the evaluated real-world concurrency bugs that

can cause crashes, and is not limited to any specific interleaving pattern. Its algorithms

complement existing race and atomicity-violation bug-detection tools.

False-Positive Results

Before automated pruning

Table 4.5 shows the number of false positives (vs. true bugs) of all the tools on the

7 evaluated applications. Every report of Race is a pair of static race instructions; every

report of Atom is a static instruction that can be unserializably interleaved with its preceding

access; every report of ConMem is a static instruction that, under certain interleavings, can

dereference a NULL-pointer, access a freed memory region, etc. These reports are obtained

before applying automatic bug exposing. Automatic bug exposing could help prune out most

false positives for Race, Atom [99], and ConMem, at the cost of testing time. Each bug report

is judged to be a false positive or a true bug report based on our manual inspection and

comparison against all known concurrency bugs in the bug database of the corresponding

software. 6 Since some bug reports in Table 4.5 share the same root cause, the total number

of true bug reports there is larger than that in Table 4.11.

In general, ConMem’s false-positive rate is much lower than Race and Atom – about one

tenth of their false-positive-rates – befitting its effect-oriented approach. ConMem’s false-
6Code regions that are problematic only under weak memory consistency models are not considered as

bugs here, similar to previous work [99, 111]
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positive rate (about 2.5 false positives per true bug) is reasonably low considering ConMem’s

predictive detection capability on concurrency bugs.

All these tools, including Race and Atom, have done a good job in identifying bug-prone

interleavings from the huge interleaving space. As we can see in Table 4.5 (the ShrMem-Inst

column), the number of dynamic memory accesses to memory locations that are truly shared

among threads ranges from 978 to 182532. The interleaving space size grows exponentially

in that number. In contrast, many fewer interleavings are singled out by Race, Atom, and

ConMem.

ConMem has much smaller false-positive rates than Race and Atom, mainly because of its

effect-oriented approach (i.e., taking vertical stripes in the feature space of Figure 4.2a and

Figure 4.2b). As discussed in Chapter 4.1, races and unserializable interleavings do not always

end up as bugs. Although the algorithms in Race and Atom already use good heuristics to

prune false positives, the false-positive problem is still there.

Table 4.6 provides a further breakdown of the false positives reported by ConMem. As

we can see, 43 of the 45 false positives are caused by unidentified custom synchronizations.

These 43 bug reports involve infeasible interleavings and can never actually occur. ConMem

mistakenly reported these 43 bugs because it did not consider while/if-flags and producer-

consumer queue synchronizations in the program. The remaining 2 false positives come from

harmless uninitialized reads, as discussed in Chapter 4.2.3.

Note that, according to Table 4.6, almost all buggy interleavings reported by ConMem are

true bugs that cause program to crash, as long as they are feasible. This is a big accuracy

improvement over race detectors and atomicity violation detectors: many races and atomicity

violations are intentionally introduced by developers for performance or semantic reasons

[88, 12, 99].

Pruning false positives via custom-synchronization analysis

We also evaluated the synchronization-loop analysis discussed in Chapter 4.2.6. As shown

in Table 4.6, this analysis can further prune out 16 ConMem false positives, which is more

than one third of all ConMem false positives. During this process, no true bug is pruned.
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App. Benign # of F.P. caused by custom synchronization # of F.P. pruned by
UnInit Producer-Consumer Queue If/While-flag Chapter 4.2.6 syn-loop analysis

Apache 0 5 5 0
MySQL 0 3 13 5
Transm. 2 0 6 5
PBZIP2 0 3 6 6
FFT 0 0 0 0
Cherokee 0 0 0 0
Mozilla 0 0 2 0
Total 2 11 32 16

Table 4.6: Causes of ConMem false positives

The false-positive rate of ConMem is thus decreased to 1.45 false positives per true bug. The

run-time overhead of custom-synchronization identification is similar to that of ConMem bug

detection, because it records similar amount of memory-access information as ConMem bug

detection.

Automated false positive pruning of ConMem-v

All the 75 bugs reported by ConMem in Table 4.5 are sent to ConMem-v for validation.

As a result, ConMem-v automatically prunes out all false positives, without introducing any

false negatives for the bugs shown in Table 4.11 and Table 4.10.

Specifically, among the 20 true bug reports from ConMem, ConMem-v successfully makes

15 bug reports manifest through its systematic perturbation. Each of these 15 can be reliably

(almost deterministically) exposed under ConMem-v, which will help developers diagnose and

fix the root causes. There are still 5 bug reports that are actually true bugs. However, the

manifestation condition is complicated, requiring artificial delays at multiple places, and is

not handled by our current prototype of ConMem-v. Recall that some of these 20 bugs share

the same root cause. The 15 bugs successfully exposed by ConMem-v have already covered all

the root causes. Therefore, failing to expose the rest 5 bug reports did not cause ConMem-v

to miss any root cause.

The ConMem-v validation phase is fast, because of the small number of ConMem bug

reports. For example, validating the 17 bug reports of PBZIP2 only takes 20.02 seconds,

roughly equal to executing PBZIP2 without any instrumentation 30 times.

Discussion One question the above evaluation does not directly answer is how false

positives would change under longer executions with more inputs or more runs of one input.
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As discussed in Chapter 4.2.2, the bug-detection ability of ConMem is sensitive to the

code/path coverage, like all dynamic bug detectors [111, 75, 91], and is mostly insensitive to

small differences in timing (given the same input). Therefore, we expect ConMem to report

more true bugs and more false positives when it observes more program runs that touch

previously unobserved code/paths. We also expect ConMem’s false-positive rate to remain

low for most applications and most inputs, because of its effect-oriented design philosophy.

For example, if a program performs few NULL-pointer assignments, there will be few bug

reports, no matter how long the execution is.

Time and Space Overhead

Table 4.14 shows the run-time overhead of ConMem. Con-NULL also needs trace analysis.

Therefore, the off-line analysis time for Con-NULL is also listed. Overall, ConMem’s analyses

have reasonable run-time overhead: around 16X slow down for memory intensive FFT and

3–29% latency overhead for I/O-intensive server applications. This overhead is comparable to

previous concurrency bug-detection tools [75, 130, 111] and is suitable for developers’ use.

Con-Overflow’s major overhead comes from Valgrind-Helgrind race detector. The overhead

of its dependence-analysis ranges from 5% overhead (server applications) to 13X slow down

(for FFT).

Currently, Con-NULL, Con-UnInit, Con-Dangling, and Con-Overflow are implemented as

separate tools. Since many tasks conducted by them overlap with each other, we expect the

overhead of the combined tool to be smaller than running each of them one by one.

In terms of space overhead, Con-NULL is the only tool in ConMem that generates traces.

In our experiments, the traces are reasonably small under the bug-triggering inputs, ranging

from 50KB to 30 MB. The fact that Con-NULL only analyzes memory accesses to pointer

variables greatly mitigates the trace-size problem that is encountered by all trace-based

analysis tools. Because the disk sizes keep increasing, we believe that trace size will not be an

issue for the usage of Con-NULL.
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Bug-ID Base* Con-NULL Con-Dangling Con-UnInit
Line Run-time Off-line Analysis Run-time Run-time

Apache 0.154s 19% 0.118s 28% 28%
MySQL 0.034s 29% 0.029s 24% 13%
Cherokee 0.072s 7.6% 0.012s 2.7% 6.6%
Mozilla 1.010s 505% 0.030s 185% 196%
PBZIP2 0.662s 116% 0.019s 76% 78%
Transmission 1.362s 82% 0.005s 79% 80%
FFT 0.001s 1113% 0.000s 1285% 1556%

Table 4.7: ConMem Run-time overhead (%) and off-line analysis time (*: BaseLine is to
execute the application’s test input from the beginning to the end without any instrumentation.
Sever applications, like Apache and Cherokee, each serves a set of requests from multiple
clients.)

Synchronization Analysis in ConMem

When detecting Con-NULL, Con-UnInit, and Con-Dangling bugs, ConMem conducts syn-

chronization analysis to check whether the timing condition of bug suspects can be satisfied

in the future or not. ConMem prunes out those suspects that are well-protected by mutual

exclusion or order synchronization. Table 4.8 shows the number of bug suspects that are

pruned out by this analysis. As we can see, the pruning is effective. The remaining false

positives mainly come from two types of unidentified custom synchronizations. One type

is imposed by non-loop control dependency. As illustrated in Figure 4.9(a), the reported

Con-Dangling bug S2, S3 can never happen due to the control dependency imposed by S1 and

S4. The second type is imposed by producer-consumer queues. As illustrated in Figure 4.9(b),

the assignment in S1 can never affect S5, because S5 can only access objects from the queue

trxlist and the update made in S1 is already overwritten by S2 when S3 puts the shared

object pointed by thd into the queue trxlist.

Thread 1

S1: if(obj->cleanup){

S2:    free(obj);

}

Thread 2

S3: if(!obj->cleanup){

S4:    obj->cleanup = 1;

}

Thread 1

S1: thd->query = NULL;
…

Thread 2

S4: thd = get_head(trxlist); 

S5: fputs(thd->query,...);S2: thd->query = “select”;

S3: add(thd,trxlist);

X X

(a) Custom synchronization imposed 
by control dependency other than loop

(b) Custom synchronization imposed 
by data dependency 

Figure 4.9: Two false positive examples caused by unidentified custom synchronization
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Bug-ID Con-UnInit Con-Dangling Con-NULL
Apache 0 0 4
Mozilla 10 0 0
MySQL 62 2 74
PBZIP2 18 0 8
Cherokee 109 21 64
Transmission 25 0 18
FFT 28 0 0

Table 4.8: Bug suspects pruned by synchronization analysis

Testing experience with Click

To better evaluate the in-house testing capability of ConMem, we applied ConMem to the

latest version of an open-source software system, Click [21], for which no concurrency bugs

had been previously reported.

Experimental setup Click is a popular open-source software router, originally developed

by a research group at MIT. Click contains around 220K lines of source code. It uses

multi-threading experimentally to speed up processing network packets.

The latest version (v-1.8.0) of Click contains an input suite designed by Click developers

to test the basic functionality of Click. This suite includes 22 test cases in total. We applied

ConMem to all 7 of the test cases that do not require modification of the operating system

(i.e., building modules into the kernel).

The testing process is straightforward. We executed each test input once with one

ConMem-tool attached to it.7 No modification was needed to either Click or ConMem.

Bug detection results ConMem reports 4–9 buggy interleavings for each test input, as

shown in Table 4.9. Since some code regions, such as the start-up code and shut-down code,

are covered by most or all test inputs, there are many overlapping bug reports among the 7

test inputs. After manual inspection, we found that the false-positive-vs-true-bug ratio ranges

from 3:1 to 2:4 for each test input. Altogether, ConMem reports 6 distinct buggy interleavings

that can lead to severe software failures, such as program crashes. These 6 buggy interleavings
7Currently, the Con-NULL, Con-Dangling, Con-UnInit, and Con-Ovfl are implemented as four separate

Pin tools. Therefore, we executed each test input four times, with each tool attached to one run. We could
combine these four into one Pin tool, and each test input would only need to be executed once.
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are caused by 2 different root causes in the program. One buggy interleaving reported by

Con-Dangling is demonstrated in Figure 4.10. As we can see, the master thread in Click

maintains a meta-data object, router_thread, for each router thread. Because the code does

not perform any synchronization, the master thread could delete that object prematurely

while it is still being used by the router thread. This bug can lead to a crash in Click.

Thread 1
(master thread)

S1: delete router_thread;

Thread 2
(router thread)

S2: router_thread.driver->driver_lock_tasks();

Under a bad execution order, thread 2 could access an object already deleted by thread 1.

buggy

correct

Figure 4.10: A concurrency bug that leads to a dangling pointer and finally a crash (from
Click-1.8.0)

ConMem has about a 1:1 false-positive-vs-true-bug rate for Click, which is consistent with

the earlier experiments shown in Table 4.5. The false positives here are mainly caused by a

complicated if-condition control-flow synchronization. This custom synchronization forces the

dereferences to certain shared pointers to either happen before the pointer deletion or to get

by-passed. This type of custom synchronization is not handled by ConMem.

As shown in Table 4.9, we also tried Races and Atom on these 7 test cases. The results

follow a similar trend to that in Table 4.5. Races and Atom cannot detect the bugs that

ConMem detected. For example, the bug depicted in Figure 4.10 is neither a race nor an

atomicity violation. Race bugs and atomicity-violation bugs should involve several accesses

to the same memory location with at least one write. This is not true for the bug in Figure

4.10 that involves a call to a C++ library function in Thread 1 and some reads in Thread 2.

Currently, neither Races nor Atom instruments the library code. Even if they do, there is a

large chance that no write to the conflicting memory location exists, depending on how delete

is implemented in the library.

Performance Click has two execution modes. The normal execution mode is IO-intensive,

where Click listens to the network. Under this mode, the overhead of ConMem depends

on the network traffic and is usually negligible. The other execution mode (“simulation

mode”) is CPU- and memory-intensive, where Click reads packages from a trace. Under the
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App. Races Atom. Con-Null Con-Dangling Con-UnInit Con-Ovfl ConMem Total
#FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug

Test 1 13 : 0 20 : 0 1 : 0 1 : 4 0 : 0 0 : 0 2 : 4
Test 2 18 : 0 22 : 0 3 : 0 1 : 4 1 : 0 0 : 0 5 : 4
Test 3 18 : 0 18 : 0 1 : 0 1 : 4 0 : 0 0 : 0 2 : 4
Test 4 19 : 0 41 : 0 2 : 0 1 : 2 0 : 0 0 : 0 3 : 2
Test 5 10 : 0 17 : 0 1 : 0 2 : 3 0 : 0 0 : 0 3 : 3
Test 6 28 : 0 25 : 0 1 : 0 2 : 1 0 : 0 0 : 0 3 : 1
Test 7 8 : 0 41 : 0 1 : 0 2 : 1 0 : 0 0 : 0 3 : 1

Table 4.9: Click’s ConMem testing reports. The false-positive numbers are collected before
ConMem-v pruning (Notes: 1. The bugs detected by ConMem have not been reported before.
2. There is overlap among the bugs reported for the 7 inputs.).

memory-intensive mode, each ConMem testing run introduces about a 20-times slow-down.

Without ConMem, the original 7 test cases take 0.259 seconds to finish. ConMem testing

takes 22.108 seconds in total, including 0.028 seconds for off-line analysis, and 22.08 seconds

for Con-Null, Con-Dangling, Con-UnInit, and Con-Overflow testing runs. The trace size of

ConMem-NULL is 16K bytes on average for the 7 test cases.

Summary Our experience of applying ConMem to Click is summarized as follows:

• ConMem is easy to use, straight out of box. The user needs to provide nothing other

than the standard test suite.

• ConMem is effective, it can detect previously unknown concurrency bugs.

• ConMem is accurate, compared to many traditional tools. Its false-positive rate was

low enough to allow us to manually inspect every bug report.

• ConMem imposes low-enough overhead for use during in-house testing. For CPU and

memory intensive applications, such as Click in simulation mode, ConMem imposes about

an 80-fold run-time overhead (= 4 tools, each with about 20x slowdown) and requires

about 500KB/sec for storing traces. We also see two approaches that can significantly

decrease ConMem’s overheads in the future: (1) Combining all four ConMem tools into

one, because each ConMem tool has only about 20 times overhead on Click and there is

significant redundancy among the four tools. (2) Saving redundant interleaving testing

among inputs that have overlapped code coverage. This is obviously more challenging,
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Figure 4.11: An overview of the ConSeq architecture.

but is also promising. As discussed in connection with Table 4.9, there is an overlap

among the concurrency bugs revealed by different inputs.

