
ConMem:
Detecting Crash-Triggering Concurrency Bugs
through an Effect-Oriented Approach

Wei Zhang1

Chong Sun1

Junghee Lim1

Shan Lu1

Thomas Reps1,2

1Computer Sciences Department, University of Wisconsin– Madison
2GrammaTech,Inc
{wzh,chong,junghee,shanlu,reps}@cs.wisc.edu

Multicore technology is making concurrent programs increasingly pervasive. Unfortunately, it is difficult
to deliver reliable concurrent programs, because of the huge and non-deterministic interleaving space. In
reality, without the resources to thoroughly check the interleaving space, critical concurrency bugs can slip
into production versions and cause failures in the field. Approaches to making the best use of the limited
resources and exposing severe concurrency bugs before software release would be desirable.

Unlike previous work that focuses on bugs caused by specific interleavings (e.g., races and atomicity
violations), this paper targets concurrency bugs that result in one type of severe effect: program crashes.
Our study of the error-propagation process of real-world concurrency bugs reveals a common pattern (50% in
our non-deadlock concurrency bug set) that is highly correlated with program crashes. We call this pattern
concurrency-memory bugs: buggy interleavings directly cause memory bugs (NULL-pointer-dereferences,
dangling-pointers, buffer-overflows, uninitialized-reads) on shared memory objects.

Guided by this study, we built ConMem to monitor program execution, analyze memory accesses and
synchronizations, and predictively detect these common and severe concurrency-memory bugs. We also
built a validator,ConMem-v, to automatically prune false positives by enforcing potential bug-triggering
interleavings.

We evaluated ConMem using 7 open-source programs with 10 real-world concurrency bugs. ConMem
detects more tested bugs (9 out of 10 bugs) than a lock-set-based race detector and an unserializable-
interleaving detector, which detect 4 and 6 bugs, respectively, with a false-positive rate about one tenth of
the compared tools. ConMem-v further prunes out all the false positives. ConMem has reasonable overhead
suitable for development usage.

Categories and Subject Descriptors: D.2.5 [Testing and Debugging]: Testing Tools

General Terms: Languages, Reliability

Additional Key Words and Phrases: Software testing, concurrency bugs

1. INTRODUCTION

1.1. Motivation

Multicore technology is making concurrent programs increasingly pervasive. Unfortunately, con-
current programs are prone to bugs. To exacerbate the problem, concurrency bugs are particularly

An earlier version of this work [Zhang et al. 2010] appeared in the Proceedings of the 15th International Conference on
Architecture Support for Programming Language and Operating Systems (ASPLOS’10).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit orcommercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work inother works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM,Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

AA:1

difficult to detect and diagnose due to their non-deterministic behavior. Concurrency bugs can cause
severe software failures and real-world disasters, such asthe Northeastern Blackout of 2003 [Secu-
rityFocus]. As concurrent programs grow increasingly popular, developing effective approaches to
detecting concurrency bugs is vital.

A fundamental challenge in concurrency-bug detection is the enormous size of concurrent pro-
grams’ interleaving space (exponential in the execution length for each input). Thoroughly checking
this large space is crucial because concurrency bugs only manifest under certain interleavings. Un-
fortunately, due to limited computational resources, software-development teams can only afford to
check a small part of this large space. Determiningwhich part of the interleaving spaceshould be
checked is a critical open problem.

To address the above challenge, previous tools for concurrency bug detection and testing focus on
certain interleaving patterns that are prone to concurrency bugs. Widely used patterns include data
races (un-synchronized conflicting accesses to shared variables) [Netzer and Miller 1991; Savage
et al. 1997; Yu et al. 2005; Flanagan and Freund 2009], atomicity violations (an interleaving that
makes certain code regions unserializable) [Flanagan and Freund 2004; Xu et al. 2005; Lu et al.
2006; Chen et al. 2008; Flanagan et al. 2008; Sadowski et al. 2009], and order violations (an execu-
tion that flips the expected order between two operations from two threads) [Lucia and Ceze 2009;
Shi et al. 2010].

Although great progress has been made, previous work still leaves some issues unsolved.
First, a high false-positive rate could cause programmers to give up on using a tool. Previous

research [Narayanasamy et al. 2007; Burnim and Sen 2009] observes that only approximately 2–
10% of real data races are harmful; a similar trend is also seen among unserializable interleavings
[Park et al. 09 a].

Second, not all bugs represent equally harmful end effects,yet the different effects of different
bugs are not considered during existing bug-detection processes. Table I illustrates this trend by
breaking down the relationship between faults (i.e., buggyinterleaving patterns) and failures in 70
real concurrency bugs that have been reported and fixed in open-source software. (Section 3 will
explain how we get this data.)

Crash Hang Wrong Output and Other Misbehaviors
Atomicity Violation 26 3 19
Order Violation 11 3 6
Other 0 1 1

Table I: Types of failures vs. types of faults (Note: The above data comes fromfixedbugs in open-
source software. Therefore, bugs that lead to minor or benign effects are under-represented in this
table.)

Figure 1 depicts the limitations of previous work (and our opportunities) by projecting a concur-
rent program’s interleavings onto a two-dimensional space. The x-axis and y-axis represent different
effectsand different patterns of interleavings (i.e.,failures andfaults for buggy interleavings), re-
spectively. Note that this is only a conceptual projection.The different categories along the y-axis
can actually overlap; some horizontal stripes may have larger portions of benign effects than others.

Previous work has considered differenthorizontal stripesof the above 2-D space. These horizon-
tal approaches inevitably suffer from the following limitations.

First, lack of goodcoverage for certain type of failures. Developers naturally want to know
about all (or most) interleavings that can cause certain classes of negative effects, such as software
crashes. Unfortunately, interleavings that cause certaineffects span vertically in the space and are
difficult to capture adequately through a horizontal approach. This difficulty is reflected in every
column in Table I: no single interleaving pattern can capture one type of failure.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2

��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��

Output
Wrong

Minor Issues
Benign/

OthersCrashes Hangs

Atomicity Bug Detectors

Race Detector

Causes

Atomicity Violations

Data Races
Order Violations

Others

Effects

This paper

Fig. 1: A conceptual two-dimensional depiction of approaches to finding flaws in concurrent pro-
grams

Second, a large number offalse positives. This is observed in the real world [Burnim and Sen
2009; Narayanasamy et al. 2007; Park et al. 09 a], and is reflected in Figure 1, where each horizontal
stripe inevitably covers interleavings with benign effects.

Third, a lack ofseverity differentiation. Severityis a qualitative metric for software failures. In
practice [Apache Bugzilla ; Bugzilla@Mozilla], bugs that lead to “crashes and loss of data” are
considered to have highseverity, and bugs that only lead to “minor loss of function or cosmetic
problems” are consideredminor or trivial . Without considering different effects of bugs, as shown
in each row of Table I, the horizontal approach cannot focus on severe bugs.

Benign
Minor Issues

Hangs
Crashes

Others

correct intermediate states
intermediate errors

Propagation

pattern
interleaving

Certain
Causes Effects

Fig. 2: The cause–effect chain

We can deepen our understanding of the false positive and severity issues by looking at the cause–
effect chains in concurrent programs. As shown in Figure 2, interleaving patterns like data races and
atomicity violations are only the start of potential error propagation chains. Some interleaving pat-
terns do not propagate to any incorrect states (e.g., not every piece of code is intended to be atomic).
For those that do cause incorrect states, their intermediate errors might be masked during further
propagation (e.g., due to redundant paths [Narayanasamy etal. 2007]), or end up as a minor issue
hardly visible to users. In many such cases, data races or unserializable interleavings are inten-
tionally left there by developers for better performance (e.g., conflicting accesses to a performance
counter [Yu et al. 2005]). A pair of concrete examples is shown in Figure 3. These two real-world
bugs start with similar bug-triggering interleavings, both involving data races and unserializable in-
terleavings. However, one causes a server crash, while the other has an almost invisible effect at the
end.

S1: tmp = gOffset; S3: tmp = gOffset;

Thread 1 Thread 2

S2: gOffset = tmp + 1; S4: gOffset = tmp + 1;

Thread 1 Thread 2

S1: if (thd−>proc_info) S3: thd−>proc_info = NULL;

S2: printf ("%s\n", thd−>proc_info); (a) (b)

Fig. 3: (a) A severe real-world concurrency bug from MySQL database server. (MySQL execution
usually follows the dotted line, but it crashes when its interleaving follows the solid line.)
(b) A non-critical concurrency bug that existed in Mozilla for years without any complaint.
(gOffset holds browsing statistics. Throughout Mozilla, it is read only once in a statistics-printing
function.)

The false-positive issue has already caught the attention of many researchers. Various innovative
approaches, such as training [Lu et al. 2006], automated testing [Park et al. 09 a; Sen 2008] and

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:3

heuristics-based ranking, have been proposed to mitigate this problem. However, without chang-
ing the underlying horizontal mechanism, these proposals still require significant manual effort for
specification writing and test-oracle design, as well as a large amount of computational resources to
perform many rounds of testing or training.

The severity issue has not received the attention it deserves in concurrency-bug -detection re-
search. Severity guidance is important for concurrent programs due to several reasons: (1) in gen-
eral, developers use severity to prioritize their diagnosis and repair efforts [Apache Bugzilla ;
Bugzilla@Mozilla]. This is also observed by a recent study of Linux kernel developers’ reactions
to static bug-detection reports [Guo and Engler 2009]; (2) the huge interleaving space makes the
prioritization process extremely important; (3) non-determinism makes minor-impact concurrency
bugs more trivial than their sequential counterparts; and (4) fixing concurrency bugs often results
in performance penalties, which make developers more reluctant to fix inconsequential concurrency
bugs. In reality, programmers are even willing to introducenew non-severe concurrency bugs in
order to fix severe concurrency bugs [Mozilla Developers].

In summary, this paper presents a bug-detection approach that focuses on certainvertical stripes
of the interleaving space — specifically, thecrashstripe that spans across all kinds of (horizontal)
interleaving patterns. This vertical approach will complement existing bug detectors and provide
better guidance to expose severe concurrency bugs.

1.2. Contributions

This paper proposes a concurrency bug-detection-tool, ConMem, which is guided not by certain
interleaving patterns, but by one important class of bug effects, namely, program crashes. By doing
so, we circumvent the problem of detecting the complicated root causes. We essentially mitigate
the problem by identifying the most common patterns of program crashes and let ConMem go
after each. As a dynamic monitoring tool, ConMemaccurately and predictively detects severe
concurrency bugs that can lead to program crashes, no matterwhich interleaving pattern
(race, atomicity violation, order violation, etc.) is the cause.

To capture the crash stripe in the interleaving space, we need to look backward along the cause–
effect chain and find a pattern that can predict crashes.

Our characteristics study of thecause-effect chainsof 70 real-world concurrency bugs in Section 3
reveals an error-propagation pattern that is common and highly correlated with software crashes.
This pattern covers almost half of the examined bugs and constitutes more than 85% of crash-
inducing bugs. It occurs when unsynchronized memory operationsdirectly lead to memory errors,
including NULL-shared-pointer dereferences, dangling pointers to shared memory, un-initialized
shared-memory reads, and shared-buffer overflows. We referto this pattern asconcurrency-memory
errors.

One Run of
a Concurrent Program interleavings (I)

Triggering
+

(online/offline)
Report of Crash Bugs

(optional)
Off−line Validation

Bugs (B)

perturbation

(try to exercise I and validate B)

interleaving

controlled
a test
input

synchronization analysis

Run−time Detection

memory−error−component identification

Fig. 4: The flow and components of ConMem

Based on the above observation, ConMem (Figure 4) is designed to predictively catch
concurrency-memory errors and to report fatal interleavings before they occur. Under each test
input, ConMem monitors one run of the test concurrent program. It uses run-time information to
first identify ingredients of potential concurrency-memory errors (e.g., a NULL-assignment and

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4

a dereference of a shared pointer from different threads areingredients of a concurrency-NULL-
dereference bug). It then analyzes synchronizations around these suspect ingredients to decide
whether fatal interleavings exist that trigger a concurrency-memory error.

Furthermore, we built an active-testing tool ConMem-v to automatically validate whether the
fatal interleavings reported by ConMem can truly occur. Through ConMem-v, developers can easily
validate a ConMem report and reliably repeat true bugs.

Overall, this paper makes the following contributions:
First, the paper reports the first characteristic study on the cause-effect chains of real-world con-

currency bugs. Our study is based on 70 fixed, real-world concurrency bugs collected by a previous
study [Lu et al. 2008] from four widely-used C/C++ applications (Apache, Mozilla, MySQL, and
OpenOffice). The study reveals several interesting findings: (1) concurrency bugs that can cause
program crashes are common among fixed bugs, constituting approximately 50% of non-deadlock
bugs in the study; (2) interleaving patterns have little correlation with bug severity; (3) most (about
85%) examined crash concurrency bugs share one error-propagation pattern: the buggy interleav-
ings directly cause memory bugs on shared-memory objects; and (4) above concurrency-memory
errors can be further classified into four types: NULL-shared-pointer dereferences, shared-buffer-
overflows, uninitialized reads to shared variables, and dangling pointers to shared memory.

Second, the paper introduces a new perspective on checking the huge interleaving space. Tradi-
tional bug detectors focus on thecauseof concurrency bugs and work horizontally in the interleaving
space shown in Figure 1. ConMem complements them by focusingon certaineffectsand working
vertically. Specifically, traditional tools identify all instances of certain interleaving patterns and rely
on testing, training, or manual inspection to determine which can truly cause (severe) failures. Con-
Mem benefits from its effect-oriented vertical approach andeffectively prioritizes its bug-detection
effort towards severe software bugs, instead of benign or trivial interleaving problems.

Third, the paper provides a bridge between the well-studiedmemory-bug problem and the chal-
lenging concurrency-bug issue. Memory-bug-detection techniques are already mature for sequential
programs [Coverity ; Hastings and Joyce 1992; Nethercote and Seward 2007]. However, they are not
as effective in concurrent programs for several reasons. First of all, dynamic memory-bug detectors
are sensitive to interleaving. They can only catch bugs whenthey occur, unable to predict what might
happen under future interleavings. Furthermore, even for those bugs that do occur during the moni-
tored run, memory-bug detectors cannot identify the root cause(i.e., buggy interleaving) and cannot
help developers fully understand and fix the bug. Static analysis is not sensitive to interleaving.
However, even with recent inspiring progress [Chugh et al. 2008], its scalability and effectiveness
in concurrent programs are still limited by the fundamentalpointer-alias and concurrency-analysis
problems. ConMem combines classic memory-bug-detection techniques with predictive interleav-
ing analysis and interleaving testing, thus solving the above problems (more discussion is in Sec-
tion 8).

Fourth, the paper describes a tool, ConMem, that effectively detects severe concurrency bugs and
validates the results through controlled testing. ConMem is implemented using binary instrumenta-
tion. By design, ConMem has several advantages: (1) it uses predictive bug detection, and thus is
less sensitive to interleaving; (2) it has no training requirement; (3) it reports easy-to-validate bug-
detection results (i.e., memory errors), with no need for manually written oracles to judge execution
correctness; (4) it has high accuracy and coverage on severeconcurrency bugs; and (5) it supports
a simplified diagnosis process via ConMem-v. In fact, the co-design of ConMem and ConMem-v
also helped to simplify some detection algorithms in ConMemwithout causing more false positives
to be reported to developers.

ConMem is evaluated on 7 open-source programs with 10 real-world concurrency bugs, 9 of
which can cause programs to crash. These programs include three server applications (Apache
HTTP server, MySQL database server, and Cherokee HTTP server), three client/utility applica-
tions (Mozilla, Transmission, and PBZIP2), and one scientific application from SPLASH2 [Woo
et al. 1995].

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:5

Our results show that ConMem can effectively detect 9 out of 10 tested concurrency bugs, which
is better than both a race-based detector (4 out of 10) and an atomicity-violation based detector (6 out
of 10) to which ConMem is compared. Furthermore, ConMem detector’s false-positive rate is about
one tenth of the race-based and atomicity-violation-baseddetectors. ConMem-v further prunes all
false positives without introducing false negatives. ConMem detection’s run-time overhead is com-
parable to previous software bug-detection tools and is suitable for in-house bug detection. Each
ConMem detector introduces 2–16 times slowdown for client software and the SPLASH2 bench-
mark, and 3–29% overhead for server applications.

ConMem is also evaluated on an open-source program, theClick modular router [Click 2010], for
which no concurrency bugs were previously known. Using the standard test suite released together
with Click, ConMem detects 2 previously unknown concurrency bugs thatcould lead to software
crashes. This result further demonstrates ConMem’s capability to expose previously unknown con-
currency bugs during in-house testing.

The remainder of the paper is organized as follows: background and our cause-effect character-
istics study are presented in Sections 2 and 3, respectively. Section 4 discusses ConMem’s bug-
detection method. The ConMem validator is presented in Section 5. Section 6 and Section 7 present
evaluation methodology and experimental results. Finally, related work is presented in Section 8.

2. BACKGROUND

Memory bugs are very common and also severe [Sullivan and Chillarege 1992; Z. Li et. al. 2006].
Many of them can cause program crashes, data loss, and even security problems. This section pro-
vides a brief review of memory bugs.

2.1. Typical Memory Bugs

NULL pointer dereferences happen when the program dereferences a NULL-valued pointer. It
causes the program to immediately crash. Much work has been done on static detection of NULL-
pointer dereferences. However, their accuracy and scalability is limited by pointer-alias problems.
Un-initialized reads occur when a valid memory location is read before it is properly initialized.
It could cause incorrect output or a crash. Dynamically detecting un-initialized reads is straight-
forward. In practice, sophisticated memory detectors, like Valgrind [Nethercote and Seward 2007],
also consider the context of the un-initialized read, and only report bugs when the un-initialized
value is used in a critical scenario.
Accesses to invalid memory locationsinclude dangling-pointer bugs (accessing memory loca-
tions that are already freed), buffer-overflow bugs (accessing memory locations that are beyond the
buffer’s boundary), and stack smashing (overwriting critical data stored on the stack). These bugs
can cause not only incorrect outputs, but also crashes and security vulnerabilities.
Other memory bugs include double-free bugs (a memory location is freed twice), memory-leak
bugs, and complicated bugs, such as accessing legitimate but incorrect memory locations. Various
algorithms have been proposed to detect such bugs [Jones andKelly 1997; Ruwase and Lam 2004].

2.2. Memory Bugs in Concurrent Programs

Memory bugs in concurrent programs can be classified into twotypes. The first type only involves
one thread and can be deterministically triggered by special inputs. In terms of dynamic detection,
testing, and diagnosis, this type of bugs is no different from those in sequential programs.

The second type, such as the one shown in Figure 3 (a), is more complicated. They involve more
than one thread and require not only special inputs but also special interleavings to occur. These
bugs are actually side-effects of more fundamental concurrency bugs. As discussed in Section 1,
these bugs cannot be addressed by existing dynamic-memory bug detectors because their existence
under future interleavings cannot be predicted by existingdynamic detectors. Even when they do
occur under the current interleaving, their root causes still cannot be correctly identified.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6

Categories Description
Con-Memory Errors* Wrong execution order among shared memory operations directly transit to memory bugs
Buffer Overflow Conflicting accesses to shared buffer and buffer index/boundary variables cause buffer overflow.
Dangling Pointer A thread deallocates a shared buffer before another thread accesses it (Figure 8).
NULL Pointer A thread dereferences a shared pointer that is assigned NULLby another thread (Figure 3(a)).
Uninitialized Read A thread reads a shared variable before the variable is initialized by another thread (Figure 7).
Con-Semantic Errors Interleaving causes unexpected variable values and program states.

Table II: Categorization of intermediate errors directly caused by buggy interleavings (*:memory
bugs such as double-frees and memory-leaks are unlikely to happen as direct effects of buggy inter-
leavings).

3. CAUSE-EFFECT CHARACTERISTICS

Before describing ConMem, we first present a study of the error-propagation chains of 70 real-world
concurrency bugs. This study will help us understand how buggy interleavings gradually affect the
program state and ultimately cause various software failures, especially those that are severe (e.g.,
crashes).

Cause Error Propagation

Buggy Interleavings Visible Software Failures

Effect

Intermediate Errors

Fig. 5: Cause-effect chain

3.1. Methodology and Caveat

Bug Source This study uses a set of 70 real-world non-deadlock concurrency bugs collected in [Lu
et al. 2008].1 All of these 70 bugs are reported by users and fixed by developers from four widely-
used C/C++ open-source applications: Apache HTTP server, MySQL database server, Mozilla web
browser, and OpenOffice office tool-kits. These bugs are collected by previous researchers through
random sampling among all fixed bugs in the bug databases. We choose to focus on non-deadlock
concurrency bugs, because deadlocks have much more regulareffects and are better understood and
addressed than non-deadlock bugs.

Characteristics in study Previous characteristics studies [Farchi et al. 2003; Lu etal. 2008]
focus primarily on the interleaving patterns that cause theconcurrency bugs. This work will study
the error-propagation process from its cause (buggy interleavings), through intermediate errors, to
the final effects (demonstrated by Figure 5).

In terms ofcauses, we refer to previous work [Lu et al. 2008] to consider two causes: atomicity-
violation and order-violation. Data races are orthogonal to these two and are not separately consid-
ered here.

In terms ofeffects, we follow previous general bug-characteristics studies [Z. Li et. al. 2006;
Sullivan and Chillarege 1992] and consider three main effects: crashes, hangs, and minor wrong
functionality issues (including wrong outputs). Strictlyspeaking, there could also be severe bugs
like loss of data, but the bug set we use does not contain such examples.

The most difficult part of our categorization is theintermediate errors. Since there has been no
previous study regarding this, based on our own observations and inspiration from studies of gen-
eral software bugs, we classify intermediate errors into two major categories:intermediate memory
errors andintermediate semantic errors.

An intermediate memory erroroccurs when the buggy interleaving changes the execution order of
a set of shared memory operations so that these operations themselvesdirectly instantiate a memory
bug. Afterward, the program fails similarly to those causedby memory bugs in sequential programs.

1The original list in [Lu et al. 2008] includes 74 bugs. 4 of them do not have enough error-propagation information and are
discarded in this study.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:7

This paper refers to such error chains asconcurrency-memory errors. They are further classified
based on which types of memory bugs are instantiated, as shown in Table II.

An intermediate semantic erroroccurs when the buggy interleaving causes new and unexpected
program states that are not handled by the program. Once thatunexpected state happens, the pro-
gram fails, as happens with semantic bugs in sequential programs.