• While we have had a fairly positive experience with applying ConMem to Click, one

additional feature can make ConMem easier to use in the future: providing information

about why a bug suspect is not exposed by ConMem-v.

4.3 ConSeq

4.3.1 Overview of ConSeq

ConSeq mainly detects concurrency bugs that cause semantic errors. According to our

characteristics study in Chapter 3, there are four major types of failures caused by concurrency

semantic bugs – assertion failures, error messages, wrong outputs and hangs. ConSeq detects

all of them in a unified way. ConSeq is divided to two working stages: sequential stage, which

starts from the potential failure sites in the software and conducts the backward search to

locate the critical reads in the same thread; and concurrent stage, which identifies a buggy

interleaving that can feed critical reads with bad values to fail the program. Specifically, as

shown in Figure 4.11, ConSeq uses a combination of static and dynamic analyses. It uses the

following modules to create an analyzer that works backwards along error-propagation chains.

Failure-site identifier: this static-analysis component processes a program binary and

identifies instructions where certain failures might occur. For example, a call to __assert_fail

is a potential assertion-violation failure site. Currently, ConSeq identifies potential failure
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sites for four types of errors (Chapter 4.3.2). Developers can adjust the bug-detection coverage

and performance of ConSeq by specifying specific types of failure sites on which to focus.

Critical-read identifier: this component uses static slicing to find out potential critical

reads. Note that static analysis is usually not scalable for multi-threaded C/C++ programs.

By leveraging the short-propagation characteristic of concurrency bugs and the staged design

of ConSeq, our module is scalable to large C/C++ programs (Chapter 4.3.3).

Suspicious-interleaving finder: this dynamic-analysis module monitors one run of the

concurrent program, which is usually a correct run, and analyzes what alternative interleavings

could cause a critical read to acquire a different and dangerous value. By leveraging the

characteristics of concurrency bugs’ root causes, this module is effective for large applications.

Via this module, ConSeq generates a bug report, which provides a list of potential critical reads

that can potentially read dangerous writes and lead to software failures. Potential critical

reads, dangerous writes, and the potential failure sites are represented by their respective

program counters in the bug report. Additionally, the stack contents are provided to facilitate

programmers’ understanding of the bug report.

Suspicious-interleaving tester: this module tries out the detected suspicious interleav-

ings by perturbing the program’s re-execution (Chapter 4.3.5). It helps expose concurrency

bugs and thereby improves programmers’ confidence in their program. Via this module,

ConSeq prunes false positives from the bug report, and extends the report of each true bug

with how to perturb the execution and manifest the bugs.

Note that the boundaries of ConSeq’s static and dynamic analysis are not fixed. Making

the bug-detection technique scalable and applicable to large C/C++ applications is a principle

in ConSeq’s design. ConSeq uses dynamic analysis to refine static-analysis results, and static

analysis also takes feedback from run-time information.

Before diving into the technical details of ConSeq, we use the multi-variable concurrency

bug shown in Figure 4.1(c) as an example to demonstrate the work flow of ConSeq. When

we apply ConSeq to the binary of the Mozilla mail client, ConSeq’s failure-site identifier

identifies 200 assertions. One of them is the instruction 0x4f81d (i.e., the assertion-failure call
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site corresponding to S4 in Figure 4.1(c)). Next, ConSeq’s critical-read identifier statically

analyzes the control/data dependences leading to each assertion identified above. In particular,

instruction 0x4f7f2 (i.e., the read of runningUrl in statement S4 in Figure 4.1(c)) is identified

for the assertion site 0x4f81d. The application is then executed. Not surprisingly, no error

occurs during the execution. ConSeq analyzes the 31 executed potential critical reads one by

one. It identifies an alternative interleaving that might cause instruction 0x4f7f2 to read an

assertion-violating value, NULL, defined by instruction 0x8062e5 (S1 in Figure 4.1(c)). Finally,

ConSeq’s suspicious-interleaving tester executes the program again and triggers a failure. In

terms of users’ involvement, ConSeq only requires a user to provide one thing: a test suite.

Users are also allowed to provide a list of function names of interest (such as the customized

error-message function). ConSeq then will automate the whole bug-finding process described

above.

4.3.2 Identify potential failure sites

The failure-site identification module has three goals: (i) to identify potential failure sites

automatically, (ii) to identify them before a failure occurs, and (iii) to accomplish (i) and

(ii) with good accuracy and coverage. This module provides the starting points for ConSeq’s

backward concurrency-bug detection strategy and directly affects the false-positive and false-

negative rates of ConSeq. To achieve its goals, ConSeq follows two design principles:

(1) Use static analysis instead of dynamic analysis. Errors rarely occur during monitored

runs of concurrent programs. Static analysis can go beyond what occurs during a single

execution.

(2) Exploit the failure patterns of software bugs. Concurrency bugs, fortunately, have

similar failure patterns as sequential bugs, which are well-studied and well-understood.

Identifying explicit failure sites

According to the characteristics study in Chapter 3, failures of non-deadlock concurrency

bugs can be covered by four patterns that they share with sequential bugs. ConSeq identifies
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each pattern as follows.

Infinite Loop: For non-deadlock bugs, infinite loops in one thread are the main causes

of hangs (an example is shown in Figure 4.1(b)). Every back-edge in a loop is a potential

site for this type of failure. ConSeq identifies strongly connected components (SCCs) that

are potential failure sites for infinite-loop hangs by checking whether any shared-memory

read is included in the backward slice of each back-edge in an SCC. To identify nested loops,

CodeSurfer/x86 implements Bourdoncle’s algorithm [10], which recursively decomposes an

SCC into sub-SCCs, etc.

Assertion Violations: Assertion violations (Figure 4.1 (c)) are a major source of program

crashes. Fortunately, it is a common practice of developers to place assertions in their code.

Moreover, assertions are able to specify certain other types of errors. In C/C++ programs, a

call to gcc’s assert library function is translated to an if statement whose else-branch contains

a call to __assert_fail. The call sites on __assert_fail are considered to be potential

failure sites. Some applications use customized assertions, such as nsDebug::Assertion in

Mozilla. ConSeq also considers those call sites to be potential failure sites.

Incorrect Outputs: Most non-fail-stop software failures occur when the software gen-

erates incorrect outputs or totally misses an output. ConSeq considers a call to an output

function, such as printf and fprintf, as a potential incorrect-output failure site. Some

applications have special output functions, such as MySQL’s BinLog::Write. ConSeq allows

developers to specify application-specific output functions in a text file. ConSeq reads the

text file and identifies call sites on the specified functions.

Error Messages (consistency-check sites): Consistency checks have an interesting

role in concurrency bugs. They are usually not designed for catching synchronization bugs,

and simply reflect a developer’s wish to enforce some important correctness property. Luckily,

however, for many complicated concurrency bugs, there are warning signs long before the

ultimate failure arises. As a result, the error-propagation distance is greatly shortened and

backward bug-detection becomes much easier due to error messages. Writing such consistency

checks has been a common practice of programmers for a long time [68], and the presence of
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consistency checks can greatly help the approach taken by ConSeq.

ConSeq identifies calls to functions that print error messages as potential failure sites.

These include both library functions, such as fprintf(stderr,...), and application-specific

routines, such as the NS_WARNING in Mozilla and tr_err in Transmission (a BitTorrent client).

ConSeq allows developers to specify these error-reporting functions in a file. ConSeq reads

this file and identifies call sites on all these functions. In our experience, most applications

only have a few (usually just one or two) error-reporting routines. Therefore, we believe it

will not be a big burden for developers to write down these functions.

In the case of assertion failures and error messages, a condition that indicates whether the

value acquired at a given site is correct or not is obtained as a by-product. This condition is

used to improve the accuracy of ConSeq’s bug-detection capabilities (Chapter 4.3.4).

Inferring implicit error sites

As discussed above, consistency checks added by developers are very helpful in ConSeq’s

method for bug detection. What if developers did not provide any consistency checks?

Interestingly, research on sequential programs has faced this problem before, and some

solutions have been proposed. For instance, Daikon [35] is a tool that infers likely program

invariants based on evidence provided by (correct) training runs. Daikon’s most advanced

features allow for inference among derived variables, as well as set relations and arithmetic

relations between array elements. In this respect, Daikon can automatically provide information

that is similar to the consistency checks manually added by developers. We can treat those

places where Daikon identifies program invariants to be potential error sites.

Specifically, we first apply Daikon to the target software. Daikon’s frontend logs run-time

variable values at program points selected by Daikon. Daikon’s backend processes the log and

outputs a list of {program-point, invariant} pairs.

ConSeq checks every global read instruction I that reads global variable v. If Daikon

has identified an invariant involving v right before I, ConSeq identifies I as a potential

invariant-violation site.
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One implementation challenge we encountered is that the default frontend, kvasir-dtrace,

of Daikon’s academic version only collects information at function entries and exits. As a

result, we cannot obtain invariants at the granularity of individual instructions. With the help

of the Daikon developers, we tried two ways to get around this problem. For small applications

in our experiments, we manually inserted dummy functions before every global-variable read.

For large applications in our experiments, we replaced Daikon’s default front-end with our

own PIN tool. This PIN tool collects run-time information before every global-variable read,

and outputs this information in the input format used by kvasir-dtrace. By this means, the

Daikon backend can process the Pin tool’s output and generate invariants.

For large applications, one potential concern is that Daikon could identify a huge number of

invariants, which could impose a large burden on ConSeq’s critical-read identifier, suspicious-

interleaving finder, and suspicious-interleaving tester. Fortunately, Daikon provides ranking

schemes [36] to identify important invariants. ConSeq leverages the ranking mechanism to

focus on the most important invariants.

In summary, ConSeq currently focuses on five types of potential failure/error sites. Except

for the potential error sites inferred by Daikon, all sites are identified by statically analyzing

the program.

4.3.3 Identifying potential critical reads

The goal of the critical-read identification module is to identify potential critical-read instruc-

tions that are likely to impact potential failure sites through data/control dependences. It

uses static slicing to approximate (in reverse) the second propagation phase of a concurrency

bug, as shown in Figure 3.3. There are two major design principles for this module:

1. Use static analysis rather than dynamic analysis to identify which instructions may

affect a failure site. ConSeq is different from failure-diagnosis tools. It aims to expose

concurrency bugs without any knowledge of how they may arise or even if

they exist, so its analysis cannot be limited to any specific monitored run. Specifically,

ConSeq uses static slicing for this purpose.
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2. Only report instructions with short propagation distances as potential critical reads.

Computing the complete program slice, e.g., all the way back to an input, is complicated

and also unnecessary for ConSeq. ConSeq leverages the short-propagation characteristic

of concurrency bugs (Chapter 3) to improve bug-detection efficiency and accuracy.

General issues

We had to make several design decisions that are general to all types of failure sites:

Must critical-read instructions access shared memory? Instructions that read thread-local

variables could be of interest for sequential bug detection, but not for concurrency bug

detection, because their values cannot be directly influenced by interleavings. To get rid

of these instructions, ConSeq first uses static analysis to filter out as many stack accesses

as possible. ConSeq’s run-time monitoring will proceed to prune out the rest of the stack

accesses. Of course, it is possible for threads to share values using the stack, although it is

rare in practice. Escape analysis would be able to identify these special stack accesses, and

make ConSeq more accurate. We leave this as future work.

Shall we consider inter-thread control/data dependences? Multi-thread static slicing is

much more difficult than single-thread slicing. Fortunately, because ConSeq’s design separates

the propagation steps in a concurrency bug into inter-thread and intra-thread phases, here

only single-thread dependence analysis is needed to identify potential critical reads. All

analyses involving multi-thread interleavings will be conducted in the suspicious-interleaving

finder (Chapter 4.3.4).

How to set the propagation-distance threshold? In accordance with the short-propagation

heuristic, ConSeq only reports read instructions whose return values can affect the failure

sites through a short sequence of data/control dependences. Our static-slicing tool provides

the slice, together with the value of the shortest distance to the starting point of the slice,

for each instruction of the slice. An example is shown in Figure 4.12. ConSeq provides a

tunable threshold MaxDistance for users to control the balance between false negatives and

false positives. By default, ConSeq uses 4 as MaxDistance. A detailed evaluation is presented

in Chapter 4.3.7. We will explore other metrics for propagation distance in the future.



73

0x4f7f2     read runningUrl

0x4f81d    call nsDebug::Assertion

if ( InProgress ) {

   isBusy=TRUE;

if (isBusy)

   if(!runningUrl)

   nsDebug::Assertion(...);

Distance = 4

Distance =3

Distance=2

Distance=1

Data
Dependence

Control
Dependence

Control
Dependence

Control
Dependence

0x4884e   read InProgress

0x48857    write isBusy

0x4f795     read isBusy

0x48855   conditional jump

0x4f799     conditional jump

Figure 4.12: Static slicing of machine code (right) and the distance calculation.

How to reuse the analysis results across inputs? Because ConSeq uses static instead of

dynamic analyses, the results from this module, as well as those from the failure-site identifier,

can be reused for different inputs. Our current static slicer analyzes one object file at a time.

To speed up the analysis when there are only a few inputs, we first process those object files

that these inputs would touch.

Customization for different types of failure sites

ConSeq customizes the analysis for each type of failure site:

• Each consistency-check failure site is a ‘call’ instruction that calls a standard or custom

error-reporting routine. ConSeq directly applies slicing for that instruction. For a ‘call’

instruction, the first step backward is always through a control dependence, followed by

a sequence of control and data dependences.

• Each assertion-failure site is a ‘call’ to the __assert_fail library routine. We handle

it in the same way as a consistency-check failure site.

• Each invariant-violation failure site is an instruction that reads heap or global variables.

No customization is needed. ConSeq directly applies control-and-data slicing for each of

these instructions.

• Each incorrect-output site is a ‘call’ instruction to output functions. Before applying

static slicing, we first use a simple static analysis to identify all instructions that push

argument values onto the stack (sometimes via push and sometimes via mov).8 We add

8Figuring out the parameters to a call in the binary is easy for the CDECL calling convention. If we need
to process GCC __fastcalls, we will need to go back to analyzing the source code. The current implementation
of ConSeq does not handle __fastcalls.
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those instructions into the slice (at distance 1) and apply slicing to these instructions

and the original call.

• Each infinite-loop site involves a jump instruction that conditionally jumps out of a

loop. Among instructions that are on the slice, we only keep those that are repeatedly

executed inside the loop body, because only those instructions could lead to the loop

executing repeatedly.

Static slicing details

Program slicing is an operation that identifies semantically meaningful decompositions of

programs, where the decompositions may consist of elements that are not textually contiguous

[127]. A backward slice of a program with respect to a set of program elements S consists of all

program elements that might affect (either directly or transitively) the values of the variables

used at members of S. Slicing is typically carried out using program dependence graphs [53].

CodeSurfer/x86. ConSeq uses backward slicing to identify shared memory reads that might

impact each potential failure site. To obtain the backward slice for each potential failure site,

it uses CodeSurfer/x86 [5], which is a static-analysis framework for analyzing the properties

of x86 executables. Various analysis techniques are incorporated in CodeSurfer/x86, including

ones to recover a sound approximation to an executable’s variables and dynamically allocated

memory objects [6]. CodeSurfer/x86 tracks the flow of values through these objects, which

allows it to provide information about control/data dependences transmitted via memory

loads and stores.

Side-Stepping Scalability Problems. To avoid the possible scalability problems that can

occur with CodeSurfer/x86 due to the size of the applications used in evaluating ConSeq, we

set the starting point of each analysis in CodeSurfer/x86 to the entry point of the function to

which a given potential failure site belongs, instead of the main entry point of the program. By

doing so, CodeSurfer/x86 only needs to analyze the functions of interest and their transitive

calls rather than the whole executable. Thus the static analyses time grows roughly linearly

in the number of functions that contain failure sites. This makes ConSeq much more scalable,
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as will be illustrated in Chapter 4.3.7.

This approach is applicable in ConSeq because—based on the observation that the error-

propagation distance is usually short, as discussed in Chapter 3—ConSeq only requires a short

backward slice that can be covered in one procedure. The backward-slicing and other analysis

operations in CodeSurfer/x86 are, however, still context-sensitive and interprocedural [53].

Moreover, to obtain better precision from slices, each of the analyses used by CodeSurfer/x86

is also performed interprocedurally: calls to a sub-procedure are analyzed with the (abstract)

arguments that arise at the call-site; calls are not treated as setting all the program elements

to >.

Analysis Accuracy. To obtain static-analysis results that over-approximate what can occur

in any execution run, all the program elements (memory, registers, and flags) in the initial

state with which each analysis starts are initialized to >, which represents any value. Such an

approximation makes sure that no critical read will be missed by ConSeq at run time. Of

course, some instructions could be mistakenly included in the backward slice and be wrongly

treated as critical reads. Fortunately, our short-propagation-distance heuristic minimizes the

negative impact of over-approximation. In practice, we seldom observe the inaccuracy caused

by this over-approximation.

Finally, the CodeSurfer/x86 framework has information about every direct calls’ call-sites.

Therefore, if needed, it can also support backward slicing that starts at the entry of a procedure

and backs up into the callers.

4.3.4 Identifying suspicious interleavings

The module for finding suspicious interleavings focuses on the first phase of concurrency-bug

propagation. ConSeq monitors a program’s (correct) execution, collects a trace using binary

instrumentation, and analyzes the trace to decide whether a different interleaving could change

the dynamic control/data dependence graph and generate a potentially incorrect value at a

critical read.

Because it is impractical to check all potential interleavings and all potential dynamic
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control/data dependence graphs [56], ConSeq leverages the short-propagation characteristic

(Chapter 3) and the widely used shallow-depth heuristic (i.e., the manifestation of most

concurrency bugs involves only two or three shared-memory accesses) [84, 85, 11, 99]. It

examines writes that are one data-dependence step backward from each potential critical read

r, and looks for suspicious interleavings that could make r obtain a potentially incorrect value

written by a write access that is different from the one that occurred in the monitored run.

The algorithm in ConSeq is neither sound nor complete. Rather, ConSeq tries to balance

generality, simplicity, and accuracy.

The core analysis

We formalize the key question this portion of ConSeq has to answer as follows: in a concurrent

program’s execution trace T , a read instruction r gets a value defined by a write access w; we

ask whether r can read a value defined by a different write w ′ in an alternative interleaving.

To realize a w ′–r data-dependence, three conditions have to be satisfied. First, w ′ and r

need to access the same memory location m. This condition is fairly easy to check, as long as

ConSeq records the addresses of the locations touched by memory accesses.

Second, w ′ needs to execute before r. This condition can be prohibited by barrier-style

synchronizations. Therefore, ConSeq monitors pthread_create/join, pipe, and barrier

at run-time to maintain vector-clock time-stamps for each thread and hence each access. A

w ′–r dependence is infeasible if r has a smaller time-stamp than w ′. ConSeq computes the

vector-clock time-stamps in a similar way as traditional happens-before race detectors [93].

ConSeq does not update time-stamps according to lock/unlock operations, because these

operations do not provide any execution-order guarantees.

Third, the value written by w ′ to m is not overwritten before it reaches r. There are

three situations in which an overwrite always happens, as demonstrated in Figure 4.13. The

first is due to intra-thread program logic, when there is another write w to m between w ′

and r in the same thread as shown in Figure 4.13(a). The second is due to barrier-style

synchronization, as shown in Figure 4.13(b). That is, synchronization operations, such as
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Figure 4.13: A value written by W’ may never reach R

barrier or pthread_create/join, force w ′ to always execute before another write w and w

to always execute before r. The third is due to mutual exclusion, as shown in Figure 4.13(c).

When w ′ is followed by w in a critical section from which r excluded, the result of w ′ can

never reach r. The situation is similar when r is preceded by w in a critical section from which

w ′ is excluded. As long as the trace includes sufficient information about lock operations,

ConSeq can analyze all of these situations.

Pseudo-code for the method described above is given as Algorithm 1.

The complete algorithm and extensions

ConSeq uses binary instrumentation to monitor three types of operations at run-time: critical-

read instructions, instructions that write global and heap variables, and synchronization

operations. For each memory-access instruction, ConSeq records the program counter, the

address of the accessed memory, and the value of the accessed memory location before the read

or after the write. For each lock operation (pthread_mutex_(un)lock), ConSeq records the

address of the lock variable. For each barrier-style synchronization (pthread_create/join,

pipe, barrier,etc.), ConSeq updates the vector time-stamps of every thread. ConSeq uses

one trace file for each thread to avoid slow global synchronization. Given these pieces of

information, ConSeq can easily analyze the trace and find out all feasible w ′–r dependences.

ConSeq also extends the basic algorithm in three ways.

First, ConSeq records the values read by r and written by w ′ during the correct run,

denoted by v ′ and v, respectively. If the two values are the same, ConSeq does not report a
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Algorithm 1 ConSeq identify suspicious interleavings
Require: write access w

Require: write access w ′

Require: read access r

Require: w,w ′,r access the same shared memory address
Ensure: return true if r can read a value from w ′, false if not

1: /*
Time-stamp comparison is based on the happens-before relationship and vector-clock
time-stamps
*/

2: if r.time-stamp < w ′.time-stamp then
3: /*r happens before w ′ */
4: return false
5: end if
6: if w ′.time-stamp < w.time-stamp < r.time-stamp then
7: /*w ′ is overwritten by w */
8: return false
9: end if

10: if w is executed before r in a critical section CS1, w ′ is in critical section CS2, CS1 and
CS2 are from different threads, and CS1 is mutually exclusive from CS2 then

11: return false
12: end if
13: if w ′ is executed before w in a critical section CS1, r is in critical section CS2, CS1 and

CS2 are from different threads, and CS1 is mutually exclusive from CS2 then
14: /*w ′ is overwritten by w */
15: return false
16: end if
17: /*Report feasible in all the other cases */
18: return true

suspicious interleaving. To further prune false positives, ConSeq also evaluates v ′ against the

assertion/error-condition before reporting a suspicious interleaving, using a symbolic-execution

module inside ConSeq.

Second, the basic algorithm cannot be directly applied for detecting infinite loops. Suppose

that r is a potential critical read that is associated with a potential infinite-loop site. During the

monitored run, ConSeq records the write w and its value v that are read by the last dynamic

instance of r right before the loop terminates. Now suppose that the basic algorithm identifies

an alternative interleaving in which this specific instance of r can receive a different value

from an alternative write w ′. This condition is insufficient to conclude that this interleaving



79

is suspicious. If w is executed after w ′, another instance of r in a later iteration of the loop

can still receive v from w and terminate the loop. Therefore, for each alternative write w ′

identified by the basic algorithm, ConSeq further compares the happens-before time-stamps

between w and w ′. An infinite-loop suspect is reported when w ′ is strictly ordered after w

and when w ′ is concurrent with w.

Third, interleavings could make a critical read r execute too early and receive an uninitial-

ized value. ConSeq also reports these cases as suspicious interleavings.

Discussion. There are several sources of inaccuracy in our analysis that can cause false

positives and negatives. One is that the value written by a write w ′ might vary in different

runs. Another is that interleavings could change the control flow and cause inaccuracy of

our analysis. Finally, ad-hoc synchronization has been a problem for almost all predictive

concurrency-bug-detection tools. We leverage our static analysis component, which identifies

loops, back-edge jumps, and backward slices of back-edge jumps, to identify one type of

common ad-hoc synchronization (one thread spins on a while-flag to wait for another thread).

The identification algorithm is the same as the one presented in Chapter 4.2.6. After identifying

this type of ad-hoc synchronization, ConSeq treats occurrences as traditional barrier-style

synchronizations.

4.3.5 Bug Exposing and Validation

The input to ConSeq-tester, the module for testing suspicious interleavings, is a list of data

dependences, represented as write/read pairs (wbad–r). The goal is to exercise suspicious

interleavings that can realize these suspicious data dependences, so that we can either reliably

trigger the bugs or prune them as false positives.

To achieve this goal, ConSeq uses a testing technique that has been used in several

previous bug-detection tools [113, 99]. Specifically, ConSeq instruments the program binary

and inserts conditional delays with time-outs before every r and wbad instructions. ConSeq

then re-executes the program with the original input. Because ConSeq is used during in-house

testing, the input is available. At run time, the instrumented code either suspends for a while
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Figure 4.14: Exercising a suspicious interleaving.

the thread that is going to execute wbad, to wait for the arrival of r in another thread, or

suspends for a while the thread that is going to execute r, to wait for the arrival of wbad.

When both wbad and r are ready to execute, the instrumented code will force the program

to execute wbad immediately followed by r. Therefore, the probability that those wbad–r

dependences occur is significantly improved. An example of how ConSeq-tester exercises a

suspicious interleaving is shown in Figure 4.14.

We have encountered two interesting issues in ConSeq.

First, wbad and r might be from the same thread. The basic scheme shown in Figure 4.14

does not work for this case, because ConSeq will not see r coming when it blocks a wbad

operation that is from the same thread as r. ConSeq’s suspicious-interleaving identification

module marks these cases during trace analysis. During testing, instead of blocking wbad,

ConSeq will let it proceed and block any following writes that touch the same memory location

that wbad accesses, until r is executed. Second, sometimes wbad and r are protected by the

same lock. In those cases, ConSeq inserts a delay before the thread enters the corresponding

critical section.

Like many previous concurrency-bug validation tools [89, 99], ConSeq can significantly

increase the probability that a concurrency bug manifests, but it cannot provide a 100%

guarantee to provoke every bug. In Chapter 4.3.7, however, we will see that ConSeq performs

well in practice.

4.3.6 Experimental Methodology

ConSeq’s dynamic modules are implemented using the PIN [80] binary-instrumentation
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Bug-ID Symptoms Application LOC
Aget1* Wrong output Aget-0.4.1 1.1K
FFT Wrong output FFT 1.2K
MySQL1 Miss log MySQL-4.0.12 681K
Moz1 Assertion Mozilla-1.7 1.2M
MySQL2 Assertion MySQL-4.0.16 654K
Trans Assertion Transmission 95K
Moz2 Error message Mozilla JS-1.5 87K
Moz3 Error message Mozilla N/A
MySQL3 Error message MySQL-5.0.16 1.6M
MySQL4 infinite-loop MySQL-5.0.41 1.6M
OO infinite-loop OpenOffice N/A

Cherokee-0.99.48*, web server 96K
Click-1.8.0*, modular router 290K

Table 4.10: Applications and Bugs (Mozilla-JS is the Mozilla Javascript Engine; Cherokee-
0.99.48 and Click-1.8.0 are both the latest versions and previously had no known buggy inputs;
Moz3 and OO are extracted from old versions of Mozilla and OpenOffice that can no longer
compile. *:ConSeq detected new bugs in Aget, Cherokee, and Click.)

framework. The experiments are carried out on an 8-core Intel Xeon machine running Linux

version 2.6.18.

We evaluated ConSeq on 8 widely used C/C++ applications. This includes two server

applications (the MySQL database and the Cherokee web server), two client applications

(Transmission BitTorrent client and Mozilla), two desktop applications (Aget file downloader

and OpenOffice), one router (Click [21]), and one scientific application kernel (FFT [128]).

Input design is usually out of the scope of dynamic bug detection [75, 111] and interleaving

testing [85, 99, 113], and ConSeq is no different. The intended usage scenario is that ConSeq

will be applied to a test suite during in-house testing to expose hidden interleaving errors from

(apparently) non-buggy runs on inputs provided by developers or testers. Our experiments

were designed to provide insight on the following two questions:

(1) Can ConSeq handle a wide range of types of concurrency bugs? To address this

question, and to evaluate ConSeq’s bug-detection capability in comparison with traditional

bug-detection tools, we used a large set of concurrency bugs that cover different failure

symptoms from different applications. In particular, we took 11 concurrency bugs—which
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cover assertion failures, hangs, wrong outputs, and error-message problems—from the change

logs and bug databases of 6 applications (the first 11 lines of Table 2). In these experiments,

to drive ConSeq’s bug-detection process we used inputs that were known to have the potential

of triggering the bug. Our experiments did not leverage any information about the bugs, other

than the known inputs. In fact, none of the bugs ever manifested themselves during the

runs that ConSeq performs to generate execution traces for subsequent bug-detection analysis.

This methodology is consistent with that used in many previous studies [99, 113]. We will see

that ConSeq was able to handle a wide range of types of concurrency bugs (detecting 10 of

the 11 bugs).

(2) Can ConSeq find new bugs in the setting of in-house testing (i.e., bugs are not previously

known, and inputs are supplied by knowledgeable users)? To mimic the setting of in-house

testing, we applied ConSeq to the latest versions of the Cherokee web server [18] and the

Click [21] modular router, using test inputs provided by their developers. We were not aware

of any concurrency bugs in these two programs. We will see that ConSeq found concurrency

bugs in them. Note that these experiments were not started until ConSeq’s design and

implementation were completely finished. The ability of ConSeq to detect such unknown

concurrency bugs also demonstrates the effectiveness of heuristics like the short-propagation

heuristic.

Our evaluation of false positives and performance overhead completely executes each

input (or set of client requests) from the beginning to the end. The reported performance

numbers are the average across 5 runs. The reported false-positive numbers are stable across

the multiple runs that we tried. By default, we set MaxDistance to 4. We also evaluate

false-positive and false-negative results under different MaxDistance settings. ConSeq-Daikon

demands special setup, and is discussed separately in Chapter 4.3.7.

For comparison, we also evaluated two state-of-the-art cause-oriented approaches to

detecting concurrency bugs under the same setting. Race is a lock-set–happens-before hybrid

race detector, commonly known as Helgrind, implemented as part of the open-source bug-

detection tool Valgrind [91]. Atom [99] detects the most common type of atomicity bug (two
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accesses in one thread unserializably interleaved by another thread [74, 121, 75]). Similar to

ConSeq, these two detectors aim to detect bugs from correct runs.

4.3.7 Experimental Results

Overall bug-detection results

Table 4.11 shows the overall bug-detection results. As we can see, ConSeq has good coverage

in bug detection. It detected 10 out of the 11 bugs. Race and Atom only correctly detected 3

and 4 bugs, respectively.

Aside from the bug in Aget listed in the Table 4.10, ConSeq detected two new bugs in Aget

that have never been reported before (one by tracing back from a printf call site and one by

finding a violation of a (candidate) invariant identified by ConSeq-Daikon). In MySQL-5.0.16,

ConSeq detected an infinite-loop concurrency bug initially reported in MySQL-5.0.41, which

shows that the bug actually existed in the older version and can be triggered using a different

input. Our analysis of Cherokee-0.99.48 and Click-1.8.0 used the basic inputs provided in the

applications’ test suites, and ConSeq discovered bugs in them as we will see in Chapter 4.3.7.

ConSeq Race Atom
Bug-ID Detected Detected Detected
Aget1
FFT X X
MySQL1 X X
Moz1 X
MySQL2 X
Trans X
Moz2 X X X
Moz3 X X
MySQL3 X X X
MySQL4 X
OO X

Table 4.11: Bug detection results (X: detected; Blank: not).