These two categories are usually easy to classify, except for a few complicated cases, such as the
Mozilla bug shown in Figure 6. This bug and the MySQL bug in Figure 3(a) both result in NULL-
pointer dereferences followed by a crash. However, they have different error-propagation processes.
In the MySQL example, the NULL pointer is a shared variable, and the NULL-pointer dereference
is adirect result of the buggy interleaving. However, in the Mozilla bug, the NULL-assignment (S2)
and NULL-dereference (S3) both occur in one thread as a result of an unexpected{id,key1} pair
caused by the buggy interleaving. Our principle is to categorize errors based on thedirect impact of
interleavings. Therefore, Figure 6 is considered a concurrency-semantic error.

S4: hash_delete (key2);S1:id = hash_lookup (key1);

}

 if (id != INVALID_ID) {
S2: p = hash_get_property(id, key1);
S3: printf ("%s\n", *p);

Thread 1 Thread 2

key1 = key2 when the bug manifest

id, key1, key2, p are local; hash table is shared

hash_get_property returns NULL with invalid id−key pair

hash_lookup returns an ‘id’ for future hash−table retrieval

Fig. 6: A complicated concurrency bug with an intermediate semantic error (simplified from a real
Mozilla bug). The buggy interleaving causes an (unexpectedly) invalid {id,key1} pair, which
causeshash get property to return NULL.

CaveatsWe attempted to the best of our ability to use representativebugs and correctly classify
them. We do not intend to draw general conclusions for all bugs and all applications. We only plan to
use those trends that are consistent throughout our bug set to guide effect-oriented concurrency-bug
detection. We warn readers to interpret the findings below with the methodology in mind. Because
this study focuses on C/C++ programs, the cause-effect characteristics may not apply to other types
of programs, e.g., Java programs. Of course, because many multi-threaded programs, especially
client/server programs, are still written in C/C++, we believe our study is representative of a large
class of important applications.

3.2. Results and Implications

Many interesting results were revealed in this study. Here we limit ourselves to findings that are
closely related to the design of effect-oriented concurrency bug-detection tools.

Crash Hang Wrong Func. Total
Mozilla 24 4 12 40
MySQL 5 0 10 15
Apache 7 2 1 10
OpenOffice 1 1 3 5
ALL 37 7 26 70

Table III: Effects (failure types) of concurrency bugs

Finding 1 Approximately 50% of the studied non-deadlock bugs can cause program crashes, as
shown in Table III. This indicates that crash concurrency bugs are not only severe, but also common
among those reported-and-fixed bugs. Detecting them is crucial.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8

Finding 2 There is no correlation between the cause and the effect of a concurrency bug.A
breakdown between the types of interleaving patterns (causes) and the types of failures (effects) is
presented in Table I. As discussed in Section 1, it is difficult to predict the final effect or severity of
a concurrency bug based on its root cause interleaving pattern.

Crash Hang Minor Func. Issues
Con-Memory err. 31 0 3
Con-Semantic err. 6 7 23

Table IV: Types of failures vs. types of intermediate errors

Finding 3 Approximately 84% (31 out of 37) of the studied concurrency bugs that cause crashes
have concurrency-memory error patterns, as shown in Table IV. The few exceptions are similar to
the Mozilla bug shown in Figure 6. This finding provides a promising avenue for tool builders: by
focusing on the concurrency-memory error pattern, we can handle most severe concurrency bugs
that can cause program crashes (at least in C/C++ programs).

Finding 4 Approximately 90% (31 out of 34) of the intermediate memory errors in our bug set
cause program crashes at the end,as shown in Table IV. This finding is consistent with the trend
in sequential programs [Z. Li et. al. 2006]. It further demonstrates that by targeting concurrency-
memory errors, we can effectively focus the bug-detection and testing effort upon severe concur-
rency bugs, without wasting resources on benign or non-critical interleaving problems.

Memory Errors Semantic
NULL UnInit Dangling Overflow Errors

Mozilla 9 0 8 4 19
MySQL 3 1 1 0 10
Apache 2 0 3 1 4
OpenOffi 1 1 0 0 3
ALL 15 2 12 5 36

Table V: Breakdown of intermediate errors

Finding 5 Concurrency-memory errors include four common patterns.As we can see in Table V,
all the concurrency-memoryerrors in our study fall into four well-defined categories: NULL-pointer
dereferences, dangling-pointers, buffer-overflows, and uninitialized-reads. For simplicity, we will
refer to these four sub-types of concurrency-memory errorsas follows:Con-NULL (NULL-pointer
dereference directly caused by a buggy interleaving),Con-UnInit (uninitialized read directly caused
by a buggy interleaving),Con-Dangling(dangling pointer directly caused by a buggy interleaving),
andCon-Overflow (buffer overflow directly caused by a buggy interleaving). By “directly caused”,
we mean a memory error is caused by unsynchronized shared-memory accesses, such as the bug
shown in Figure 3 (a), instead of local-memory accesses thathave data/control dependence with
unsynchronized shared-memory accesses, such as the bug shown in Figure 6.

These regular bug patterns provide clear guidance to an effort directed at concurrency-bug detec-
tion; we will show that, by focusing on these four types of bugs, we can build a bug-detection tool
that finds serious concurrency errors with a low false-positive rate. This is precisely the approach
followed by ConMem.

4. DETECTING SEVERE CONCURRENCY BUGS

4.1. Overview

ConMem includes four dynamic bug-detection modules that are responsible for detecting Con-
NULL, Con-UnInit, Con-Dangling, and Con-Overflow bugs, respectively. The design of ConMem
is guided by our characteristics study, and follows three principles:

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:9

Error Conditions Can synchronization avoid the error?
Basic Ingredients Timing Condition Order Synch.* Mutual Exclusion

Con- (1) rp: from t1, reads pointerptr (1) wp executes beforerp Yes Yes
NULL (2) wp: from t2, (2) No write toptr

writes NULL toptr betweenrp, wp
(1) r: from t1, reads variablev

Con- (2) ∄w: from t1, writesv beforer r executes beforew Yes Not by itself
UnInit (3) w: from t2, initializesv,

usually beforer
Con- (1) a: from t1, accesses memorym a executes afterFree(M) Yes Not by itself
Dangling (2) Free(M): from t2,m∈ M

(1) v: a buffer-index/boundary var. Data race betweena1 anda2
Con- (1) a1: from t1, accessesv (approximated condition) Yes Yes
Overflow (2) a2: from t2, accessesv

Table VI: The conditions for Concurrency-Memory errors. (*: order synchronization represents
barrier-style synchronizations).

(1) Effect-oriented, instead of interleaving-oriented. ConMem tries not to analyze an interleaving
pattern unless it is related to concurrency-memory errors.Moreover, ConMem does not limit itself
to any specific interleaving pattern.

(2) Predictive bug detection. ConMem bug detection is not limited to the monitored interleaving.
Instead, it aims to report concurrency bugs that could occurunder future interleavings. This property
is critical due to concurrent programs’ non-determinism.

(3) Balance between analysis accuracy and complexity. Because the validator ConMem-v can
help prune out false positives, ConMem has the luxury of trading accuracy for simplicity, when
necessary.

Following these principles, ConMem dynamically and predicatively detects concurrency-memory
errors in two steps.

First, it identifies basic ingredients of concurrency-memory errors from a monitored program
execution. The basic ingredients are memory operations, such as a pointer dereference, a NULL
assignment, a buffer deallocation, etc. Their existence isnecessary to a concurrency-memory er-
ror and is (fortunately) usually insensitive to interleavings. They will be detected by the memory
checking part of ConMem.

Second, it analyzes whether special timing conditions can be satisfied among those basic ingredi-
ents during future execution. Special timing, such as de-allocating a memory objectbeforeanother
thread accesses it, can turn a set of memory operations into atrue bug. Whether a timing condition
can be satisfied in future interleavings depends on the synchronization operations in the program.
The synchronization-analysis part of ConMem is responsible for making this decision and reporting
bugs.

A summary of the ingredient-and-timing conditions for eachsub-type of concurrency-memory
error is shown in Table VI. The following sub-sections will elaborate on how to detect each sub-
type of concurrency-memory error.

4.2. Con-NULL Detection

4.2.1. What is a Con-NULL bug?. Con-NULLs are NULL-pointer dereference errors directly
caused by buggy interleavings. An example of Con-NULL is shown in Figure 3 (a). As we can
see there,S2 from thread 1 dereferences a shared pointer variablethd→ proc info, andS3 from
thread 1 assigns NULL to the same variable. Under a buggy interleaving,S3 executes right between
S1 andS2, immediately causing a NULL-pointer dereference and a MySQL crash. Of course, the
above buggy interleaving occurs only rarely, and MySQL mostly behaves correctly.

In general, thebasic ingredients of Con-NULL bugsinclude two pointer accesses, denoted as
wp andrp. wp writes NULL to a shared pointer variableptr, andrp readsptr from a different
thread that later performs a pointer dereference. We consider each{wp,rp} pair to be a bug suspect.

The timing condition of Con-NULLis to executewp beforerp with no other write toptr in
between. A bug suspect is reported only if the timing condition can be satisfied.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10

4.2.2. Con-NULL detection algorithm. The algorithm includes two parts.
Detecting the basic ingredientsBuilding a run-time monitoring tool to identify{wp, rp} pairs

is straightforward using binary instrumentation. Specifically, for every heap/global access,2 Con-
Mem collects its thread-id, program counter, memory location, and store-value information at run-
time. Analyzing this information can easily reveal Con-NULL suspects. The only issue remaining is
to differentiate memory locations that hold pointers from those that hold normal integer or Boolean
variables. This matter will be discussed later.

Checking the timing condition After a Con-NULL error suspect (i.e., a{wp,rp} pair) is dis-
covered, the next step is to check whether the synchronization operations in the program allowwp
to execute beforerp without another interfering definition in between.

Without losing generality, ConMem separately considersmutual-exclusionsynchronization and
order synchronization. If the timing condition explained above is not prohibited by either of them,
the corresponding suspect will be reported as a Con-NULL bug.

Order-synchronizationoperations [Netzer and Miller 1991; Park et al. 09 a], such asbarriers,
set up a happens-before partial order among all accesses in the concurrent execution. Under this
happens-before order, two accesses are either strictly ordered or concurrent with one another.

Order synchronization could make a Con-NULL timing condition infeasible if and only if one
of these two conditions are satisfied: (1) the NULL-assignment is strictly ordered after the pointer
read; or (2) another write to the pointer is strictly orderedbetween the NULL-assignment and the
read. The ‘order’ here is determined by the happens-before relationship.

Mutual exclusion, such as locks and transactions, prevents those code regions that are protected
by the same lock or covered in transactions from interferingwith one another.

Mutual exclusion could protect the{wp,rp} pair and prevent a Con-NULL error in two ways:
(1) rp and an earlier write toptr from the same thread are atomic with respect towp; or (2) wp
and a later write toptr from the same thread are atomic with respect torp. In the former case,rp
always uses a definition from its own thread, instead ofwp. In the latter case,wp’s assignments are
always overwritten before reachingrp.

ConMem monitors mutual-exclusion and order synchronizations at run time. By checking against
the above conditions, ConMem can identify Con-NULL suspects that are properly protected and
report the remaining suspects as Con-NULL bugs.

Note that, the above analysis is different from traditionaldata race checkings. A{wp,rp} pair
doesnot need to be a data race in order to be a Con-NULL bug. As discussed above, a Con-NULL
bug could occur between awp and a strictly happened-afterrp, which is not a data race; a Con-
NULL bug could also occur between awp and arp that are protected by the same lock variable.
The same is true for Con-UnInit and Con-Dangling. In fact, ConMem can detect many bugs that
cannot be caught by race detectors, as shown in the Table VIII.

Of course, our synchronization analysis is neither sound nor complete, because it does not con-
sider potential control-flow changes under future interleavings. We believe it provides a good bal-
ance between analysis complexity and analysis accuracy, asshown by our experimental results in
Section 7.

4.2.3. Implementation . ConMem implements the above algorithm using run-time recording (with
PIN [Luk et al. 2005] binary instrumentation) and off-line trace analysis. We choose trace analysis
over pure run-time detection due to the algorithm complexity.

The run-time component logs three types of information. Thefirst type is information
about accesses to a global or to heap memory, which is used to identify basic ingredients
(i.e., {wp, rp}). The second type is the synchronization operations, including barrier,
pthread mutex (un)lock, pthread create/join, etc. This part is used to check sus-
pects’ timing conditions. The last type is information about all malloc/free operations. Since virtual

2Data stored on the stack is not usually shared across threadsand is therefore ignored in our current prototype.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:11

addresses could be recycled through malloc/free, the latter information helps us to identify which
memory locations are truly holding the same memory object. The recycling issue is similarly han-
dled in the three remaining detection modules.

Con-NULL only needs to record and analyze memory accesses topointer variables. Our current
implementation differentiates pointers from non-pointervariables based on the value stored in a
memory location. That is, an access to a memory locationm is ignored by Con-NULL if the value
stored inm is neither 0 nor within the range of the stack, the heap, or theglobal data region. This
scheme works well in practice.

The trace-analysis includes three major steps: (1) identify all {wp,rp} pairs; (2) analyze mutual-
exclusion synchronization; and (3) analyze order synchronization.

The first step is straightforward. By checking the memory-address, thread-id, and store-value
information in the trace, we can easily find all Con-NULL suspects.

The second step is to analyze mutual-exclusion synchronization. Following our earlier discussion,
for every suspect{wp, rp} pair, ConMem identifies the preceding write ofrp (refer to asrp-p)
and the follow-up write ofwp (refer to aswp- f) from the trace. It then calculates the lock-sets that
protectrp, {rp-p,rp}, wp, and{wp,wp- f}. Any lock-set overlap between{rp-p,rp} andwp or
overlap between{wp,wp- f} andrp indicates that this suspect is well-protected and should not be
reported as a bug.

The last step is to determine whether order synchronizations can protect a{wp, rp} pair from
NULL-pointer dereference. This analysis is conducted through vector timestamp comparisons.

Our run-time updates and logs the vector timestamp of each thread right after everyorder-
enforcingsynchronization operation, includingpthread mutex create/join and barriers,
based on the Lamport logical-timestamp algorithm [Lamport1978]. During trace analysis, we can
easily obtain the vector timestamp of each memory accessa in threadt, which is the latest times-
tamp logged beforea in the log oft.

With the timestamp information, we want to check (1) whetherwp will always execute afterrp,
and (2) whetherwp will always be overwritten before it reachesrp. If neither is true, a Con-NULL
bug is reported. This checking could be time-consuming, because for each suspect{wp, rp} pair
that accesses memory locationptr, it requires comparing their timestamps with the timestampof
everywrite access toptr. Our implementation simplifies this checking using a heuristic: if there
exists aptr-definition that is strictly ordered betweenwp andrp, it usually comes from either
the thread ofwp or the thread ofrp. Under this heuristic, we only need to check two candidates
that might sit betweenrp andwp: the write toptr on rp’s thread right beforerp and the write
to ptr onwp’s thread right afterwp. Overall, our implementation has a modest complexity, linear
in the number of suspect{wp, rp} pairs, and works well in our bug-detection experiments, never
introducing false positives.

Discussions Con-NULL predicts concurrency bugs that could occur in the future based on the
observation of one program execution. This prediction inevitably has false positives and false nega-
tives.

The false positivesof Con-NULL detection mainly have two sources. The first is unidentified
custom synchronization, an issue shared with many previousconcurrency-bug-detection tools [Sav-
age et al. 1997]. Without knowledge about some custom synchronization operations, such as spin
loops and producer-consumer queues, ConMem will mistakenly consider some timing conditions as
feasible and report false positives. Section 4.6 discusseshow to prune some of these false positives.
The second sources of false positives are due to simplifications made by our implementation. One
simplification that has not yet been mentioned is that we do not check whether a pointer read is
used for dereferencing. Sometimes, a pointer read is used for condition-checking, where reading
a NULL-valued pointer does not cause any problem. We prune out this type of false positive by
checking whether a pointer read has a NULL value during the monitored run. If it does, we do not
report the bug. This pruning has been very effective, as we will see in Section 7.

Thefalse negativesof Con-NULL detection mainly come from the code/path coverage problem.
Under a fixed input and different interleavings, the predicate variable of a branch could have dif-

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12

ferent values and lead to different execution paths. If an instruction is executed only under rare
interleavings or if two instructions access the same memorylocation only under rare interleavings,
ConMem may miss the basic ingredients of potential Con-NULLbugs and have false negatives.
This type of false negatives exist in all ConMem detection algorithms and also previous work that
tries to predict future interleavings based on one observedinterleaving [Savage et al. 1997; Flanagan
and Freund 2004; Chen et al. 2008; Joshi and Sen 2008; Yi et al.2009; Park et al. 09 a]. Fortunately,
it rarely occurs in practice, based on our experience. In addition, this problem can be mitigated by
making ConMem observe more than one run of the program under the same input and analyze each
run independently. If one of the runs reaches a path that can only be observed in a rare interleaving,
then ConMem is able to report bugs on this path. ConMem can also benefit from techniques that
improve the testing code coverage in concurrent programs [Sen and Agha 2006].

Finally, trace sizeis a potential concern for all trace-based analysis tools. Since Con-NULL only
records heap/global memory accesses that touch (likely) pointer variables, its traces will be signif-
icantly smaller than those generated by deterministic replay tools [Park et al. 09 b]. Based on our
experience, it is rarely a problem for Con-NULL, as shown in Section 7. One could also split the
trace of a long-running program into several sub-traces andapply the Con-NULL algorithm to each
sub-trace.

4.3. Con-UnInit Detection

h = malloc();

S1 h−>band = tr_bandNew(h);

/* h is shared; S1 is expected to initialize h−>band */

assert(is_band(h−>band));S2

Thread 1 Thread 2

Fig. 7: A concurrency bug that leads to an undefined read and finally causes crash (from
Transmission-1.42)

4.3.1. What is a Con-UnInit bug?. Con-UnInit bugs are un-initialized memory reads directly
caused by buggy interleavings. An example of a Con-UnInit bug is shown in Figure 7. In this
example, a shared variableh→ bandwidth is initialized atS1 in thread 1. Read accesses to this
variable are supposed to occur afterS1. Unfortunately, without proper synchronization,S2 in thread
2 can execute beforeS1 and read an uninitialized value, which causes an assertionfailure later.

Thebasic ingredientsof a Con-UnInit bug typically include a read access, denotedasr (e.g.,S2
in Figure 7), to a memory location that should be initializedby another thread. Thetiming condition
for a Con-UnInit bug is to executer before the initializations by another thread.

Note that, when we observe anr reading a value defined by its own thread, an un-initialized read is
unlikely to happen under a different interleaving. However, there could be exceptions. For example,
future interleavings could change the execution path and make the local definition disappear. This
goes beyond our definition of concurrency-memory errors andis not considered here.

4.3.2. Detection algorithm & implementation. Con-UnInit’s detection algorithm is simpler than
Con-NULL’s and is implemented via run-time detection without trace analysis.

Detecting the basic ingredientsThis task identifies a shared-memory read, the target memory
location of which isnot defined earlier in its own thread, but in another thread. Suchreads will be
considered as Con-UnInit suspects.

This task is quite straight forward to implement during dynamic monitoring. Relying on the PIN
instrumentation framework, we use a hash-tableInitializer to maintain the per-thread information
about which memory locations are already initialized in this thread. Specifically,Initializer is in-
dexed by memory locations. Whenever a write to memory location v occurs,Initializer is checked

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

to determine whether this is the first write tov from that thread. If it is, the information of this write
is inserted into the table. Looking upInitializer at every read access to a heap variable will reveal
all Con-UnInit suspects.

Checking the timing condition At run-time, whenever a read suspectr is discovered, ConMem
must conduct a synchronization analysis and decide whetherthere exists a remote initialization
that is strictly ordered beforer. Mutual exclusion cannot help to avoid this type of bug and isnot
considered here.

Conducting this task at run-time requires several pieces ofinformation. Suppose that the sus-
pectr accesses memory locationv. The first piece of information we need is the vector timestamp
of r. ConMem maintains the vector timestamp for each thread at run-time, by intercepting order
synchronizations (i.e., barrier andpthread create/join) and analyzing them based on the
classic Lamport algorithm [Lamport 1978]. The timestamp ofr can be easily retrieved from the
current timestamp of its own thread.

The second piece of information is the vector timestamp of all the initializations tov from other
threads. This information is kept in theInitializer table mentioned above. Specifically, when a write
access is found to be the first write tov from threadt, t ’s current timestamp is inserted intoInitializer.

Finally, after obtaining the above information, ConMem compares the timestamp ofr with the
timestamps of remote initializers. A Con-UnInit bug is reported whenr is concurrentwith all the
recorded initialization timestamps.

As an optimization, we only conduct the above check for the first read from each thread to a
memory locationv. This is sufficient to detect Con-UnInit bugs onv, if they exist.

Discussions The sources of false negatives and false positives for Con-UnInit detection are
similar to those of Con-NULL, except for one unique source offalse positives. That is, some un-
initialized reads may not cause negative effects, a property different from NULL-pointer deref-
erences, dangling pointers, and buffer-overflows. Previous sequential bug detectors, such as Val-
grind [Nethercote and Seward 2007], have considered this and choose to report bugs only when the
un-initialized value is used for critical operations, including system calls, condition checking, and
memory-address calculation. ConMem could borrow this ideato prune this set of false positives,
but this is not included in the present implementation.

In contrast with Con-NULL, Con-UnInit does not dump traces and does not have the trace-size is-
sue. However, since Con-UnInit conducts all its analysis on-line, its run-time analysis will consume
more memory than Con-NULL. The memory consumption of Con-UnInit is mainly for storing the
initialization timestamp for each active heap/global memory location. It is linear in the heap/global
memory footprint of a program, like many previous dynamic bug detectors [Lu et al. 2006]. It will
not increase with longer executions, as long as the program’s active memory consumption does not
change.

4.4. Con-Dangling Detection

S1 delete q;

while (!fifo−>empty) {S2
 ...

}

Thread 1 (main thread) Thread 2 (worker thread)

q is a pointer local to thread 1; it points to the memory region that contains fifo−>empty

Fig. 8: A concurrency bug that leads to a dangling pointer andfinally causes crash (from PBZIP2-
0.9.4)

4.4.1. What is a Con-Dangling bug?. A Con-Dangling bug occurs when buggy interleavings
directly cause dangling pointer accesses. Figure 8 demonstrates a bug from PBZIP2. In this example,
pointerq (a local variable in thread 1) points to a heap object shared by thread 1 and thread 2 (fifo

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14

in thread 2 points to the same object). Due to lack of synchronization, thread 2 can access the shared
object atS2 when it is already deleted by thread 1 atS1, which can cause PBZIP2 to crash.