Atom targets single-variable atomicity violations that involve three accesses, and cannot

detect concurrency bugs caused by other interleaving patterns, such as the bugs in Moz-1

(a multi-variable atomicity violation), MySQL-2 and OO (anti-atomicity violations where
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the software behaves correctly only when a certain code region in a thread is not atomic),

Moz-3 (an atomicity violation involving more than three accesses), MySQL-4 and Trans (order

violation), etc. Race suffers from a similar source of false negatives as Atom: the root cause

of many of these bugs has nothing to do with locks, and many buggy code fragments did

use locks correctly (e.g., OO, MySQL-4). In addition, Race uses some heuristics to lower the

false-positive rate (e.g., not reporting a race when earlier races are already reported on that

variable), which leads to some false negatives.

ConSeq’s effect-oriented approach means that its bug-detection capabilities are not limited

to any specific interleaving pattern, and thus ConSeq can detect bugs that Race and Atom

cannot. Chapter 4.3.1 has already discussed how ConSeq detects Moz-1, the multi-variable

bug illustrated in Figure 4.1(c). Figure 4.15 shows an anti-atomicity example (MySQL2).

S3 from the slave thread wants to use the value of pos defined by the master thread (S2) to

read the log. Unfortunately, S3 could non-deterministically execute before S2 and mistakenly

read a value defined by its own thread, leading to the MySQL failure. The bug is obviously

not a race, because all accesses are well-protected. The bug is also not an atomicity-violation

bug, because MySQL executes correctly when the atomicity between S1 and S3 is violated!

Furthermore, it is not a simple order-violation bug, because there are many dynamic instances

of S1, S2, and S3. No order between S2–S1 or S2–S3 can guarantee failure. With a cause-

oriented approach [76, 116], more sophisticated interleaving patterns and a large number

of training runs are needed to detect this bug. In contrast, with ConSeq’s effect-oriented

approach, this bug presents no special challenges. MySQL developers already put a sanity

check before each log read: assert(pos_in_file + pos == req_pos). Analyzing backwards

from that check, ConSeq easily discovers the bug.

correct order
incorrect order

 ;pos  = my_pos
unlock (LOG_lock);

lock (LOG_lock);

log_read(pos );
assert(   );req_pos == pos +pos_in_file

......

S1:

lock (LOG_lock);

lock (LOG_lock);

unlock (LOG_lock);
pos+= 4;

unlock (LOG_lock);
S3:

Slave Thread

S2:

Master Thread

Figure 4.15: An example showing that ConSeq can detect a non-race, non-atomicity-violation
bug (simplified for purposes of illustration).
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New bugs detected by ConSeq: Apart from detecting the bugs described above,

ConSeq also detected two more concurrency bugs that we were unaware of in Aget, and a

known infinite-loop bug in a different version of MySQL than originally reported.

More interestingly, ConSeq found an output non-determinism in Cherokee and two bugs in

Click. For example, one bug in Click can cause locks to be destroyed when they are still in use.

ConSeq can detect this bug using any input provided in Click’s test suite. Specifically, after

a correct run of Click, ConSeq reported that an error message "Spinlock:: Spinlock():

assertion ’_depth == 0’ failed" could be triggered under a different interleaving. The

report accurately points us to the bug. In terms of the root cause, this bug is a non-datarace

order-violation bug.

False negatives: There is one bug in Aget that evaded detection by all three tools. The

bug is an atomicity violation that involves 11 threads and 21 shared variables. ConSeq failed

to detect it because the bug involves a long propagation distance. However, with the support

of Daikon, ConSeq can successfully detect it, see (Chapter 4.3.7).

ConSeq and traditional tools look at concurrency bugs from different perspectives and can

miss bugs in different ways. Race and Atom have false negatives in the examples discussed

above because they cannot cover certain interleaving patterns. ConSeq will inevitably miss

some bugs due to missing certain types of failure sites or due to error-propagation distances

that exceed the threshold used in the short-propagation heuristic. Of course, the coverage of

ConSeq could be further improved in the future by adding more failure templates or tuning

the MaxDistance threshold. It could also be helped by the use of additional invariant-inference

techniques and by developers who are comfortable with adding consistency checks. In summary,

ConSeq can well complement existing bug-detection approaches.

False positives

Before suspicious-interleaving testing. False positives have always been a problem in

concurrency bug detection, especially for predictive bug detectors that need to analyze a huge

number of potential interleavings, such as ConSeq, Race, and Atom.



86

ConSeq Race Atom Base
Bug-ID OUT ASS ERR LOOP
Aget1 0 0 0 0 2 4 0
FFT 0 0 0 0 8 16 20
MySQL1 0 0 0 0 127 51 77
Moz1 0 0 0 0 26 n/a OM
MySQL2 0 4 2 5 163 402 OM
Trans 0 2 0 0 42 33 136
Moz2 1 4 0 0 20 279 244
Moz3 0 0 0 0 0 0 0
MySQL3 0 4 3 7 714 1026 OM
MySQL4 0 1 3 0 180 552 197
OO 0 0 0 0 0 0 0
Cherokee 0 0 1 3 40 296 OM
Click 0 1 0 0 13 20 37

Table 4.12: False positives in bug detection. (OM means analysis runs out of memory before
finish.)

As shown in Table 4.12, ConSeq has much better accuracy than Race and Atom,9 exhibiting

only about one-tenth the false-positive rate of the latter two. For 11 out of the 13 cases,

ConSeq only has 0–5 false positives. Compared to traditional predictive bug-detection tools,

ConSeq can save significant testing resources and manual effort by developers.

The main reason that ConSeq reports fewer false positives than traditional approaches is

that its effect-oriented approach has made it much more focused. To validate this, we also

measured the false-positive rate for ConSeq with identification of critical reads turned off. The

numbers are roughly comparable to the ones for Atom, as shown by the last column (‘Base’)

in Table 4.12. Actually, if not guided by potential failure sites and critical reads, the analysis

runs out of memory before finishing for several MySQL and Mozilla workloads, because the

interleaving space is huge. This is exactly why ConSeq identifies critical read instructions

based on potential failure patterns.

The false positives of ConSeq are of two types: (1) Unidentified customized synchronization

operations make a suspicious interleaving infeasible. This reason is responsible for all but 3

cases. (2) A different but still correct value is read at a critical read r. This is responsible for

9We conducted manual validation for randomly sampled Race and Atom bug reports.
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3 false positives.

After suspicious-interleaving testing. ConSeq-tester prunes out all the false positives

discussed above with one false negative. Specifically, ConSeq-tester successfully makes the 9

bugs detected by ConSeq in Table 4.11 manifest themselves. Unfortunately, of the two new

bugs detected by ConSeq in Click, one cannot be automatically exposed by ConSeq-tester. Its

manifestation requires a complicated sequence of branches to be followed, involving multiple

branch points in Click.

For those bugs that can be automatically exposed by ConSeq-tester, their manifestation

can all be reliably repeated by inserting delays at the same places recorded by ConSeq-tester,

which can help programmers perform further diagnoses.

Detailed bug-detection results

Sensitivity of MaxDistance: In ConSeq, the MaxDistance threshold affects how many

read instructions are considered potentially ‘critical’. We measured the false positives and false

negatives of ConSeq under different MaxDistance settings. The total number of false positives

gradually increases, as does the bug-detection capability. Adding all 13 bug-detection runs

together, ConSeq reports 25, 33, 37, 41, 61 false positives in total, with MaxDistance set to 1,

2, 3, 4, and 5, respectively. ConSeq detects 6, 8, 9, 10, and 10 out of the tested 11 bugs, with

MaxDistance set to 1, 2, 3, 4, and 5, respectively. These numbers demonstrate the usefulness

of static slicing in ConSeq: if ConSeq only looks at shared variables right at the failure site,

almost half of the bugs will be missed.

Potential failure sites and potential critical reads. Table 4.13 shows the size of the

object files processed by our static-slicing tool and the number of potential failure sites and

potential critical reads identified. As we can see, our static-analysis component can handle

large applications whose object files are tens of mega-bytes.

Performance results

ConSeq is designed for in-house testing and goes through three phases. The first phase of
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Object # of Failure # of Potential Critical
File Size Sites Reads

Aget1 56K 86 49
FFT 33K 52 111
MySQL1 15M 2137 8562
Moz1 4.9M 142 397
MySQL2 14M 487 1369
Trans 1.2M 158 232
Moz2 1.4M 856 929
Moz3 5.7K 1 1
MySQL3 25M 1349 2020
MySQL4 27M 867 2341
OO 13K 26 75
Cherokee 2.6M 424 1261
Click 24M 386 1365

Table 4.13: Potential failure sites and potential critical reads.

ConSeq uses static analysis to identify potential failure sites and potential critical reads. This

step is not performance-critical, because it is conducted only once for each piece of code. It can

be re-used across different testing runs and different inputs. Even after a code modification,

ConSeq only needs to re-analyze those object files that have been changed. In our experiments,

the static analysis is scalable. It can finish within a couple of hours for most applications.

Processing MySQL3 takes the longest time — 18392 seconds or about 5 hours.

The second phase of ConSeq takes a test input, runs it once to collect a trace, and analyzes

the trace to report suspicious interleavings. At the end of this step, concurrency bugs are

reported as shown in Table 4.11 and 4.12. This step would be repeated many times during

in-house testing and is the most important for ConSeq’s performance. Table 4.14 shows the

results for this phase. ConSeq’s run-time overheads for the four types of failure patterns

are similar, so for each application in the table we only present the worst-case performance

and largest trace size among these four cases. Adding the run-time and the time for off-line

analysis of the trace together, ConSeq introduces execution overhead of 1.26X — 38.5X for

each test input, which is suitable for in-house use. ConSeq’s trace sizes are reasonably small.

The biggest trace size is about 115MB in our experiments, as shown in Table 4.14. The peak

memory consumption of ConSeq at run-time is less than 100 MB for all applications.
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At the end, ConSeq also has an optional step of suspicious-interleaving testing. This step

imposes less than 10–55% execution overhead for validating each bug report. Given the small

false-positive rate of ConSeq, this step does not take a long time and can be omitted by

developers. In our experiments, MySQL3 had the largest accumulated overhead at this step,

because it has the largest number of false positives. The baseline run of MySQL3 finishes in

0.46 seconds. In total, ConSeq took 10.6 seconds for the validation step for all 15 reported

suspicious interleavings and pruned out 14 false positives.

Base Run-Time Trace Trace
Line Overhead (%) Analysis Size

Aget1 12.45s 26% 0.01s 24.7K
FFT 0.05s 2724% 0.01s 1.2M
MySQL1 0.18s 21.1% 0.27s 2.9M
Moz1 0.18s 444% 1.57s 36M
MySQL2 0.13s 157% 0.27s 18M
Trans 1.17s 210% 0.01s 132K
Moz2 12.0s 1065% 0.01s 490K
MySQL3 0.46s 130.2% 6.77s 67M
MySQL4 0.10s 135.5% 0.13s 17M
Cherokee 11.26s 21.28% 11.45s 115M
Click 0.02s 3846% 0.01s 80K

Table 4.14: Performance of trace collection and analysis (Base Line is the time for the original
test run w/o any instrumentation.)

Experience with ConSeq-Daikon

As discussed in Chapter 4.3.2, we played some tricks to get around the granularity limitations

of Daikon’s frontend. For MySQL, we replaced the default frontend with our own PIN tool.

Daikon’s backend generates invariants from the log dumped by our PIN tool. For Aget, a

relatively small program, we manually inserted dummy functions before every global-variable

read and then instructed Daikon’s frontend kvasir-dtrace to record all global variables at the

exit of these dummy functions. Note that this is not a fundamental limitation of Daikon. In

fact, the commercial version of Daikon can provide invariants at instruction-level granularity,

and could have been used straight out of the box.
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MySQL1: After a training phase with a mix of 50 INSERT, 25 SELECT, and 25 DELETE

queries to MySQL server, Daikon produced a total of 338 equality invariants, each associated

with one instruction that reads a global variable. ConSeq considers these instructions as

potential critical reads and detects that 13 out of these 338 invariants could be violated by pure

interleaving changes. Among these 13, one of them points to a read of binlog::log_type

inside function MySQL::insert. Daikon observes that this variable’s value is always 3 (i.e.,

LOG_OPEN), while ConSeq finds that the value could become 0 (i.e., LOG_CLOSED) under an

alternative interleaving. This turns out to be exactly the MySQL-1 bug. The abnormal

LOG_CLOSED value would cause MySQL to miss some logging entries.

Among the other 12 possible violations reported by ConSeq, ten of them are false positives

that cannot actually occur due to custom synchronization. The other two can truly occur

and violate the candidate invariants proposed by Daikon. However, they are not bugs and do

not lead to software failures.

Aget: Aget contains a concurrency bug that involves 11 threads and 21 shared variables

(1 scalar and 20 entries in an array of structs), as shown in Figure 4.16. For purposes of

illustration, we only show 11 involved variables here.

...

Thread i [1..10] Signal Thread

S1:

lock ( l );

S3: bwritten

unlock ( l );

S2: memcpy(dst.wthread, 
wthread[i].offset += dw;

 += dw;

wthread );

bwrittendst.bwritten = S4: ;

Aget Download.c, Resume.c

Figure 4.16: A multi-variable atomicity-violation bug that involves 11 threads and many
shared variables.

After 50 training runs, Daikon generates equality invariants at 20 program locations.

Based on that information, ConSeq reports 2 bugs. The first bug is Aget1, which cannot

be accurately detected by any previous tool. The second is a new bug in Aget

that has never been reported. Specifically, Daikon showed the following invariants just

before S4 in Figure 4.16:

..dummy_bwritten_005():::EXIT
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::bwritten == sum(::wthread[].bwritten)

It means the sum of each thread’s wthread[i].bwritten fields (across all 10 worker

threads) should be equal to bwritten, a global variable representing the total number of

bytes that have been written by all threads. ConSeq then reports a suspicious interleaving

(Figure 4.16) that could violate this invariant.

One point to note about the new Aget bug that ConSeq found is that it could be triggered

by fewer than 11 threads (e.g., two worker threads and one signal thread would suffice).

However, when the user does not specify the number of worker threads on the command

line, the default is 10. We used the default in the Aget experiment to simulate an in-house

tester who wishes to test a system’s default configuration. Note that if a (user-supplied) test

provokes a complicated situation in the initial run, that is what ConSeq must work with. It

has no automatic way of “reducing” the run down to a minimal-size example. Fortunately,

Daikon will work with any number of threads and does not have a major scaling problem;

Daikon’s work remains roughly the same, because each thread does less work when there

are more threads. In summary, the Aget experiment illustrates the usage scenario of an

in-house tester wishing to test a system’s default configuration, and shows that ConSeq has

the capability to detect bugs even when the input used generates a complicated interleaving

scenario.

4.4 Conclusions

This chapter proposes an effect-oriented approach to detecting concurrency bugs that cause

program failures. By focusing on the concurrency bug error-propagation pattern revealed by

our characteristics study, this approach effectively and predictively detects concurrency bugs

of severe failure symptoms. A general effect-oriented concurrency bug detection framework is

proposed. The framework works in the following way: first, it identifies potential error/failure

sites in a program; second, it uses static analysis to identify potential critical reads that might

affect the potential error/failure sites; third, it uses dynamic analysis to identify suspicious

interleavings; finally, it has an optional component that inserts sleeps in the program to
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exercise the suspicious interleaving. Two tools – ConMem and ConSeq – are instantiated

using the proposed framework. ConMem starts from the errors sites of concurrency memory

bugs, which are easier to identify, to detect concurrency memory bugs. ConMem does not

need to implement the second step of this framework because the potential critical reads and

the potential memory error sites overlap. ConSeq starts from the potential failure sites of

concurrency semantic bugs, which are easier to identify, to detect concurrency semantics bugs.

ConSeq implements all the steps of this framework.

In our evaluation with over a dozen of real-world severe concurrency bugs, both tools

detect more bugs with significantly fewer false positives than data-race and atomicity-violation

detectors. In addition, the optional bug exposing component prunes out all false positives and

provides a reliable way to expose all the true bugs reported by ConMem and ConSeq. Both

tools are able to find previously un-reported bugs. In addition, it also demonstrates that we

can leverage tools designed for sequential programs and sequential bugs, such as Daikon, to

detect complicated concurrency bugs. Application developers can easily extend and adjust

our framework by inserting sequential-style assertions and error messages in their code.

In general, the proposed approach has several nice features to help developers: predictive

bug detection, no training requirement, easy-to-validate bug results, high accuracy, and high

coverage on concurrency bugs that cause program failures. By looking at the interleaving

space from a different perspective, the proposed approach complements existing concurrency

bug-detection tools.

Of course, both tools have limitations. First, similar to other dynamic bug-detection

tools, they depend on test inputs for code coverage. Second, they both benefit from the

short-propagation-distance heuristic; while this heuristic has proven to be effective in our

rather inclusive benchmarks, it will inevitably cause some bugs of long error-propagation

distance to be missed.

In the future, ConMem and ConSeq can be extended in the following ways. First, for

ConMem, we could use static analysis to improve their ability to identify potential memory

error sites (e.g., shared pointer deference, shared buffer indexing, etc.) and identify more
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types of failure sites (e.g., security vulnerabilities, silent data corruption, etc.). Second, we

could try to identify more kinds of customized synchronization and further decrease the

remaining false positives. Finally, we could also apply the effect-oriented idea to detecting

other types of severe bugs in applications that are written in languages other than C/C++

and use concurrency programming constructs other than the pthread library.

While effect-oriented approach is demonstrated to be a very effective approach to detecting

concurrency bugs, it remains to be seen how this approach can be applied to failure recovery.

We present our effect-oriented failure recovery tool in the next chapter.
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5 effect-oriented concurrency failure recovery

The last chapter focuses on concurrency-bug detection. Despite much effort developed into bug

detection, concurrency bugs do slip into production runs because there is not enough resources

to conduct thorough testing. Thus, serving as the last resort to fending off concurrency bugs,

failure recovery is much needed.

Guided by the characteristics study presented in Chapter 3, a novel concurrency failure

recovery technique ConAir is presented in this chapter. ConAir is a static code transformation

tool that transparently inserts feather-weight failure recovery code into software to help it

recover from a wide variety of known and hidden concurrency bugs. At the high-level, ConAir

is also an effect-oriented approach – it starts from the potential failures sites and analyzes the

code backwards to find a large-enough re-execution region within the failure thread. After

the re-execution region is identified, ConAir then automatically inserts necessary code so that

when a failure occurs, the failure thread is rolled back and re-executed. This chapter first

presents the insights and techniques behind ConAir, then demonstrates ConAir’s effectiveness

by evaluating it with 10 real-world concurrency bugs of different root causes and failure

symptoms.

5.1 Introduction

5.1.1 Motivation

Many concurrency bugs are hidden in production-run software, causing severe failures in the

field with huge financial losses [102, 112, 70]. When they finally get noticed by developers,

correctly fixing them takes substantial manual effort. Developers often need weeks, or even

months, to design a concurrency-bug patch [47, 74] yet about 40% of released concurency-bug

patches are incorrect, which are the most error-prone among all types of bug patches [132].

Therefore, it is critical to help end-users enable production-run software to survive failures

caused by hidden concurrency bugs and help developers fix known concurrency bugs.
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An ideal bug fixing and survival technique should have several key properties: compatibility,

i.e. no OS/hardware modification; performance, i.e. small run-time overhead and fast failure

recovery; generality, i.e. helping bugs with a wide variety of root-cause interleaving patterns

without reliance on accurate bug detection; correctness, i.e. not generating results infeasible

for original software.

Table 5.1 summarizes three solutions to this problem and outlines their differences for all

these four properties. As shown in columns 2, 3, and 4, no existing technique can achieve all

four properties at the same time. We now elaborate on these techniques.

Auto. Prohibiting Rollback ConAir
Fixing Interleaving Recovery

Compatibility X * * X
Correctness X X X X
Generality - * X X
Performance X * * X

Table 5.1: A comparison among concurrency-bug fixing and survival techniques (X: yes; -:
no; *: cannot all be yes at the same time.)

The automatic fixing approach statically or dynamically adds synchronization into programs

to eliminate known bug-triggering interleavings [57, 83, 59]. Although promising, a tool with

this approach only fixes bugs with a specific root cause (e.g., atomicity violations [57]), because

it requires different types of synchronization to eliminate buggy interleavings of different

root-causes. Furthermore, by design, this approach does not help software survive hidden

bugs. It only fixes known bugs based on accurate bug root-cause detection.

Proactively prohibiting certain types of interleavings at run time is a common approach to

surviving hidden concurrency bugs [119, 79, 108, 19, 106, 104, 69, 134, 135, 126]. Techniques

Failure site Execution Rollback Whole-program memory-state checkpoint 

Thread 1 

Thread 3 

An idempotent region 
Thread 2 

(b) ConAir 

Thread 1 

Thread 3 

Thread 2 

(a) Traditional rollback recovery 

Reexecution 
Point 

Reexecution  
region 

rollback 

reexecution 

(c) Key design points in rollback recovery 

Thread  Failure 
Site 

Figure 5.1: An overview of ConAir
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based on this approach only survive failures caused by certain types of interleavings, and tend

to impose unnecessary serialization and performance loss on existing hardware. In rare cases,

some techniques belonging to this approach may need programmer annotations to eliminate

the effect of certain interleavings to maintain correctness.

The rollback recovery approach leverages the non-determinism of multi-threaded software

to survive hidden concurrency bugs [105, 122, 117]. Without prohibiting any interleaving, it

uses system checkpoint and rollback techniques to recover from failures, which is not limited

to particular types of root causes. Unfortunately, existing techniques based on this approach

require periodic whole-program checkpoint at run time and whole-program rollback for failure

recovery. As a result, they require OS/hardware modifications to achieve good performance.

5.1.2 Highlights

This chapter presents ConAir, a static program analysis tool that automatically inserts

rollback-recovery code into multi-threaded software and allows software to recover from a

wide variety of known and hidden concurrency bugs with little run-time overhead, as shown

in Figure 5.1.

ConAir distinguishes itself from existing rollback-recovery systems by the following features:

1. No multi-threaded rollback. We observe that failures caused by most concurrency

bugs can be survivied through rolling back just one thread, instead of all threads.

2. No memory-state checkpointing. We observe that failures caused by many con-

currency bugs can be survived by re-executing an idempotent region surrounding the

failure site. A code region is idempotent if it can be reexecuted for any number of times

without changing the program semantics. More formal definition of idempotent regions

is in Chapter 5.2.

The above observations help ConAir achieve the four properties listed in table 5.1. The

reexecution of single-threaded idempotent regions guarantees no change to program semantics
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(correctness).1 The rollback-recovery approach, by design, allows software hardened by

ConAir to recover from concurrency bugs caused by a wide variety of root causes (generality).

By avoiding the need for checkpointing memory state and by avoiding coordination across

threads, ConAir limits its run-time overhead (performance) and requires no modification to

OS/hardware (compatibility).

ConAir can be used in two modes. In survival mode, ConAir can be applied to harden a

multi-threaded program against hidden concurrency bugs. In fix mode, it can generate safe

temporary patches for concurrency bugs whose root causes are unknown. This is helpful to

developers who often know the failure symptom of a reported bug long before they understand

the root cause of the bug.

We have evaluated ConAir by using 10 real-world concurrency bugs in open-source server

and client software. These 10 bugs represent bugs of common root causes, including atomicity

violations, order violations, and deadlocks, and bugs of common failure symptoms, including

assertion violations, wrong outputs, segmentation faults, and hangs. Without any knowledge

of these bugs, ConAir automatically hardens the software at 7 – 19185 statically identified

potential failure sites per program. The hardened software runs almost as fast as the original

software, with only 0 – 0.2% run-time overhead. Failures caused by 8 out of 10 bugs can

always be successfully survived. The other 2 bugs lead to wrong-output failures. If the

output-correctness conditions are known to ConAir, failures caused by these 2 bugs can also be

successfully survived. The time taken for failure recovery varies and is between 8 microseconds

and 17 milliseconds. ConAir also has its limitations, which will be discussed in Chapter 5.6.5.

5.2 ConAir overview

The design of a rollback-recovery system for multi-threaded software includes three key

components, as shown in Figure 5.1c: (1) how many threads participate in the rollback

recovery; (2) where the failure site is in each participant thread; (3) what is the reexecution

1ConAir does not violate memory consistency model (see Chapter 5.2).
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y=x+1;
z=x+y;

(a) An idempotent region

x=x+1;
z=x+y;

(b) Not an idempotent region

Figure 5.2: Idempotency

point in each participant thread. We take a novel approach to these components by leveraging

our key observations obtained from our characteristics study in Chapter 3.

To address component (1), unlike previous work, only one thread participates in ConAir

rollback recovery. This is supported by our characterisitics study’s finding 2 that rolling back

a single thread (i.e., the failing thread) is effective to recover from most concurrency bug

failures.

Components (2) and (3) are synergistically handled by forming idempotent code-regions

whose end-point is the failure site, and start-point serves as a natural reexecution point

for the participant thread. Identifying the potential failure sites can be easy thanks to our

characteristics study’s finding 1. It is feasible to use the idempotent code region as the

re-execution region is because of our characteristics study’s finding 3. The reasoning follows:

In general, an idempotent region is a code region that can be reexecuted for any number

of times without changing the program semantics. Figure 5.2 shows a code-snippet that is

idempotent contrasted with one that is not. In general, such regions can have arbitrary start

and end-points in the program, so long as the code in that region adheres to idempotency

semantics.

We narrow the definition to make the regions amenable for bug recovery. In this work,

an idempotent region always ends at a potential failure site. It does not contain any writes

to shared variables, so that its single-threaded reexecution does not violate the memory-

consistency model of hardware and system. It does not contain any I/O operations. It also

does not contain any writes to local variables that could cause incorrect reexecution.

Using idempotent regions as reexecution regions can easily achieve correctness and good

performance, because they can be correctly reexecuted without any checkpointing or logging.
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Whole  
program  

restart 
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More overhead; Slower recovery  

Figure 5.3: The tradeoff of reexecution-region design

The only concern is that they may be too short to help program recover from concurrency

bugs. On the other hand, longer reexecution regions can help recover from more bugs, but

also hurt performance and/or compatibility more, because they require more complicated

rollback-reexecution techniques, such as sandboxing I/O events, buffering shared-variable

modifications, and checkpointing local-variable values. Figure 5.3 sketches this trade-off and

design space.

Recall the finding 3 of characteristics study conducted in Chapter 3 is that error propagation

distance is short. This finding implies that constraining reexecution regions to be free of

idempotency-destroying operations (i.e., I/O operations2 and shared memory writes) does not

significantly eliminate the chance of recovering from concurrency-bug failures.

To know the exact percentage of real-world failures that require re-execute I/O operation

or shared memory writes are difficult – most of the real-world concurrency bugs examined in

previous work [74] have never been reproduced in a research environment. Therefore, we

studied all the 31 bugs repeated and presented by 7 recently published works on concurrency-

bug detection and prevention [59, 116, 140, 139, 57, 123, 134].

Among these 31 bugs, 24 can be survived through single-threaded reexecution. Among

the reexecution regions of these 24 bugs, only 5 contain I/O operations, and 3 contain shared

memory writes but no I/Os. From this study, we can see that many concurrency bugs’
2A Recent study of real-world concurrency bugs shows that only about 15% of concurrency bugs’ recovery

involves I/O operations[123].
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reexecution region can fit inside an idempotent region surrounding the failure site.

Traditional techniques mainly trend toward the right end of the reexecution-region design

spectrum in Figure 5.3. Their focus of the failure-recovery universality inevitably leads to large

run-time overhead and complicated/non-existing platform support. This chapter will explore

the leftmost end of the design spectrum. We use idempotent regions as reexecution regions,

and identify a reexecution point as the starting point of the idempotent region surrounding

each failure site. Our design does not aim the universality of failure recovery. Instead, it aims

to survive a significant portion of concurrency-bug failures with a wide variety of root causes

at negligible overhead on existing platforms, which will allow easy adoption in production

systems.

ConAir framework includes three components:

1. A static analysis component that identifies potential failure sites in software (Chap-

ter 5.3.1).

2. A static analysis component that identifies reexecution points for every potential failure

site (Chapter 5.3.2).

3. A static code-transformation component that enables a multi-threaded program to

survive concurrency bugs at the failure sites identified above through single-threaded

rollback (Chapter 5.3.3).

In the following, Chapter 5.3 presents a basic design and implementation of ConAir.

Chapter 5.4 discusses further extensions and optimizations of ConAir, such as how to avoid

useless recovery attempts and how to conduct inter-procedural recovery. Chapter 5.5 and

Chapter 5.6 present the evaluation of ConAir.
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// assert (e)

if(e){
}else{

Failure :

__assert_fail (...);

}

(a) Assertion Failures

// printf (".." ,e ,..);

if( Assert (e)){
}else{

Failure :
// developers specify
// Assert (...)

}
printf (".." ,e ,..);

(b) Wrong Outputs

// tmp =* G_ptr ;
l_ptr = G_ptr ;
if(l_ptr > LowerBound ){
}else{

Failure :

}
tmp =* l_ptr ;

(c) Segmentation Faults

// pthread_mutex_lock (..);
int ret = pthread_mutex_timedlock (..);
if (ret != ETIMEOUT ){
}else{

Failure :

}

(d) Deadlock Failures

Figure 5.4: Failure sites for different types of failures (Some of them involve ConAir code
transformation; LowerBound is 10,000 by default.)

5.3 ConAir design and implementation

5.3.1 Failure site identification

Failure sites are where failures occur. Some failures may occur due to hidden bugs and some

failures may have already been manifested with their symptoms known to users/developers.

To handle these two types of failures, ConAir operates in two modes: survival mode and fix

mode. These two modes only differ in how the failure sites are identified.

Identifying failure sites in survival mode

Without any knowledge of hidden concurrency bugs, ConAir uses static analysis to identify

program locations where common failures could occur. The following four types of failures

are the most common among the real-world concurrency bugs according to our characteristics

study.

Assertion failures. The assert macro is widely used by developers to specify critical

program properties. In Linux systems, an assertion failure will cause the execution of
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__assert_fail (...) . ConAir identifies the invocation of __assert_fail (...) as a (potential)

failure site, as shown in Figure 5.4a.

Wrong outputs. Wrong output failures occur when software produces an incorrect output

or fails to produce any output when an output is desired. Judging a wrong-output failure

requires oracles specified by developers or users. The current prototype of ConAir can help

recover from wrong-output failures, if developers can provide output oracles in the format of

assert as shown in Figure 5.4b.

Segmentation-fault failures. In ConMem, we show that most segmentation faults caused

by concurrency bugs occur during the dereference of a heap/global pointer variable. Therefore,

ConAir identifies every dereference of a heap/global pointer variable as a potential segmentation

fault failure site, as shown in Figure 5.4c.

Deadlock failures. There are different ways to detect a deadlock failure. Some previous

work [59] instruments Pthread library functions and reports deadlocks by catching cycles

in the run-time resource-acquisition graph. Many real-world multi-threaded systems, such

as MySQL [86], simply maintain a timer for each lock acquisition function and report a

deadlock once the lock-acquisition times out. ConAir can work with any deadlock-detection

mechanism: the detection code that reports a deadlock is treated as a (potential) failure site.