As we can see, thebasic ingredientsof a Con-Dangling bug is a memory access whose target
memory location is de-allocated by a different thread. Thetiming conditionof Con-Dangling is to
conduct the memory access after the de-allocation.

4.4.2. Detection algorithm & implementation. Similar to Con-UnInit detection, Con-Dangling is
implemented in PIN as a pure run-time bug detector with no trace analysis.

The algorithms ofdetecting basic ingredientsandchecking timing conditionsare straightfor-
ward here. For the first task, we must identify all memory accesses whose target memory locations
are de-allocated by a different thread. For the second task,we must analyze order synchronizations
to determine whether the accesses are concurrent with the de-allocation operation. Just like with
Con-UnInit, mutual exclusion itself cannot avoid Con-Dangling bugs and is not considered in the
following.

In our PIN-based implementation, everymalloc andfree invocation is intercepted, in addition
to every order synchronization and heap access. A mapMalloc Map is used to maintain a list of
currently active heap memory regions, ordered by their starting addresses. A new entry is inserted
in Malloc Map at everymalloc. At every heap access, ConMem looks upMalloc Map with
the accessed heap address to find the corresponding entry, and then updates the entry to record the
latest access from each thread to each memory region. Whenever afree is invoked, the timestamp
of thisfree will be compared with the timestamps of the latest accesses to this to-be de-allocated
memory region from each thread. A Con-Dangling bug is reported when we find a concurrent access
(based on timestamps) from a different thread.

4.5. Con-Overflow Detection

4.5.1. What is a Con-Overflow bug?. Buffer overflow occurs when a buffer access goes beyond
the buffer boundary. In concurrent programs, interleavings can cause additional buffer-overflow
problems when buffer-index or buffer-boundary variables are shared among different threads.

 ...

 memcpy (&buf[buf−−>cnt], str, len);
 ...

S1

}else {

if (buf−−>cnt + len > LOG_SIZE) {
buf−>cnt += len;S2

 }

Thread 1 Thread 2

buf−>cnt is a shared variable that represents the current index of a buffer

Fig. 9: A concurrency bug that can lead to a buffer overflow andsubsequent crash (from Apache-
2.0.45)

Figure 9 shows an example of a typical Con-Overflow bug. Thread 1 conducts a sanity check at
S1 on buffer index variablebuf→cnt to ensure that the latermemcpy will not overflow the buffer
buf. Unfortunately, the index variable is shared with thread 2.Due to lack of synchronization,
thread 2 can change the buffer index between the sanity checkand the real buffer access, thus
causing a buffer overflow.

Accurately reporting Con-Overflow bugs is difficult becauseexposing buffer-overflow bugs re-
quires not only a certain order of memory operations, but also certain variable values. Even when
an index variable is unexpectedly corrupted by a different thread, buffer overflow may not occur,
depending on the new value stored into the index. In the future, symbolic-execution and constraint-
solving techniques [Cadar et al. 2008] can potentially address the issue of identifying whether prob-
lematic values can arise.

In our current prototype, we only consider a common subset ofCon-Overflow bugs: conflict-
ing accesses to shared buffer-index variables cause bufferoverflows. Specifically, we report all
data races on shared buffer-index variables as potential Overflow-Con bugs, and we rely on our

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:15

ConMem-validator (Section 5) to prune out false positives.We leave the more general Con-overflow
detection problem to future work.

4.5.2. Detection algorithm & implementation. Con-Overflow detection includes two steps. The
first step detects data races in the execution. The second step attempts to identify accesses to buffer-
index variables among those data races.

The first step is conducted through an existing lock-set algorithm [Savage et al. 1997]. The sec-
ond step can be conducted in different ways. Our solution is based on the heuristic that an index
variable should be used to generate buffer-access addresses sooner or later. Currently, we imple-
ment this step as an additional run of dynamic data-dependence analysis. That is, after we have
information about data races in hand, the program is executed a second time. Whenever a memory
location involved in a race is read, the dependence analysisstarts, tracking the data flow to deter-
mine whether the read value would be used to generate a global/heap address within a threshold
number of steps. In addition, we also make sure the read valueitself is not already a global/heap
address. Full dependence-analysis has large overhead, since we need to keep track of both local and
shared memory accesses. Fortunately, we only need to track those accesses and memory locations
related to races and currently we set the number of steps to track as 3. Therefore, the overhead is
acceptable.

Our current implementation of Con-Overflow requires two runs of the program – one to find races
and one to perform dependence analysis. We expect that the second run is not always necessary.
After one variable or one instruction is marked as accessing(or not accessing) a buffer index, this
information can be kept for future use. Static analysis can also help identify instructions that access
buffer-index variables and potentially remove the second run of the program.

In summary, ConMem bug detection includes four sub-tools. Con-UnInit and Con-Dangling bugs
are detected and reported at run-time. Con-NULLs and Con-Overflow bugs are reported after a
post-mortem analysis. It is also conceivable to combine allthese four modules into one big run-time
bug-detection tool in the future.

4.6. Handling Spin-Loop Synchronizations

As discussed in Sections 4.2 and 4.3, a major source of false positives in ConMem is custom-
synchronization operations, as demonstrated by Figure 10(a). This subsection discusses how to
handle one common type of custom synchronization, synchronization loops (also called spin loops).
The algorithm presented below is anoptionalstep in ConMem. It is neither sound nor complete. Its
usage in practice will be evaluated in Section 7.2.

Thread 1 Thread 2

S2: thd_stop=TRUE;
lock (L);

lock (L);
S3: while (! thd_stop){

}
unlock (L);

S4: thd=NULL;

Happens−before Order
forced by loop+lock

unlock (L);
S1: thd−>proc_info="...";

signal(cond);

cond_wait(cond, L);

Thread 1 Thread 2

(a) (b)

S2: thd_stop=TRUE;

S1: thd−>proc_info="...";

S3: while (! thd_stop){
...

}
S4: thd=NULL;

Happens−before Order
forced by while−loop

Fig. 10: Examples of spin-loop synchronization (thdstop is a volatile variable). (a) A NULL-pointer
dereference can never occur between S4 and S1, because thread 1 cannot execute S4 until its S3-
loop is terminated by S2 in thread 2. (b) Synchronization is achieved by a spin loopand locks.
Without locks, the execution order between S1 and S4 is not fixed; with locks, S1 will always be
executed before S4 just as that in (a). Note,condwait implicitly releases the lock L, thus there is no
potential deadlock.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16

4.6.1. Spin-loop identification. This analysis algorithm is inspired by SyncFinder [Xiong etal.
2010], and involves two steps.

First, identifying loops. This step is conducted through CodeSurfer/x86 [Balakrishnan et al.
2005], a static-analysis framework for x86 executables. CodeSurfer/x86 identifies every loop in
the program’s control-flow graph. To identify nested loops,it implementsBourdoncles’s algorithm
[Bourdoncle 1993], which recursively decomposes an SCC into sub-SCCs, etc. For each loop, we
use CodeSurfer/x86 to identify all (conditional) jump instructions that jump out of the loop, referred
to asloop-exit jumps. We then use static slicing, also a functionality supportedby CodeSurfer/x86,
to find all read instructions in the loop for which there is a path of control-dependence or data-
dependence edges from the read to a loop-exit jump. We refer to these read instructions aspotential
loop-exit reads.

Second,identifying synchronization loops.This step is conducted through run-time analysis —
a loop that is always terminated by reading a value defined by adifferent thread is considered to be
a synchronization loop.

To conduct this analysis, we record a trace of three types of instructions at run-time: (1) all
potential loop-exit reads; (2) all loop-exit jumps; (3) allinstructions in the program that write global
or heap variables.

In trace analysis, we first identifythe loop-exit readr for each loopL — a potential loop-exit
read that obtains the same value from a variablev in all but the last iteration ofL. We then iden-
tify the write w that defines the value read byr in the last loop iteration.L is considered to be a
synchronization loop ifw always comes from a different thread thanr. In that case,w, such as S2
in Figure 10(a), is marked as a synchronization write, and the loop-exit read, such as S3 in Figure
10(a), is marked as a synchronization read. We can execute the program several times to prune false
positives. If a loop is ever observed to be terminated by a definition from the same thread, it will
never be considered to be a synchronization loop. If the value of v changes from non-loop-exiting
to loop-exiting for more than once in one run, the corresponding loop will never be considered to be
a synchronization loop. Actually, this type of loop likely belongs to a custom lock implementation,
which our current implementation does not handle.

Note that, how to accurately identify all custom-synchronization operations is an open problem
in concurrency-bug detection [Tian et al. 2008; Chen et al. 2008; Xiong et al. 2010]. Our approach
is inspired by SyncFinder [Xiong et al. 2010]. SyncFinder identifies synchronization loops purely
based on static analysis. We use dynamic analysis at the second step, which suits the dynamic
nature of ConMem. Dynamic analysis also gets us around the challenges of pointer alias analysis
and statically figuring out which code regions could executeconcurrently.

Like previous work that tries to identify custom-synchronization operations [Tian et al. 2008;
Chen et al. 2008; Xiong et al. 2010], our analysis is neither sound nor complete, because it makes
decisions based only on the runs that are observed in the run-time analysis. A loop that can be
terminated by a write from its own thread may never be observed to exit in that manner, and thus
will be mistaken for a synchronization loop. A loop that is sometimes used for synchronization and
sometimes not is always considered to be a non-synchronization loop by us.

4.6.2. Integrating synchronization-loops into ConMem. A synchronization loop is one type of
‘order synchronization’ discussed in Table VI — it forces a happens-before order between op-
erations before the synchronization write in one thread andoperations after the synchronization
loop in another thread. Because the synchronization analysis in ConMem already covers order-
synchronization operations, here we only discuss how to adjust the logical time-stamps given
synchronization-loop information. After properly adjusting the time-stamps, ConMem can easily
prune the false positives that would otherwise be reported for the examples in Figure 10.

When ConMem monitors a test run, we instrument not only normal synchronization opera-
tions, such aspthread mutex (un)lock andpthread join, but also every synchronization
read/write and exit jump of each synchronization loop. At run-time, we maintain a hash-table in-
dexed by memory locations. Whenever a synchronization writew is executed by threadt on memory

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:17

locationm, them entry in the hash-table is updated with{t, t ’s current time-stamp}. Whenever a
synchronization read in threadt ′ is executed, we look up the information about its definition write
in the hash-table. This information will be used to updatet ′’s time-stamp, whenever it exits a syn-
chronization loop.

Sometimes, locks can be used together with spin-loops to achieve synchronization, as demon-
strated in Figure 10(b). ConMem considers this interactionbetween mutual-exclusion synchroniza-
tion and order synchronization, and adjusts the time-stampupdate accordingly.

We provide the above analysis as an option to ConMem users. Weevaluate its effect in Sec-
tion 7.2.

5. BUG EXPOSING AND VALIDATION

The design of ConMem-v is inspired by previous tools that validate data-race [Park and Sen 2008]
and atomicity-violation bug reports [Park et al. 09 a]. ConMem-v takes every bug report from Con-
Mem as its input. It tries to trigger the buggy interleavingspredicted in ConMem’s bug reports by
carefully perturbing the concurrent execution. The whole process is automated.