Our current prototype assumes the time-out based deadlock detection. ConAir transforms

every pthread_mutex_lock function into pthread_mutex_timedlock, and identifies failure

sites accordingly as shown in Figure 5.4d. ConAir can handle customized lock functions, as

long as the developers specify the prototypes of their lock, unlock, and timeout-lock functions.

ConAir does not require its failure-site identification to be sound or complete. Inevitably,

many sites identified above never fail. Treating them as potential failure sites only causes

negligible run-time overhead, as we will see in Chapter 5.6.2, benefiting from ConAir’s low-

overhead design. The above analysis can be easily customized to cover more types of failures

or to focus on a smaller set of severe failures.
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Identifying failure sites in fix mode

Fix mode can be used when users or developers encounter a non-deterministic failure with an

unknown root cause. In this case, users or developers inform ConAir of the failure location.

For example, when the bug shown in Figure 3.5(b) manifests itself, users or developers will

observe a segmentation fault at the statement tmp=�ptr, which ConAir treats as the failure

site.

5.3.2 Reexecution point identification

As discussed in Chapter 5.2, the placement of reexecution points and reexecution regions

largely determines the system performance. ConAir uses idempotent regions as its reexecution

regions during failure recovery. Each reexecution point is the starting point of an idempotent

region, which ends at a potential failure site. This design makes ConAir lightweight and able

to help recover from many, although not all, concurrency-bug failures.

Principle of identifying idempotent regions

Identifying idempotent code regions is not trivial. A code region that is not idempotent in

source code, such as x=x+1, could become idempotent in bitcode, such as x1=x0+1, due to

variable renaming conducted by a compiler. A code region that is idempotent in bitcode could

later become not idempotent in binary code due to physical-register allocation. Due to these

challenges, there are usually two approaches to identifying idempotent code regions in the

binary code. One is to rely on binary code analysis alone. Unfortunately, this could be very

complicated for x86 code. The second approach, which is used by recent work [27], is to use a

combination of bitcode/binary-code analysis and bitcode/binary-code transformation.

ConAir takes the second approach using the LLVM static analysis and code generation

framework [66]. As discussed in Chapter 5.2, an idempotent region does not contain shared-

variable writes, non-idempotent local-variable writes, or I/O operations. Following this,

ConAir identifies an idempotent region as an LLVM bitcode region that contains none of the

following idempotency-destroying instructions: (1) writes to global or heap variables; (2) writes
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to local variables that are not allocated in virtual registers3; (3) function-call instructions.

This code region is guaranteed to be idempotent at bitcode level.

To guarantee the region is also idempotent in the binary code, ConAir performs two

transformations. First, ConAir uses the −no−stack−slot−sharing flag for LLVM to generate

the binary code. This flag guarantees that different virtual registers, when not allocated in

physical registers, are allocated in different stack slots. Under this configuration, the code

regions identified above will always conduct idempotent operations on memory states. The

only concern is that these regions may modify the value of a physical register and cause the

reexecution to read a different register value from the original execution. Therefore, ConAir

saves the register image at the beginning of the code region and restores the register image

right before a rollback. The register save and restore are conducted by setjmp and longjmp.

They are both very lightweight, taking only a few nanoseconds.

Alternative methods to identify idempotent code regions Some code regions that

contain idempotent-destroying operations are still idempotent in binary code. For example,

writing a stack variable v that is not allocated in virtual registers does not necessarily hurt

the idempotency of a code region R, unless this write is preceded by a read of v that is not

preceded by another write to v. As another example, some function calls do not hurt the

idempotency. With more complicated analysis, we could identify more and longer idempotent

regions in the future.

An alternative implementation decision is to modify the register allocator. A recent work

[27] first identifies the boundaries of idempotent regions in LLVM bitcode, it then modifies

the compiler back-end code generator to guarantee that idempotent bitcode is translated to

idempotent binary code [27]. For our work, we took the setjmp/longjmp approach because it

is easier to implement and is ISA independent. A production use of ConAir could employ

either approach. The previous work [27] also splits the whole program into idempotent code

regions, covering every instruction by idempotent regions. In contrast, our work only identifies
3In LLVM, a virtual register is a variable in static single assignment form (SSA) [23]. It is statically

assigned only once.
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idempotent regions that end at potential failure sites. This allows us to achieve negligible

overhead (< 1%) in our experiment (Chapter 5.6). On the contrary, previous work [27] could

have more than 10% run-time overhead.

Algorithm of identifying idempotent regions

When a program does not contain any branch instruction, identifying reexecution points is

straightforward. For every failure site f, we simply need to analyze statements one by one

backwards until we find the first statement s that is an idempotency-destroying instruction.

The reexecution point is right after s.

Unfortunately, real programs always contain branch instructions and there could be

multiple execution paths leading to a failure site f. Therefore, we have to identify an

appropriate reexecution point along every path leading to f.

ConAir conducts a backward depth-first search from f. This static analysis starts with

pushing the predecessors of f in the control-flow graph (CFG) into a work-list stack, and

keeps processing the top statement in this stack as follows. (1) When the analysis encounters

an idempotency-destroying operation, ConAir identifies a reexecution point right after this

operation. ConAir then removes this statement from its work list. (2) When encountering the

entrance of function containing f, ConAir identifies it as a reexecution point and removes it

from its work list. This decision means that ConAir reexecution does not touch the caller

of f. We will revisit this decision and discuss inter-procedural recovery in Chapter 5.4. (3)

When encountering other statements, ConAir checks how many predecessors of this statement

have not been visited. If there is none, ConAir removes this statement from the work list.

Otherwise, ConAir pushes an unvisited predecessor of this statement to the top of its work

list. ConAir stops its analysis when its work list is empty. At that point, all reexecution

points for f are identified. The complexity of this analysis is linear to the static function size.

ConAir repeats the above algorithm for every failure site. Note that the reexecution points

of different failure sites do not conflict with each other. That is, the reexecution region of a

failure site f1 will never get shortened by the reexecution points of another failure site f2. The
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1
2
3
4
5
6
7
8 if(e){
9 }else{

10
11
12
13
14 __assert_fail (..);
15 }

(a) Original code

1 __thread jmp_buf c;
2 __thread int RetryCnt =0;
3 ...
4 Reexecution :
5 setjmp (c);
6 ...
7 // reexecution region
8 if(e){
9 }else

10 Failure :
11 while ( RetryCnt ++< maxRetryNum ){
12 longjmp (c ,0);
13 }
14 __assert_fail (..);
15 }

(b) Transformed code

Figure 5.5: ConAir code transformation for assert (e)

reason is that a reexecution point is always right after an idempotency-destroying operation

or at the entrance of a function, which is the same for all failure sites.

5.3.3 Transformation at failure sites and reexecution points

After identifying failure sites and reexecution points, ConAir performs the following code-

transformations that enable the multi-threaded software to recover from concurrency-bug

failures.

At every reexecution point, ConAir inserts a setjmp (line 5 in Figure 5.5(b)) to make sure

our reexecution region is idempotent. Sometimes, multiple failure sites may share a common

reexecution point. In these cases, ConAir makes sure to insert just one, instead of multiple,

setjmp at the common reexecution point.

At every failure site, ConAir inserts a longjmp to rollback the execution to the reexecution

point (line 12 in Figure 5.5(b)). While restoring the register image c, longjmp automatically

changes the program counter to the reexecution point where c was taken. This naturally

accomplishes the control-flow rollback. ConAir supports multiple reexecutions through the

loop on line 11, because some failures may require several rounds of reexecution to recover.

The loop-condition variable is a configurable threshold that prevents endless recovery attempts.

Its default value is one million.
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Reexecution :

lock (&L);// blocked

(a) Cannot be survived

Reexecution :
lock (& L0 );
lock (&L); // blocked

(b) Could be survived

Reexecution :
tmp=tmp +1;
assert (tmp );// violated

(c) Cannot be survived

Reexecution :
tmp= global_x ;
assert (tmp );// violated

(d) Could be survived

Figure 5.6: Some failure sites cannot be survived by ConAir (The last line in each figure is a
potential failure site)

ConAir uses a thread-local variable to save the register image at every reexecution point

(line 1 in Figure 5.5). At run time, this variable always keeps the register image taken at the

most recent reexecution point in a thread. This guarantees that the program will roll back to

the right reexecution point.

Deadlock recovery can potentially lead to a livelock problem. This occurs when multiple

threads involved in the deadlock try to rollback at exactly the same time. This issue can be

solved by putting a small random sleep at the failure site.

5.3.4 Discussion

Future work can extend ConAir by extending its failure-site identification. Some potential

failure sites could be pruned, if we can statically prove that failures can never occur there. For

example, analysis could know that NULL-pointer dereference may never occur at some places

[20]. We can also use dynamic technique like ConSeq to prune well tested potential failure

sites. We can also enlarge the set of potential failure sites based on developers’ annotations

or automatically inferred specifications. For example, ConAir currently inserts an assertion

before every fputs function call to check whether the parameter of fputs is NULL or not.

Future work can also explore other designs of the reexecution regions. For example,

some regions that write shared variables can be correctly reexecuted with more sophisticated

rollback or checkpoint techniques.

5.4 Optimizations and Extensions

This chapter discusses how we extend the basic design of ConAir to recover from more

concurrency bugs and optimize the basic design to achieve better performance.



108

5.4.1 Extending reexecution regions for library functions

The basic design of ConAir reexecution regions is very stringent: it cannot contain any

function calls. In the following, we extend the basic reexecution regions to include some

library function calls.

Why do we need to reexecute library functions? Some failures cannot be survived

unless some library-function calls are reexecuted. For example, if we do not allow a re-

execution region to call pthread_mutex_timedlock, ConAir can never help recover from a

deadlock failure shown in Figure 5.4d. In fact, a reexecution region has to include a call of

pthread_mutex_lock to recover from deadlock failures, which we will discuss later.

Which library functions can be correctly reexecuted? Some library functions can be

correctly reexecuted by executing compensation functions at the failure site. For example,

if a code region executes a malloc, we need to call a free at the failure site; if a code region

executes a pthread_mutex_lock, we need to call a pthread_mutex_unlock at the failure site.

Some library functions cannot be easily reexecuted. For example, output functions in gen-

eral are difficult to reexecute without system support. Reexecuting free or pthread_mutex_unlock

could also be dangerous. Imagine a code region that frees an object that is allocated before

this region starts or releases a lock that is acquired before this region starts. It is almost

impossible to correctly reexecute this type of code regions.

Implementing library-function extension in ConAir Following the above observations,

we allow ConAir reexecution regions to contain memory-allocation functions and lock functions.

Other functions, such as free , unlock, and output functions, are still considered idempotency-

destroying and cannot be included in any reexecution region.

To support this extension, three changes are made. First, ConAir instruments every call

site of memory-allocation and lock functions to record which region is allocated and which lock

is acquired. ConAir checks the return value of pthread_mutex_timedlock to know whether a

lock is acquired. Second, ConAir needs to know which memory-regions/locks are acquired in
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the current reexecution region at a failure site. To support this, ConAir maintains an integer

counter for each thread, which is increased by one at every reexecution point. At the return

of every memory-allocation/lock function, ConAir stores the starting address of the newly

allocated region or the address of the newly acquired lock, as well as the current counter value

of this thread, into a per-thread vector maintained by ConAir. Before storing the new record,

ConAir cleans the vector, if the current counter value is different from what is stored in the

vector. Third, at each failure site, before the longjmp, ConAir inserts code to iterate through

the vector, identify every region/lock that is allocated/acquired under the current counter

value, and deallocate/free it.

The above extension guarantees the recovery correctness. Note that deallocating a memory

region R or releasing a lock L at the failure site in thread t1 does not affect the correctness of

other threads. Since a reexecution region cannot contain writes to shared variables, other

threads could not have obtained any pointer pointing to R. Furthermore, no other thread

could have acquired L before t1 releases it. Also note that reexecution regions do not contain

any free or pthread_mutex_unlock functions. Therefore, we do not need to worry about an

object/lock that is allocated/acquired and then freed/released during one reexecution region.

5.4.2 Optimizations to remove unnecessary rollbacks

ConAir cannot help recover from some failures, such as those shown in Figure 5.6a and

Figure5.6c. We identify failure sites that are statically proven to be unrecoverable and remove

any unnecessary rollback-reexecution code inserted by the basic ConAir algorithm described

in Chapter 5.3.

Deadlock failure optimizations To recover from a deadlock failure, ConAir should at

least release a lock originally held by the thread at the failure site, as shown in Figure 5.6b.

Otherwise, other threads involved in this deadlock cannot possibly make progress during

the recovery attempt, and hence ConAir has no chance to help recover from the deadlock.

ConAir optimization follows this intuition. Each deadlock failure site f could correspond to

different reexecution regions along different execution paths. ConAir checks whether there is a
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lock-acquisition operation inside at least one reexecution region of f. If there is none, no lock

will be released at f and there is no chance for deadlock recovery. Therefore, ConAir removes

the failure-recovery code at f. The current prototype of ConAir turns pthread_mutex_lock

functions into pthread_mutex_timedlock functions when it identifies potential deadlock sites,

as discussed in Chapter 5.3.1. Once ConAir identifies a failure site to be unrecoverable, the

corresponding pthread_mutex_timedlock is turned back to pthread_mutex_lock.

Non-deadlock failure optimizations To recover from a non-deadlock failure, the reexe-

cution conducted by ConAir should include at least one shared-variable read that can affect

the evaluation outcome at the failure site, as shown in Figure 5.6d. Otherwise, the reexecution

is guaranteed to fail again. Following this intuition, ConAir checks every non-deadlock failure

site f. ConAir first uses intra-procedural static backward slicing to identify global/heap

memory-read instructions that can affect f through data dependence and/or control depen-

dence. ConAir then checks whether there is at least one such read instruction that is inside a

reexecution region of f. If not, f is not recoverable and no failure-recovery code is inserted for

it.

Our intra-procedural backward-slicing analysis is implemented in LLVM to analyze LLVM

bitcode. Interestingly, our analysis is much simpler than general backward-slicing algorithms.

A major source of complexity in general slicing analysis is tracking data dependence

through memory accesses, which requires pointers-alias analysis, as shown by the dotted line

in Figure 5.7a.

ConAir does not have this concern. Recall that write instructions in a ConAir reexecution

region only write to virtual registers (Chapter 5.3.2), such as the write to %0, %1, and %2

in Figure 5.7b. Therefore, when ConAir backward slicing encounters a read instruction r

that does not read from a virtual register, such as line 2 in Figure 5.7b, ConAir simply stops

tracking its data dependence. The reason is that the instruction that provides value for r

must write to non-virtual-register locations (e.g., line 1 in Figure 5.7b) and do not belong to

ConAir idempotent regions. Slicing outside an idempotent region, and hence a reexecution

region, is useless for ConAir.
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1  global_z = 1; 
 
 
 
2  stack_x = * global_p; 
 
 
 
3  assert ( stack_x ); 

Need alias analysis. 

1  store i32 1, i32* @global_z, align 4 
   
 
 
2  %0 = load i32** @global_p, align 4 

 

3  %1 = load i32* %0, align 4 
 
4  %2 = tail call i32 (...)* @assert(i32 %1) 

No need to know. 

(a) general slicing (b) ConAir slicing 

Figure 5.7: The difference between general slicing analysis and the slicing in ConAir (the
stack_ prefix denotes stack variables; the global_ prefix denotes global variables; a solid arrow shows an
easy-to-get dependence; a dotted arrow shows a difficult-to-get dependence; the thick line in (b) shows the
reexecution-region boundary.)

After removing all unrecoverable failure sites, ConAir also removes reexecution points that

do not correspond to any failure site and finishes the optimization.