ConMem-v serves two purposes. The first is to prune false positives that are caused by customized
synchronization and by some of the approximations made by ConMem’s detection algorithms. The
second is to provide developers with a reliable way to repeatthe true bugs reported by ConMem.

In the following, we discuss the design and implementation of ConMem-v, explaining what is
the interleaving enforcement target and how to provoke a specific timing condition. ConMem-v
is implemented using PIN [Luk et al. 2005] binary instrumentation. For the sake of brevity, some
implementation details are omitted.
Validating Con-NULL reports From a{wp,rp} pair of a Con-NULL bug report, ConMem-v
aims to executewp beforerp, with minimized timing distance in between.

To enforce such a timing condition, ConMem-v instruments the binary code right before and after
wp andrp. At run-time, wheneverwp orrp is to be executed, ConMem-v checks whether the other
instruction has already ‘arrived’. If so,wp will be arranged to execute first, immediately followed
by rp. If not, an artificial delay (several iterations ofusleep) is added to the current thread, in
the hope that the other instruction will arrive from a different thread. This process is illustrated in
Figure 11 (consider A aswp, B asrp).

A
B

B
the first arrival

delay

the real execution
point

Fig. 11: Illustration of how ConMem-v perturbs execution

Note that, as a general principle in ConMem-v, ConMem-v onlyimproves the chances of a bug
to occur and does not provide any guarantee.All the delays inserted by ConMem-v have time-outs,
so that the program will not hang.
Validating Con-UnInit reports The input to Con-UnInit validation is a list of instruction pairs
{w,r} from the Con-UnInit bug report.w is an instruction that initializes a memory location that is
later read byr from a different thread.

ConMem-v’s target here is to executew after r. To achieve this target, ConMem-v instruments
the binary code to postpone the execution ofw in an attempt to wait forr to execute first (considerr
as A andw as B in Figure 11). ConMem-v can keep track of all heap/globalwrites to know whether
an uninitialized read has truly occurred. In practice, justobserving whetherr is executed beforew
pretty much already tells users whether the Con-UnInit bug report is a true bug.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18

Validating Con-Dangling reports The input to Con-Dangling validation is a list of instruction
pairs{F ,a}. F is acall instruction that invokes a de-allocation operation on a memory region that
contains the memory location accessed bya from a different thread.

ConMem-v’s target here is to postpone the execution ofa in an attempt to have theF occur first,
as illustrated in Figure 11 (F is A, a is B). To know whether a dangling pointer has been produced,
ConMem-v records and compares the memory address accessed by a and the range of the memory
region freed byF.
Validating Con-Overflow reports The input to Con-Overflow validation is a list of data-race pairs
{i1,i2}. i1 andi2 race upon a shared buffer-index variable. The target of ConMem-v is to make the
race truly occur (i.e., first executei1 right before i2 without any other instruction in the middle and
theni2 right before i1) and observe what happens after the race.

ConMem-v’s perturbation strategy for Con-Overflow bugs is similar to those for the three dis-
cussed above. The unique complexity of Con-Overflows is thateven if a buffer index is corrupted
to an incorrect value through a data race, overflow may not happen. In our current validator, we
look for fail-stop symptoms (crash or assertion failure) totell whether buffer overflow has hap-
pened, which can be improved by more accurate buffer-overflow detection techniques designed for
sequential programs [Nethercote and Seward 2007; Hastingsand Joyce 1992].

In the end, a ConMem bug report is generated. It includes the conflicting instruction pair,
their corresponding call stacks, and the bug category (Con-NULL/Con-UnInit/Con-Dangling/Con-
Overflow). When ConMem-v successfully exposes the bug, the bug report also includes the corre-
sponding failure-triggering thread-scheduling, i.e. where and how long are the injected delays.

Discussion Two types of interleaving-enforcement approaches were proposed before. One is to
execute programs on single-core machines and control the scheduling [Musuvathi et al. 2008; Sen
2008]; the other is to insert artificial delays [Park et al. 09a; Edelstein et al. 2002]. ConMem-v
chooses the latter for more effective use of the existing multi-core machines.

In summary, ConMem-v does not report false positives. In addition, benefiting from the clear
error-pattern of memory bugs, ConMem-v does not need manually written oracles to judge whether
a bug has occurred. ConMem-v could have false negatives: it may miss some bugs whose manifes-
tation requires very sophisticated interleaving manipulation.
6. EVALUATION METHODOLOGY

Applications ConMem is evaluated using 7 widely-used C/C++ applications, including 3 server
(Apache HTTP server, MySQL data base server, and Cherokee HTTP server), 3 desktop (Mozilla
web browser, PBZIP2 parallel decompressor, and Transmission bittorrent client) and 1 scientific
application from SPLASH2 (FFT) [Woo et al. 1995].

Apart from these 7 applications, ConMem is also evaluated onthe latest version of a multi-
threaded software system, Click [Click 2010], for which no concurrency bug was previously known.
ConMem uses the standard test inputs released by Click developers and is able to find previously
unknown concurrency bugs. The detailed set-up and results are presented in Section 7.5.

Bugs in evaluation For evaluation, we use 10 real-world concurrency bugs3 that were introduced
by the original developers of the above 7 applications. 9 outof these 10 bugs can cause client and
server crashes. We carefully set up this bug set to make sure it is representative, covering different
types of faults and error-propagation patterns, as shown inTable VII. One of these 10 bugs does not
lead to software crash. It was introduced by external library developers of FFT. This FFT bug will
help measure the false-positive rate and overhead of ConMemon scientific applications.

Experiment setup The experiments are conducted on dual quad-core Intel Xeon (2.67GHz)
machines, with Linux, version 2.6.18. We use the PIN [Luk et al. 2005] binary instrumentation
framework for all our tools. We use Valgrind–Helgrind [Nethercote and Seward 2007] as the race-
detection front-end for Con-Overflow.

3One of these 10 bugs, PBZIP2-2, was not reported in previous documents. It was first detected in our ConMem experiments.
It can be fixed by the same patch that fixes PBZIP2-1.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:19

Bug-ID Causes Effect Description Software version
MySQL-1 Atom. Server crash at NULL-ptr dereference MySQL-4.0.19
MySQL-2 Atom. Server crash at NULL-ptr dereference MySQL-5.1.28
PBZIP2-1 Order/Atom. Crash at NULL-ptr dereference Pbzip2-0.94
Apache-1 Multi-Atom. Crash due to dangling ptr Apache-2.0.46
Mozilla Multi-Atom. Crash due to dangling ptr Mozilla-JS1.5
PBZIP2-2 Order Crash due to dangling ptr Pbzip2-0.94
Apache-2 Atom. Crash/corrupted-log due to overflow Apache-2.0.46
Cherokee Atom. Crash/wrong-message due to overflowCherokee-0.9.2
Transmission Order Crash due to uninitialized read Transmission-1.42
FFT Order/Atom. Wrong output due to uninitialized read N/A

Table VII: 10 bugs in evaluation (Atom.: single-variable atomicity violation; Order: order violation;
Multi-Atom.: multi-variable involved atomicity violation.)

Our experiments use bug-triggering inputs reported by the user, like previous dynamic
concurrency-bug detectors [Xu et al. 2005; Lu et al. 2006]. Note that the bugsnever manifest
during our bug-detection runs. Actually, many concurrencybugs do not manifest even after multi-
ple days’ worth of execution with bug-triggering inputs [Park et al. 09 a; Musuvathi et al. 2008],
which is exactly why ConMem’s predictive detection will be useful.

Our evaluation executes each bug-triggering input (or a setof bug-triggering client requests) to the
end in order to measure both false positives and performance. The reported performance numbers
are the averages across multiple runs. By default, the special algorithm for custom-synchronization
(Section 4.6) isnot applied. We evaluate how that algorithm further improves the accuracy of Con-
Mem in Section 7.

ConMem includes four sub-tools for four types of concurrency-memory errors. Each application
was executed with the bug-triggering input once for each sub-tool. We present the bug-detection
results for each sub-tool. When ConMem is compared with other detection tools, the true bugs
as well as the false positives from all four sub-tools are puttogether. The artificial delay used by
ConMem-v is 1 millisecond at a time.

We also compare ConMem with two state-of-the-art interleaving checking approaches: race-
based (denoted byRace) and atomicity-violation-based (denoted byAtom). Raceis a lock-set–
happens-before hybrid race detector [Dinning and Schonberg 1991; O’Callahan and Choi 2003],
originally implemented in the widely-used Valgrind-Helgrind detector [Nethercote and Seward
2007] and slightly modified by us for better race coverage.Atomwas implemented by us based on
an algorithm described in previous work [Park et al. 09 a]. Itpredictively identifies each static mem-
ory instruction that can be unserializably interleaved with its preceding access to the same memory
location from the same thread (the most common type of atomicity bug [Lu et al. 2008; Vaziri et al.
2006; Lu et al. 2006]). There are other race and atomicity bugdetectors, such as happens-before
race detectors [Netzer and Miller 1991] and training-basedatomicity detectors [Lu et al. 2006]. We
did not choose them, because their training requirement or interleaving-sensitive design makes for
an apples-to-oranges comparison.

7. EXPERIMENTAL RESULTS

7.1. Overall Results

Overall, as shown in Table VIII, ConMem can detect 9 out of 10 tested concurrency bugs, showing
a good coverage on this set of severe concurrency bugs. In comparison,RaceandAtomdetect 4 and
6 out of the 10 bugs, respectively4.

ConMem shows a good bug-detection capability on these evaluated bugs, because it effectively
captures the most common pattern among concurrency bugs with crash-effects. Specifically, three

4We treat these 10 known bugs as the ground truth in our experiment. Admittedly, there could be some unknown bugs lurking
and hence some missed false negative problems, which unfortunately has no conceivable way to accurately measure.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20

Bug-ID ConMem Race Atom
MySQL-1 X X X

MySQL-2 X × X

PBZIP2 X X X

Apache-1 X × ×
Mozilla × × ×
PBZIP2-2 X × ×
Apache-2 X X X

Cherokee X X X

Transmission X × ×
FFT X × X

Table VIII: Bug-detection results (Key:X– bug was detected;× – bug not detected.)

App. # ShrMem Inst Races Atom. Con-Null Con-Dangling Con-UnInit Con-Ovfl ConMem Total
Static Dynamic #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug

Apache 297 76540 14 : 1 157 : 2 4 : 0 6 : 3 0 : 0 0 : 1 10 : 4
MySQL 1086 17379 267 : 2 155 : 2 4 : 2 1 : 0 11 : 0 0 : 0 16 : 2
Transm. 507 978 42 : 0 33 : 0 2 : 0 3 : 0 3 : 1 0 : 0 8 : 1
PBZIP2 93 1744 17 : 6 21 : 4 6 : 6 0 : 2 3 : 0 0 : 0 9 : 8
FFT 205 182532 8 : 0 16 : 5 0 : 0 0 : 0 0 : 4 0 : 0 0 : 4
Cherokee 598 48502 8 : 2 28 : 2 0 : 0 0 : 0 0 : 0 0 : 1 0 : 1
Mozilla 76 18330 13 : 0 48 : 0 0 : 0 0 : 0 2 : 0 0 : 0 2 : 0

False Positive Rates 369:11 458:15 16:8 10:5 19:5 0:2 45:20

Table IX: Bug reports and false positives before ConMem-v pruning (Note: 1. the bug report num-
ber here is larger than that in Table VIII, because some bug reports share one root cause. There are 9
distinct root causes of these 20 bug reports. 2. #FP: # of false positives; #Bug: # of bugs; #ShrMem
Inst: instructions that access variables truly shared among threads. 3. The special ConMem algo-
rithm to handle custom synchronization isnot applied here. It will be discussed in connection with
Table X)

bugs (MySQL-1, MySQL-2, and PBZIP2) are detected by Con-NULL; Apache-1 and PBZIP2-2 are
detected by Con-Dangling; Apache-2 and Cherokee are detected by Con-Overflow; Transmission
and FFT are detected by Con-UnInit.