5.4.3 Inter-procedural reexecution

The basic ConAir algorithm presented in Chapter 5.3 only attempts intra-procedural recovery.

That is, the reexecution point for a failure site f is always in the function that contains f,

referred to as foo. In this chapter, we discuss pushing reexecution points into the callers of f.

We refer to this as inter-procedural recovery. Inter-procedural recovery can help recover from

more failures, but can also hurt performance.

When is inter-procedural recovery correct? We should not attempt an inter-procedural

recovery, if doing so would generate results infeasible for the original program. Following the

discussion in Chapter 5.3.2, when there is no idempotency-destroying operation on a path

between f and the entrance of foo, it is safe to extend the reexecution region into the caller of

foo.

When can inter-procedural recovery help? Since a ConAir reexecution region cannot

contain any modification to shared variables, parameters are the only ways for a caller to

affect the execution outcome at f. Therefore, inter-procedural reexecution can potentially

help the recovery of a non-deadlock failure, only when a parameter of foo is on the backward

slice of f.
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When do we need inter-procedural recovery the most? It is difficult to accurately

predict when inter-procedural recovery will be needed without knowing the hidden bugs.

Intuitively, imagine a path p between the entrance of foo and f. As discussed in Chapter 5.4.2,

reexecuting p cannot help recover from a non-deadlock failure at f, if p contains no shared-

variable read that can affect the outcome of f. Similarly, reexecuting p cannot help recover

from a deadlock failure at f, if p contains no lock-acquisition functions. Therefore, we

hypothesize that an inter-procedural recovery is most needed when such an unrecoverable

path p exists.

Conditions of ConAir inter-procedural recovery Inter-procedural recovery could help

recover from more failures. However, it significantly slows down ConAir static analysis, which

we will see in Chapter 5.6; it will also identify more reexecution points with more setjmp

executed at run time, which incurs more overhead.

Based on these considerations, ConAir selects a failure site f for inter-procedural recovery

when f satisfies all the following three conditions: (1) There is no idempotent-destroying

operation on any path between the entrance of foo and f. This way, once selected for inter-

procedural recovery, the recovery attempt of f is always conducted interprocedurally, no

matter which path is followed in foo during the failure run. (2) At least one argument of foo is

on the backward slice of f, when f is a non-deadlock failure site. This way, the inter-procedural

reexecution can potentially help recover from the failure. This parameter is referred to as a

critical parameter. (3) At least one path between the entrance of foo and f is unrecoverable.

How to identify inter-procedural reexecution point? When a failure site f is identified

for inter-procedural recovery, ConAir uses static analysis to find every function foo1 that calls

foo. Inside foo1, we use the analysis described in Chapter 5.3.2 to look for reexecution points.

This analysis starts from the instruction that pushes the critical parameter onto the stack of

foo, when f is a non-deadlock site; it starts from the invocation of foo, when f is a deadlock

site.

We then identify reexecution points just as during intra-procedural recovery (Chapter 5.3.2).



113

Note that the setjmp and longjmp inserted at reexecution points and failure sites handle the

program-counter register and the stack-frame registers. Therefore, no extra effort is needed

for inter-procedural rollback.

While analyzing the caller of foo, we could decide to try inter-procedural recovery again.

In our current prototype, we set a threshold of how many levels of inter-procedural recovery

we would attempt for one initial failure site f. The default setting is 3. That is, to help

recover from f inside a function foo, ConAir could at most rollback the execution to the

callers’ callers’ caller of foo, referred to as foo3. This threshold is configurable. It balances

the recovery capability and run-time performance.

Theoretically, there could be a path between the entrance of foo3 and f that does not

contain any idempotent-destroying operations. Since we decide not to go further into the caller

of foo3, we could choose to set the reexecution point at the entrance of foo3. However, this

scheme could prevent failure sites inside foo3 to attempt inter-procedural recovery. Therefore,

in our current prototype, ConAir simply gives up the inter-procedural recovery attempt of f

in that case and puts the reexecution point back to the entrance of foo. Note that, this case

is extremely rare and has never occurred in any of the applications evaluated by us.

Other issues Our inter-procedural recovery analysis needs to work together with the intra-

procedural recovery analysis discussed in Chapter 5.3 and the optimization analysis discussed

in Chapter 5.4.2. ConAir first conducts intra-procedural analysis. This analysis could identify

the entrance of foo as a reexecution point for a failure site f, referred to as REintra. ConAir

then conducts inter-procedural recovery analysis. Once f is identified for inter-procedural

recovery, ConAir safely removes the reexecution point REintra
4. Finally, ConAir conducts its

optimization analysis discussed in Chapter 5.4.2. This optimization is only applied to failure

sites that conduct intra-procedural recovery. Failure sites that are selected for inter-procedural

recovery usually have long reexecution regions. It is much harder to statically prove them to

be unrecoverable.
4This could cause some other failure sites in foo to conduct interprocedural recovery too, which is fine.
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App. App. Type LOC Failures Causes

FFT Scientific computing 1.2K w. output A/O Vio.#
HawkNL Network library 10K hang deadlock
HTTrack Web crawler 55K seg. fault O Vio.
MozillaXP XPCOM: cross platform 112K seg. fault O Vio.

component object model
MozillaJS JavaScript engine 120K hang deadlock
MySQL1 Database server 681K w. output A Vio.
MySQL2 Database server 693K assertion A Vio.
Transmission BitTorrent client 95K assertion O Vio.
SQLite Database engine 67K hang deadlock
ZSNES Game simulator 37K assertion O vio.

Table 5.2: Applications and Bugs (w. output: wrong output failures; A Vio.: atomicity violations; O
Vio.: order violations; #: There are both order violations and atomicity violations in FFT.)

5.5 Experimental Methodology

Our work aims to allow programs to recover from a significant portion of real-world concurrency-

bug failures of a wide variety of root causes, while incurring low overhead on existing platforms.

To empirically evaluate whether ConAir has achieved this goal, our experiments look at 10

real-world concurrency-bug failures in 10 open-source applications that have been widely

used in previous bug detection and avoidance research [59, 116, 140, 139, 57, 123]. They

represent a wide variety of failure symptoms and root causes, as shown in table 5.2. We will

quantitatively evaluate whether ConAir can indeed help recover from failures with different

root causes; what is the run-time overhead introduced by ConAir; how long it takes to recover

from a failure under ConAir; and the static-analysis complexity of ConAir.

We apply ConAir to analyze and transform each application twice, representing fix mode

and survival mode respectively.

While applying ConAir in survival mode, ConAir needs no knowledge of failures or bugs.

It automatically identifies potential failure sites as discussed in section 5.3.1 and transforms

software.

While applying ConAir in fix mode, ConAir assumes the knowledge of failure sites provided

by developers or users who want to fix a particular failure they observed. This could be a

specific assert that is violated; a particular pthread_mutex_lock that blocks the program; a

particular memory-access instruction that causes a segmentation fault; or an output function
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that generates incorrect results. Note that ConAir needs no information about bug-triggering

inputs, bug root-causes, or bug-detection results.

To evaluate whether the software can survive the manifestation of a bug, we insert

sleeps into each program’s buggy code regions to force the occurrence of the failure-inducing

interleaving. Executed under this setting and failure-inducing inputs, the software in our

benchmark set fails with almost 100% probability, if ConAir is not applied. After ConAir is

applied, we execute the software under the same setting for 1000 times. We claim ConAir to

have successfully helped recover from the failure if the hardened software executes correctly

in all 1000 runs. To evaluate the run-time overhead, we execute the original program and the

transformed programs under the same input (i.e., the bug-triggering input) for 20 times each,

and calculate the average overhead. No sleep is inserted and software never fails during the

run-time overhead measurement.

Among all types of failures, wrong-output failures cannot be recovered unless the users or

developers annotate the correctness condition of an output. This condition is easily available

in fix mode, but is not necessarily available in survival mode. To better understand the

worst-case overhead of ConAir in the survival mode, ConAir treats every output function as a

potential failure site, even though the correctness condition may be unavailable.

All the experiments are conducted on an 8-core Intel Xeon machine running Linux version

2.6.18 and using the LLVM 2.8 compiler.

5.6 Experimental Results

As shown in Table 5.3, ConAir helps programs recover from all the evaluated bugs. ConAir

incurs no overhead in fix mode, and negligible overhead (< 1%) in survival mode. In this

chapter, we will explain the following experimental results in detail: (1) how ConAir effectively

fixes bugs with known failure symptoms; (2) how ConAir transparently hardens multi-threaded

software to survive hidden bugs; (3) how ConAir achieves negligible run-time overhead; (4)

the fast failure recovery under ConAir; (5) the static analysis time of ConAir.
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App. Failure Recovered? Overhead

fix survival fix survival

FFT X Xc 0% 0.0%
HawkNL X X 0% 0.0%
HTTrack X X 0% 0.0%
MozillaXP X X 0% 0.0%
MozillaJS X X 0% 0.0%
MYSQL1 X Xc 0% 0.1%
MYSQL2 X X 0% 0.0%
SQLite X X 0% 0.0%
Transmission X X 0% 0.2%
ZSNES X X 0% 0.0%

Table 5.3: Overall failure recovery results (X: recovered; Xc: conditionally recovered; recovering
from these wrong-output failures requires annotations.)

5.6.1 Failure recovery

Fix-mode failure recovery

In fix mode, ConAir is aware of the failure sites and failure symptoms. It inserts rollback-

recovery code accordingly.

Among the non-deadlock bugs that are evaluated, five of them (FFT, HTTrack, MozillaXP,

Transmission, and ZSNES) cause failures in a thread that reads a shared variable too early;

FFT5 and MySQL2 cause failures due to RAR atomicity violations; MySQL1 causes failures

due to a WAW atomicity violation. ConAir can successfully help recover from failures caused

by all of them.

Some failure recoveries only roll back a few instructions. For example, Figure 5.8 shows a

bug in FFT. In this program, thread 1 could unexpectedly read End (line 3 in Figure 5.8)

before thread 2 updates it, causing either an order violation or an atomicity violation and a

wrong-output failure. ConAir inserts a setjmp right before the assert , which helps FFT to

recover from this failure.

Three of these 10 bugs (Transmission, MozillaXP, and HTTrack) require inter-procedural

reexecution for the failure recovery. For example, Figure 5.9 depicts the MozillaXP bug.

In MozillaXP, thread 1 could unexpectedly read mThd−>state in function GetState before
5FFT contains both order violations and atomicity violations.
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1 // Thread 1
2 fprintf (" Start %d",Init );
3 tmp=End;
4 assert (tmp >0);
5 fprintf (" Stop %d, Total %d", tmp , tmp -Init );

1 // Thread 2
2 // End is 0 until below
3
4 End=time(NULL );

Figure 5.8: An atomicity/order violation in FFT that causes a wrong-output failure. If
developers specify the output-correctness condition (e.g., the assert above), ConAir can help
recover from the failure.

the global pointer mThd is initialized by thread 2. This could cause a segmentation-fault

failure. ConAir inserts a pointer sanity check right before line 9 in GetState; it also identifies

a reexecution point inside function Get and inserts setjmp there. Once ConAir sees an invalid

pointer at line 9 in thread 1, the program will automatically jump back to before the invocation

of GetState in Get. Eventually, thread 2 will initialize mThd and the program will succeed.

Deadlock recovery is slightly different from the recovery of non-deadlock bugs. Figure 5.10

shows a real-world deadlock bug in HawkNL. As we can see, thread 1 and thread 2 could acquire

nlock and slock in reversed orders and lead to a deadlock. ConAir analyzes both threads. When

ConAir considers Lock(&slock) (line 8) in thread 1 as a potential failure site, the reexecution

region is very short due to the idempotency-destroying operation, driver−>Close(). Since this

region does not contain another lock acquisition function, ConAir considers it as unrecoverable

and does not attempt any failure recovery in thread 1 (Chapter 5.4.2). When ConAir considers

Lock(&nlock) (line 8) in thread 2 as a potential failure site, its reexecution region can go

all the way back to before the invocation of Lock(&slock) (line 4) in thread 2. Since this

region contains another lock-acquisition function, ConAir considers Lock(&nlock) in thread

2 as a recoverable failure site. ConAir turns it into a lock with timeout and inserts setjmp

to the beginning of Shutdown function. At run time, once thread 2 times out at its attempt

to acquire nlock, thread 2 will release slock and reexecute a large chunk of Shutdown. This

effectively resolves the deadlock problem in HawkNL.

Summary ConAir can effectively fix concurrency bugs with a variety of root causes once

the failure sites and symptoms are known.
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1 // Thread 1
2 Get (){
3 ...
4 tmp= GetState (mThd );
5 }
6
7 GetState (THD *thd)
8 {
9 return (thd -> state &

10 THREAD_DETACHED );
11 }

1 // Thread 2
2 // mThd is shared
3 // between two threads ;
4 //it is 0 before
5 // initialized below.
6
7 InitThd (){
8
9 mThd =

10 CreateThd (..);
11 }

Figure 5.9: An order violation in Mozilla XPCOM.

1 // Thread 1
2 Close (){
3 ...
4 Lock (& nlock );
5
6 driver ->Close ();
7
8 Lock (& slock );
9 ...

10 }

1 // Thread 2
2 Shutdown (){
3 ...
4 Lock (& slock );
5 if( nSockets != NULL ){
6 int i=0;
7 if( nSockets [i]){
8 Lock (& nlock );
9 ...

10 }
11 }
12 }

Figure 5.10: A deadlock in HawkNL.

Survival mode

In survival mode, ConAir is not aware of any bug. It automatically and systematically

identifies potential failure sites and transforms the program accordingly.

As shown in table 5.4, ConAir has identified and hardened 7 – 19185 static failure sites in

each benchmark program. Naturally, ConAir identifies the fewest failure sites in the smallest

programs (FFT and HawkNL) and the most failure sites in the largest programs (MySQL1

and MySQL2). In general, potential segmentation-fault sites dominate all types of potential

failure sites, because ConAir identifies every heap/global pointer dereference as a potential

segmentation-fault site. Potential deadlock sites are the fewest among all four types of failure

sites, because only a lock operation that is enclosed by another lock operation with no write

to shared variables in between is identified as a potential deadlock site that is recoverable by
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App. Assertion Wrong Seg. Dead- Total
Violation Output Fault lock

FFT 5 34 14 0 53
HawkNL 0 0 5 2 7
HTTrack 657 504 3146 0 4307
MozillaXP 1 117 6791 0 6909
MozillaJS 0 5 134 6 146
MYSQL1 119 3256 15791 19 19185
MYSQL2 518 2853 15498 21 18890
SQLite 0 25 47 1 73
Transmission 430 190 2151 0 2771
ZSNES 1 50 331 0 382

Table 5.4: Static failure sites hardened by ConAir

ConAir. HTTrack developers left many assertions in the program, leading to a large number

of potential assertion-violation sites.

These automatically identified potential failure sites include the failure sites of all the 10

bugs that are evaluated. Therefore, ConAir can help software successfully recover from these

hidden bugs.

Note that survival-mode ConAir identifies every output functions, including fprintf ,

printf , application-specific functions, such as my_printf in MySQL and js_printf in Mozilla,

and others as a potential site of wrong output. The current prototype of ConAir needs

developers’ specification to help recover from a wrong-output failure, as shown in Figure 5.8.

We believe this effort is worthwhile for hardening critical outputs. Future work can also use

likely-invariant inference tools [35] to infer such specifications for an output function, and

automate the wrong-output failure recovery process.

Summary The above evaluation shows that ConAir is effective to help software survive

failures caused by hidden bugs.

5.6.2 Runtime overhead

The run-time overhead of ConAir comes from four sources: (1) code inserted at every

reexecution point; (2) extra condition-checking at the failure sites, such as sanity checking
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App. Survival Mode Fix Mode

Static Dynamic Static Dynamic

FFT 56 24 5 5
HawkNL 7 7 1 1
HTTrack 3570 12995 3 4
MozillaXP 3647 2170 1 23
MozillaJS 144 6 1 1
MYSQL1 12494 215218 1 20
MYSQL2 13031 82394 1 30
SQLite 142 7 1 1
Transmission 2568 4425 3 8
ZSNES 321 32 1 2

Table 5.5: The number of reexecution points inserted by ConAir

for pointers at potential segmentation-fault sites; (3) code inserted at call site of memory-

allocation and lock functions. (4) using the −no−stack−slot−sharing LLVM linking flag.

Among these four, the first one is the dominant source.

To understand the runtime overhead of ConAir, we have counted the number of reexecution

points in the hardened programs.

As shown in Table 5.5, ConAir introduces 6 – 215218 dynamic reexecution points in

survival mode. Considering that each reexecution point only takes a few nanoseconds to

execute (a setjmp and a local counter increment), the low overhead of survival-mode ConAir

is understandable. Naturally, the fix-mode ConAir introduces only a few reexecution points,

as shown in table 5.5. Its overhead is not perceivable.

There are mainly two reasons that ConAir only requires a relatively small numbers of

reexecution points. First, the reexecution points are identified according to potential failure

sites. Different from previous work [27], ConAir does not aim to find a reexecution point for

every instruction in the program. Instead, it targets on common failures of concurrency bugs.

Second, ConAir optimization discussed in Chapter 5.4.2 has helped to remove failure sites

that are not recoverable under ConAir and corresponding reexecution points.

To quantitatively demonstrate the optimization effect, we have tried to harden each program

by survival-mode ConAir with and without ConAir optimization. As we can see in table 5.6, the

optimization effect is significant for deadlock reexecution points: 30–91% of static reexecution
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App. Non-Deadlock Deadlock
Static Dynamic Static Dynamic

FFT 2.0% 5.0% N/A N/A
HawkNL 50% 50% 33% 83%
HTTrack 42% 5.4% N/A N/A
MozillaXP 2.4% 1.7% N/A N/A
MozillaJS 0.0% 0.0% 50% 50%
MYSQL1 1.1% 8.2% 88% 99%
MYSQL2 0.46% 14.6% 91% 100%
SQLite 3.4% 0.0% 30% 71%
Transmission 4.5% 1.76% N/A N/A
ZSNES 6.8% 36.4% N/A N/A

Table 5.6: The percentage of reexecution points that are optimized (N/A: the non-optimized
version has 0 reexecution point).

points can be optimized away. Many lock operations are not enclosed by another lock operation

in its reexecution region, and hence are considered as not recoverable. In comparison, the

optimization effect for non-deadlock reexecution points is not as significant. Fewer than 10%

of static or dynamic reexecution points are optimized away for most benchmarks. The reason

is that the optimization cannot eliminate any segmentation-fault reexecution points. In the

current prototype of ConAir, the potential site of a segmentation fault is the dereference of a

global/heap pointer variable. Since the reexecution regions of this type of failure sites always

contain a read of global/heap variable (i.e., the pointer) that can affect the failure outcome,

ConAir considers them un-optimizable. HTTrack has a large number of reexecution points

that are not related to segmentation faults. Therefore, a significant number of its reexecution

points are optimized away.

Summary Benefiting from its single-threaded idempotent reexecution design, its failure-

oriented idempotent region identification, and its optimization analysis, ConAir can effectively

improve the reliability of production-run software almost for free.

5.6.3 Recovery time

Recovery time affects the availability of production-run software. We quantitatively measure

the failure-recovery time under ConAir, and compare it with the time of restarting the whole
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Application ConAir Recovery Restart

Time (µs) # Retries Time (µs)

FFT 907 97 3189072
HawkNL 59 1 943
HTTrack 4237 474 10776
MozillaXP 17388 8432 207041
MozillaJS 44 1 472
MYSQL1 6014 575 26308
MYSQL2 8 1 836177
SQLite 86 1 1443
Transmission 6476 761 553109
ZSNES 1022 123 8643

Table 5.7: Failure recovery time (The experiments are conducted with small amount of noise inserted
to help trigger the concurrency-bug failures).

program.

Note that software restart almost always changes the program semantics perceived by

users, unless it can log all the inputs and external signals, and sandbox I/O operations. In

addition, the recovery time of software restart becomes worse with the workload getting larger.

Instead, the recovery time of ConAir is largely oblivious of the workload. Therefore, the

advantage of ConAir recovery in practice would be much more significant than the quantitative

results presented below.

As shown in table 5.7, the failure recovery in ConAir ranges between 8 microseconds and

17 milliseconds. In contrast, program restart could take as long as several seconds when the

failure occurs at the end of a scientific computation (FFT). The recovery-time speedup of

ConAir ranges from 8 times to over 100,000 times.

The ConAir recovery speed is mainly determined by the root cause of the failure. Failures

caused by RAR atomicity violations Figure 3.5(c) are always fast to recover. The failing

thread does not need to wait for any other thread. Once it reexecutes the read-after-read, the

atomicity violation is immediately eliminated and the software immediately recovers. That is

why MySQL2 takes only 8 microseconds to recover. Deadlock bugs (HawkNL, SQLite and

MozillaJS) also require relatively short recovery time. After one thread t1 involved in the

deadlock releases a lock at the failure site, another thread t2 can almost immediately jumps
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out of the deadlock situation. The recovery time for t1 will be determined by the critical

region length of t2. Failures caused by order violations usually require a relatively long time

to recover. Take the MozillaXP bug shown in Figure 5.9 as an example. At run time, thread

1 reads mThd too early and has to rollback due to an invalid value in mThd. Rolling back

thread 1 once may not help recover from the failure, because thread 1 has to wait for thread

2’s progress. In our experiment, this rollback is conducted more than 8000 times until thread

2 initializes mThd. This is the main reason of the relatively long recovery time of HTTrack,

MozillaXP, Transmission, and ZSNES.

Summary Our evaluation shows that ConAir supports fast failure recovery. It can help

software survive failures with little impact on latency and availability.

5.6.4 Static analysis time

The static analysis and code transformation time of ConAir ranges from less than a second

(FFT) to around 4 hours (MySQL). The majority of the time is spent in attempting inter-

procedural failure recovery. In fact, the basic intra-procedural static analysis discussed in

Chapter 5.3 and the optimization analysis discussed in Chapter 5.4.2 together take only 50

seconds for MySQL and fewer than 10 seconds for other benchmarks. The default level of

inter-procedural analysis is currently set as 3. For the three bugs that require inter-procedural

analysis to recover, two of them (HTTrack and Transmission) require two-level-inter-procedural

analysis and one (MozillaXP) requires one-level-inter-procedural analysis.

Summary The static analysis of ConAir is fast enough to process large real-world multi-

threaded software. If the time budget is tight, ConAir users can disable the inter-procedural

recovery analysis.

5.6.5 Limitations of ConAir

ConAir does not aim to make programs recover from all concurrency-bug failures, which

inevitably requires much higher run-time overhead and/or complicated platform support.
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Bug ID Causes Error Failure ConMem ConSeq ConAir

FFT O Vio mem wop X X Xc

MySQL1 A Vio sem wop X Xc

Mozilla1 M.A. Vio sem assert X X
MySQL2 M.A. Vio sem assert X
Transmission O Vio mem assert X X X
Mozilla2 O Vio sem error msg X X
Mozilla3 A Vio sem error msg X X
MySQL3 A Vio sem error msg X X
MySQL4 O Vio sem hang X
OpenOffice O Vio sem hang X
MySQL5 A Vio mem crash X X X
Pbzip O Vio mem crash X
Apache1 M.A. Vio mem crash X
Apache2 A Vio mem crash X X
Cherokee A Vio mem crash X X
HawkNL Deadlock N/A hang X
HTTrack O Vio mem crash X X
Mozilla4 O Vio mem crash X X
Mozilla5 Deadlock N/A hang X
SQLite Deadlock N/A hang X
ZSNES O Vio mem assert X X X
Aget A Vio sem wop
Mozilla6 A Vio sem crash

Table 5.8: Ability of ConMem, ConSeq and ConAir to handle concurrency bugs. (X: recovered;
Xc: conditionally recovered. O Vio is order violation, A Vio is single variable atomicity violation, M.A.
Vio is multi-variable atomicity violation, sem is semantic error, mem is memory error, error msg is
error message, assert is assertion failure, wop is wrong output.)

Specifically, ConAir cannot help recover from failures that require multi-threaded reexecution

or very long reexecution regions, as discussed in Chapter 5.2. Fortunately, as also discussed

in Chapter 5.2, many real-world concurrency bug failure recoveries do not require multi-

threaded reexecution or long reexecution, and hence can benefit from ConAir. Finally, ConAir

cannot help a software to recover from a wrong-output failure, if developers do not provide

output-correctness conditions.

5.6.6 ConAir complements ConMem/ConSeq

Table 5.8 compares the coverage of ConMem/ConSeq with the coverage of ConAir. For 23

bugs that we evaluated, only 2 bugs cannot be handled by either ConMem/ConSeq or ConAir,

because they both have a long error propagation distance that is beyond the capability of

ConMem/ConSeq/ConAir. ConMem/Seq can detect 18 bugs, ConAir can help recover from 15

bugs. 3 deadlock-bug-failures can be survived by ConAir but these 3 bugs cannot be detected

by ConMem/ConSeq, because ConMem/ConSeq cannot handle deadlock bugs. 6 bugs cannot
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be handled by ConAir but can be detected by ConMem/ConSeq. That is because they either

belong to the subtype of order violation bugs that require multiple-thread-reexecution or the

reexecution region contains operations such like I/O calls or shared memory writes. As we

can see, ConMem/ConSeq and ConAir complements each other to handle a great majority of

concurrency bugs of different root cause.

In addition, two points worth nothing are: (1) In order for ConMem/ConSeq to detect

the bugs, proper testing inputs are required. Without such, ConMem/ConSeq will fail to

detect the bugs. In comparison, ConAir is a pure static analysis tool, thus it does not suffer

from such a limitation. As a result, ConAir naturally complements ConMem/ConSeq when

testing inputs of good quality are not present. (2) For the bugs detected by ConMem/ConSeq,

ConAir can still help either fix them or survive the failures caused by them. On the other

hand, ConMem/ConSeq can help identify the root cause of the bug, thus provide a better

understanding of the bug.

5.7 Conclusions

This chapter presents ConAir, a static analysis and code transformation tool that helps fix and

survive concurrency-bug failures through single-threaded recovery and idempotent processing.

The evaluation using 10 real-world concurrency bugs shows that ConAir successfully helps

software quickly recover from failures that cover a variety of symptoms and root causes.

ConAir works well even when it has no knowledge about a bug.

ConAir is not designed to help recover from all failures, but is effective for a large number

of common concurrency-bug failures. It only introduces negligible run-time overhead, less than

1% in our experiments. This good performance is achieved without any change to hardware or

operating systems and is suitable for production-run deployment. ConAir’s effectiveness is a

result of a seemingly serendipitous property: short recovery regions are naturally idempotent.

In future work, we hope to investigate whether automatic or programmer-aided transformations

can help increase its coverage.
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ConAir provides a novel use of existing assertions and error checking in programs. With

ConAir, assertions and error-checking code no longer just passively observe system failures

and errors. Instead, they actively help ConAir to allow software recover from failures and

correct software internal errors. ConAir’s creative use of assertions opens up the possibility of

sanity checks in multi-threaded programs being useful in deployment and as a recovery tool

beyond just a debugging tool. For the future work, we would like to investigate how well this

works in the field on widely deployed and used code-bases. Also, we would like to understand

developer issues in using such a paradigm.

ConAir introduces a perspective that many points in the design space of rollback/recovery

are meaningful, with reexecution regions spanning from tens of instructions to the whole

program. Future work can extend ConAir to explore other design points in this large design

space.

ConAir well complements ConMem and ConSeq to help improve concurrent program

reliability. Guided by the same principle as ConMem and ConSeq, ConAir starts from the

potential failure site and conducts recovery work in the single thread. It is demonstrated by

the real world applications that such effect-oriented approach is an effective approach that

can help both find unknown concurrency bugs (as demonstrated in ConMem and ConSeq)

and recover from failures caused by unknown concurrency bugs (as demonstrated in ConAir).
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6 conclusions

6.1 Contribution

This dissertation makes following three contributions.

• Conducts the first characteristic study that studies the whole life-cycle of concurrency

bugs based on 70 real world concurrency bugs. Three key observations are made: (1) The

patterns of concurrency errors resemble those of sequential bugs’ errors, including both

memory errors and semantic errors. (2) Error propagates within one thread. (3) Error

propagation distance is short. Based on these findings, novel and effective concurrency

bug detection and failure recovery can be achieved.

• Guided by the above findings, effect-oriented concurrency bug detection is proposed. It

starts from potential memory error sites and potential semantic failure sites, statically

analyzes the software to find the potential critical reads. In the following dynamic

program analysis phase, runtime trace is collected online. Offline trace analysis is then

conducted to find the bugs. The result shows that such an approach achieves much

lower false positive rate while detecting bugs that were never reported or missed by

state of the art concurrency bug detection tools.

• Guided by the same findings, effect-oriented concurrency failure recovery is proposed.

It starts from the potential failure sites and analyzes the code backwards to find the

idempotent regions that surround the failure sites. Then it inserts code so that when the

failure occurs the failure thread is rolled-back and re-executed. The results, demonstrated

by the real-world applications, show that ConAir only incurs at most 0.2% run overhead

while allowing programs to recover from failures caused by a wide variety of root causes

and have different symptoms. ConAir also guarantees never introduce any new bug.

ConAir is a pure static analysis approach thus there is no need to change OS or hardware

to make it work.
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To conclude, sharing the same insight and principle, our bug detection and failure recovery

work complement each other to improve concurrent software reliability significantly.

6.2 Future work

Three pieces of future work are foreseeable for this dissertation:

6.2.1 Input generation for concurrency bug detection tools

In practice, concurrency bug detection is usually based on dynamic analysis. All these dynamic

analysis tools, including our own, require bug-triggering inputs. Thus the ability to detect bugs

is limited by if the provided inputs will lead programs to the failure sites. However, generating

the high-quality input to trigger a bug is hard. Traditional input generation tools attempt to

cover as many code paths as possible. For concurrent software testing, path-coverage is not

the only critical metric, because we also need to consider the thread interleaving coverage.

How to effectively design input for concurrency bug detection remains an open problem.

6.2.2 Handle I/O and shared memory writes for concurrency failure

recovery

Idempotent regions in this dissertation are very restricted – it cannot contain any shared

memory write or I/O. Although empirical data shows that such operations are rare in the re-

execution region, it would be desirable to be able to recover at the presence of such operations.

Viable choices are buffering (aka lazy update) and speculatively-execute-and-undo (aka eager

update). Each choice has its own limitation and sometime neither of them is feasible. How

to handle the shared memory writes and I/O operations in a re-execution region remains an

open problem.

6.2.3 Assertion (invariant) placement for concurrent programs

Assertion is a very powerful tool. It conveys the message of what properties should a program

hold. It is helpful for our bug detection and failure recovery tools, as it is an easily identifiable
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potential failure site for both ConSeq and ConAir. Furthermore, as demonstrated in the

ConAir experiment, as long as assertions do not outnumber heap/global pointer dereferences, to

harden them incurs negligible overhead. Thus, clever placement of assertions can greatly help

improve concurrent software reliability while having minimal impact on software performance.

What assertions to put and where to put them in a concurrent software remains an open

problem.
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