ConMem still misses one severe bug in Mozilla. This is a complicated concurrency bug that
requires more than one rare timing condition to manifest. Specifically, a rare atomicity violation
among accesses to a shared pointer first causes two threads tomistakenly read from the same heap
object, which does not lead to any visible software failure.Later on, another rare timing could cause
one thread to delete this heap object while the other thread is still using it, which finally causes the
program to crash. This complicated bug is not detected by ConMem, because the buggy interleaving
does notdirectly lead to memory errors. It is cannot be detected byRaceor Atomeither, because
it is a multi-variable bug. Note that, Apache-1 bug is also a multi-variable atomicity-violation bug.
It can be detected by ConMem, because its manifestation onlyrequires one rare timing between a
deletion and a heap-object read access.

AtomandRacefailed to detect 3 and 4 severe concurrency bugs, respectively, are detected by
ConMem, mainly because these bugs are not caused by data races or simple atomicity violations.
For example, Apache-1 is caused by conflicting accesses to multiple variables. Therefore, it is not
detected by eitherRaceor Atom. PBZIP2-2 and Transmission are both caused by order-violation
problems and are missed by Atom. In addition, the heuristicsused in the Valgrind-Helgrind algo-
rithm to prune false positives also lead to some false negatives inRace.

Overall, ConMem has good coverage on the evaluated real-world concurrency bugs that can cause
crashes, and is not limited to any specific interleaving pattern. Its algorithms complement existing
race and atomicity-violation bug-detection tools.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:21

7.2. False-Positive Results

Before automated pruning
Table IX shows the number of false positives (vs. true bugs) of all the tools on the 7 evaluated

applications. Every report ofRaceis a pair of static race instructions; every report ofAtom is a
static instruction that can be unserializably interleavedwith its preceding access; every report of
ConMem is a static instruction that, under certain interleavings, can dereference a NULL-pointer,
access a freed memory region, etc. These reports are obtained beforeapplying automatic bug expos-
ing. Automatic bug exposing could help prune out most false positives forRace, Atom[Park et al.
09 a], and ConMem, at the cost of testing time. Each bug reportis judged to be a false positive or
a true bug report based on our manual inspection and comparison against all known concurrency
bugs in the bug database of the corresponding software5. Since some bug reports in Table IX share
the same root cause, the total number of true bug reports there is larger than that in Table VIII.

In general, ConMem’s false-positive rate is much lower thanRaceandAtom– about one tenth
of their false-positive-rates – befitting its effect-oriented approach. ConMem’s false-positive rate
(about 2.5 false positives per true bug) is reasonably low considering ConMem’s predictive detection
capability on severe concurrency bugs.

All these tools, includingRaceandAtom, have done a good job in identifying bug-prone inter-
leavings from the huge interleaving space. As we can see in Table IX (the ShrMem-Inst column),
the number of dynamic memory accesses to memory locations that are truly shared among threads
ranges from 978 to 182532. The interleaving space size growsexponentially in that number. In
contrast, many fewer interleavings are singled out byRace, Atom, and ConMem.

ConMem has much smaller false-positive rates thanRaceandAtom, mainly because of its effect-
oriented approach (i.e., taking vertical stripes in the feature space of Figure 1). As discussed in
Section 1, races and unserializable interleavings do not always end up as bugs. Although the al-
gorithms inRaceandAtomalready use good heuristics to prune false positives, the false-positive
problem is still there.

Table X provides a further breakdown of the false positives reported by ConMem. As we can see,
43 of the 45 false positives are caused by unidentified customsynchronizations. These 43 bug reports
involve infeasible interleavings and can never actually occur. ConMem mistakenly reported these
43 bugs because it did not consider while/if-flags and producer-consumer queue synchronizations in
the program. The remaining 2 false positives come from harmless uninitialized reads, as discussed
in Section 4.3.

Note that, according to Table X,almost all buggy interleavings reported by ConMem are true and
severe bugs, as long as they are feasible.This is a big accuracy improvement over race detectors and
atomicity violation detectors: many races and atomicity violations are intentionally introduced by
developers for performance or semantic reasons [Narayanasamy et al. 2006; Burnim and Sen 2009;
Park et al. 09 a].

Pruning false positives via custom-synchronization analysis
We also evaluated the synchronization-loop analysis discussed in Section 4.6. As shown in Ta-

ble X, this analysis can further prune out 16 ConMem false positives, which is more than one third
of all ConMem false positives. During this process, no true bug is pruned. The false-positive rate of
ConMem is thus decreased to 1.45 false positives per true bug. The run-time overhead of custom-
synchronization identification is similar with that of ConMem bug detection, because it records
similar amount of memory-access information as ConMem bug detection.

Automated false positive pruning of ConMem-v
All the 75 bugs reported by ConMem in Table IX are sent to ConMem-v for validation. As a result,

ConMem-v automatically prunes outall false positives, without introducing any false negatives for
the bugs shown in Table VIII and Table VII.

5Code regions that are problematic only under weak memory consistency models are not considered as bugs here, similar
with previous work [Park et al. 09 a; Savage et al. 1997]

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22

App. Benign # of F.P. caused by custom synchronization # of F.P. pruned by
UnInit Producer-Consumer Queue If/While-flag Section 4.6 syn-loop analysis

Apache 0 5 5 0
MySQL 0 3 13 5
Transm. 2 0 6 5
PBZIP2 0 3 6 6
FFT 0 0 0 0
Cherokee 0 0 0 0
Mozilla 0 0 2 0
Total 2 11 32 16

Table X: Causes of ConMem false positives

Specifically, among the 20 true bug reports from ConMem, ConMem-v successfully makes 15
bug reports manifest through its systematic perturbation.Each of these 15 can be reliably (almost
deterministically) exposed under ConMem-v, which will help developers diagnose and fix the root
causes. There are still 5 bug reports that are actually true bugs. However, the manifestation condi-
tion is complicated, requiring artificial delays at multiple places, and is not handled by our current
prototype of ConMem-v. Recall that some of these 20 bugs share the same root cause. The 15 bugs
successfully exposed by ConMem-v have already covered all the root causes. Therefore, failing to
expose the rest 5 bug reports did not cause ConMem-v to miss any root cause.

The ConMem-v validation phase is fast, because of the small number of ConMem bug reports.
For example, validating the 17 bug reports of PBZIP2 only takes 20.02 seconds, roughly equal to
executing PBZIP2 without any instrumentation 30 times.

Discussion One question the above evaluation does not directly answer is how false positives
would change under longer executions with more inputs or more runs of one input. As discussed
in Section 4.2, the bug-detection ability of ConMem is sensitive to the code/path coverage, like
all dynamic bug detectors [Savage et al. 1997; Lu et al. 2006;Nethercote and Seward 2007], and
is mostly insensitive to small differences in timing (giventhe same input). Therefore, we expect
ConMem to report more true bugs and more false positives whenit observes more program runs that
touch previously unobserved code/paths. We also expect ConMem’s false-positive rate to remain
low for most applications and most inputs, because of its effect-oriented design philosophy. For
example, if a program performs few NULL-pointer assignments, there will be few bug reports, no
matter how long the execution is.

7.3. Time and Space Overhead

Table XI shows the run-time overhead of ConMem. Con-NULL also needs trace analysis. Therefore,
the off-line analysis time for Con-NULL is also listed. Overall, ConMem’s analyses have reasonable
run-time overhead: around 16X slow down for memory intensive FFT and 3–29% latency overhead
for I/O-intensive server applications. This overhead is comparable to previous concurrency bug-
detection tools [Lu et al. 2006; Xu et al. 2005; Savage et al. 1997] and is suitable for developers’
use.

Con-Overflow’s major overhead comes from Valgrind-Helgrind race detector. The overhead of its
dependence-analysis ranges from 5% overhead (server applications) to 13X slow down (for FFT).

Currently, Con-NULL, Con-UnInit, Con-Dangling, and Con-Overflow are implemented as sepa-
rate tools. Since many tasks conducted by them overlap with each other, we expect the overhead of
the combined tool to be smaller than running each of them one by one.

In terms of space overhead, Con-NULL is the only tool in ConMem that generates traces. In our
experiments, the traces are reasonably small under the bug-triggering inputs, ranging from 50KB
to 30 MB. The fact that Con-NULL only analyzes memory accesses to pointer variables greatly
mitigates the trace-size problem that is encountered by alltrace-based analysis tools. Because the
disk sizes keep increasing, we believe that trace size will not be an issue for the usage of Con-NULL.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:23

Bug-ID Base* Con-NULL Con-Dangling Con-UnInit
Line Run-time Off-line Analysis Run-time Run-time

Apache 0.154s 19% 0.118s 28% 28%
MySQL 0.034s 29% 0.029s 24% 13%
Cherokee 0.072s 7.6% 0.012s 2.7% 6.6%
Mozilla 1.010s 505% 0.030s 185% 196%
PBZIP2 0.662s 116% 0.019s 76% 78%
Transmission 1.362s 82% 0.005s 79% 80%
FFT 0.001s 1113% 0.000s 1285% 1556%

Table XI: ConMem Run-time overhead (%) and off-line analysis time (*: BaseLine is to execute the
application’s test input from the beginning to the end without any instrumentation. Sever applica-
tions, like Apache and Cherokee, each serves a set of requests from multiple clients.)

7.4. Synchronization Analysis in ConMem

When detecting Con-NULL, Con-UnInit, and Con-Dangling bugs, ConMem conducts synchroniza-
tion analysis to check whether the timing condition of bug suspects can be satisfied in the future
or not. ConMem prunes out those suspects that are well-protected by mutual exclusion or order
synchronization. Table XII shows the number of bug suspectsthat are pruned out by this analysis.
As we can see, the pruning is effective. The remaining false positives mainly come from two types
of unidentified custom synchronizations. One type is imposed by non-loop control dependency. As
illustrated in Figure 12(a), the reported Con-Dangling bugS2, S3can never happen due to the con-
trol dependency imposed byS1andS4. The second type is imposed by producer-consumer queues.
As illustrated in Figure 12(b), the assignment inS1can never affectS5, becauseS5can only access
objects from the queuetrxlist and the update made inS1is already overwritten byS2whenS3puts
the shared object pointed bythd into the queuetrxlist.

Thread 1

S1: if(obj->cleanup){

S2: free(obj);

}

Thread 2

S3: if(!obj->cleanup){

S4: obj->cleanup = 1;

}

Thread 1

S1: thd->query = NULL;
…

Thread 2

S4: thd = get_head(trxlist);

S5: fputs(thd->query,...);S2: thd->query = “select”;

S3: add(thd,trxlist);

X X

(a) Custom synchronization imposed
by control dependency other than loop

(b) Custom synchronization imposed
by data dependency

Fig. 12: Two false positive examples caused by unidentified custom synchronization

Bug-ID Con-UnInit Con-Dangling Con-NULL
Apache 0 0 4
Mozilla 10 0 0
MySQL 62 2 74
PBZIP2 18 0 8
Cherokee 109 21 64
Transmission 25 0 18
FFT 28 0 0

Table XII: Bug suspects pruned by synchronization analysis

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24

7.5. Testing experience with Click

To better evaluate the in-house testing capability of ConMem, we applied ConMem to the latest
version of an open-source software system,Click [Click 2010], for which no concurrency bugs had
been previously reported.

Experimental setup Click is a popular open-source software router, originally developed by a
research group at MIT.Click contains around 220K lines of source code. It uses multi-threading
experimentally to speed up processing network packets.

The latest version (v-1.8.0) ofClick contains an input suite designed byClick developers to test
the basic functionality ofClick. This suite includes 22 test cases in total. We applied ConMem to all
7 of the test cases that do not require modification of the operating system (i.e., building modules
into the kernel).

The testing process is straightforward. We executed each test input once with one ConMem-tool
attached to it.6 No modification was needed to eitherClick or ConMem.

Bug detection resultsConMem reports 4–9 buggy interleavings for each test input,as shown in
Table XIII. Since some code regions, such as the start-up code and shut-down code, are covered by
most or all test inputs, there are many overlapping bug reports among the 7 test inputs. After manual
inspection, we found that the false-positive-vs-true-bugratio ranges from 3:1 to 2:4 for each test
input. Altogether, ConMem reports 6 distinct buggy interleavings that can lead to severe software
failures, such as program crashes. These 6 buggy interleavings are caused by2 different root causes
in the program. One buggy interleaving reported by Con-Dangling is demonstrated in Figure 13.
As we can see, the master thread inClick maintains a meta-data object,router thread, for
each router thread. Because the code does not perform any synchronization, the master thread could
delete that object prematurely while it is still being used by the router thread. This bug can lead to a
crash inClick.

Thread 1
(master thread)

S1: delete router_thread ;

Thread 2
(router thread)

S2: router_thread .driver->driver_lock_tasks();

Under a bad execution order, thread 2 could access an object already deleted by thread 1.

buggy

correct

Fig. 13: A concurrency bug that leads to a dangling pointer and finally a crash (fromClick-1.8.0)

ConMem has about a 1:1 false-positive-vs-true-bug rate forClick, which is consistent with the
earlier experiments shown in Table IX. The false positives here are mainly caused by a complicated
if-condition control-flow synchronization. This custom synchronization forces the dereferences to
certain shared pointers to either happen before the pointerdeletion or to get by-passed. This type of
custom synchronization is not handled by ConMem.

As shown in Table XIII, we also triedRacesandAtomon these 7 test cases. The results follow
a similar trend to that in Table IX.RacesandAtomcannot detect the bugs that ConMem detected.
For example, the bug depicted in Figure 13 is neither a race nor an atomicity violation. Race bugs
and atomicity-violation bugs should involve several accesses to the same memory location with at
least one write. This is not true for the bug in Figure 13 that involves a call to a C++ library function
in Thread 1 and some reads in Thread 2. Currently, neitherRacesnor Atominstruments the library
code. Even if they do, there is a large chance that no write to the conflicting memory location exists,
depending on how delete is implemented in the library.

6Currently, the Con-NULL, Con-Dangling, Con-UnInit, and Con-Ovfl are implemented as four separate Pin tools. Therefore,
we executed each test input four times, with each tool attached to one run. We could combine these four into one Pin tool,
and each test input would only need to be executed once.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:25

App. Races Atom. Con-Null Con-Dangling Con-UnInit Con-Ovfl ConMem Total
#FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug #FP:#Bug

Test 1 13 : 0 20 : 0 1 : 0 1 : 4 0 : 0 0 : 0 2 : 4
Test 2 18 : 0 22 : 0 3 : 0 1 : 4 1 : 0 0 : 0 5 : 4
Test 3 18 : 0 18 : 0 1 : 0 1 : 4 0 : 0 0 : 0 2 : 4
Test 4 19 : 0 41 : 0 2 : 0 1 : 2 0 : 0 0 : 0 3 : 2
Test 5 10 : 0 17 : 0 1 : 0 2 : 3 0 : 0 0 : 0 3 : 3
Test 6 28 : 0 25 : 0 1 : 0 2 : 1 0 : 0 0 : 0 3 : 1
Test 7 8 : 0 41 : 0 1 : 0 2 : 1 0 : 0 0 : 0 3 : 1

Table XIII: Click’s ConMem testing reports. The false-positive numbers are collected before
ConMem-v pruning (Notes: 1. The bugs detected by ConMem havenot been reported before. 2.
There is overlap among the bugs reported for the 7 inputs.).

Performance Click has two execution modes. The normal execution mode is IO-intensive,
whereClick listens to the network. Under this mode, the overhead of ConMem depends on the
network traffic and is usually negligible. The other execution mode (“simulation mode”) is CPU-
and memory-intensive,whereClick reads packages from a trace. Under the memory-intensive mode,
each ConMem testing run introduces about a 20-times slow-down. Without ConMem, the original
7 test cases take 0.259 seconds to finish. ConMem testing takes 22.108 seconds in total, including
0.028 seconds for off-line analysis, and 22.08 seconds for Con-Null, Con-Dangling, Con-UnInit,
and Con-Overflow testing runs. The trace size of ConMem-NULLis 16K bytes on average for the
7 test cases.

Summary Our experience of applying ConMem toClick is summarized as follows:

— ConMem is easy to use, straight out of box. The user needs to provide nothing other than the
standard test suite.

— ConMem is effective, it can detect previously unknown concurrency bugs.
— ConMem is accurate, compared to many traditional tools. Its false-positive rate was low enough

to allow us to manually inspect every bug report.
— ConMem imposes low-enough overhead for use during in-house testing. For CPU and memory

intensive applications, such asClick in simulation mode, ConMem imposes about an 80-fold run-
time overhead (= 4 tools, each with about 20x slowdown) and requires about 500KB/sec for storing
traces. We also see two approaches that can significantly decrease ConMem’s overheads in the
future: (1) Combining all four ConMem tools into one, because each ConMem tool has only
about 20 times overhead onClick and there is a lot of redundancy among the four tools. (2)
Saving redundant interleaving testing among inputs that have overlapped code coverage. This is
obviously more challenging, but is also promising. As discussed in connection with Table XIII,
there is overlap among the concurrency bugs revealed by different inputs.

— While we have had a fairly positive experience with applying ConMem to Click, some additional
features can make ConMem easier to use in the future: (1) Providing call stack information for
reported bugs to ease debugging. (2) Providing informationabout why a bug suspect is not exposed
by ConMem-v.

8. RELATED WORK

Much related work has been discussed in earlier sections. Inthis section, we only discuss a few that
are closely related and were not discussed previously.

Empirical studies of concurrent programs Due to the lack of concurrency bug sources, only a
few studies [Farchi et al. 2003; Lu et al. 2008] have been done, and they mostly focus on the inter-
leaving patterns. Most recently, interesting studies havebeen conducted to evaluate how new syn-
chronization primitives (such as Transactional Memory) can be used in concurrent programs [Ross-
bach et al. 2009]. Our paper complements previous studies bylooking at the error-propagation
process in concurrency bugs.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26

Concurrency bug detection, testing, and avoidanceExisting concurrency-bug detectors can be
categorized as performing race detection such like [Netzerand Miller 1991], Eraser [Savage et al.
1997], RaceTrack [Yu et al. 2005] and FastTrack [Flanagan and Freund 2009]; atomicity-violation
detection such like Atomizer [Flanagan and Freund 2004], SVD [Xu et al. 2005], AVIO [Lu et al.
2006], jPredictor [Chen et al. 2008], Velodrome [Flanagan et al. 2008], and SingleTrack [Sadowski
et al. 2009]; and multi-variable atomicity violation detection such like ColorSafe [Lucia et al. 2010].
ConMem complements existing tools by focusing on crash effects, instead of specific interleaving
patterns. The predictive interleaving analysis in ConMem is inspired by previous predictive race and
atomicity-violation detectors like Atomizer [Flanagan and Freund 2004] and jPredictor [Chen et al.
2008]. Many innovative approaches, such as training (AVIO [Lu et al. 2006]), noise-making (Con-
Test [Edelstein et al. 2002]) and active testing (RaceFuzzer [Sen 2008],CTrigger [Park et al. 09 a]),
have been proposed to address the false-positive problem inconcurrency-bug detection. ConMem
uses synchronization analysis and perturbation-based interleaving-enforcement techniques that is
similar to some of these tools like CTrigger [Park et al. 09 a]. ConMem complements those tools by
considering the problem from a different perspective. It focuses on certain effects of concurrency
bugs, instead of a specific interleaving pattern.

Atom-Aid [Lucia et al. 2008] and PSet [Yu and Narayanasamy 2009] extended existing dynamic
bug detectors by prohibiting certain patterns of interleavings at run time by using hardware support
to survive concurrency bugs during production runs. Software-only tools like Grace [Berger et al.
2009] and Kendo [Olszewski et al. 2009] achieve similar goals for certain types of multithreaded
programs at runtime. ConMem complements such work by exposing concurrency bugs before they
escape to production runs.

Interleaving testing tool such as CHESS [Musuvathi et al. 2008] works by systematically explor-
ing the interleaving space. ConMem complements such work byproviding a different perspective
on splitting the interleaving space. Work on deterministicexecution such like DMP [Devietti et al.
2009] and Kendo [Olszewski et al. 2009] also tries to solve the interleaving space challenge by
limiting the number of interleavings that a program can follow.

Concurrent program analysis and model checking A lot of inspiring research has been con-
ducted on static analysis and model checking of concurrent programs. A recent study [Chugh et al.
2008] inventively proposes leveraging race detection to improve data-flow analysis in concurrent
programs. The idea is promising; however, due to pointer-aliasing and other issues, there are still
as many as 40% of all pointer dereferences in the program thatcannot be proved to be safe in their
experiments. ConMem has a completely different design goalfrom static-analysis tools. ConMem
does not aim to provide any guarantee. Actually, ConMem alsodoes not aim to report all poten-
tial memory errors in concurrent programs. By focusing on the concurrency-memory error pattern,
ConMem can use relatively simple algorithms to effectivelydetect severe concurrency bugs. In ad-
dition, as a dynamic bug-detection tool, ConMem naturally has the advantage of no pointer-aliasing
problem and can achieve better accuracy and scalability.

Model checking can also be used to validate certain properties in concurrent programs. A lot of
progress has been made [Godefroid 1996; Qadeer and Wu 2004; Flanagan and Godefroid 2005;
Musuvathi et al. 2008] in model checking large concurrent programs. However, the state-space-
explosion problem still exists. We expect the effect-oriented approach and the error-propagation
characteristics studied in this paper will help provide heuristics that can be used in future model
checkers.

General software failure diagnosisThe effect-oriented approach used in ConMem shares a similar
flavor with failure-diagnosis tools [Sumner and Zhang 2009;Dimitrov and Zhou 2009] that look for
the root causes of observed failures through data slicing. Afailure that has already occurred and
been recorded is essential to these tools. Diagnosis tools are also designed to focus on concurrency
bugs, such as CCI [Jin et al. 2010], Falcon [Park et al. 2010],and Recon [Lucia et al. 2011]. These
tools can identify shared-memory accesses that are statistically correlated with software failures and

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:27

thus help debugging. Where ConMem differs is that it searches for unknown interleaving errors that
can cause previously unobserved failures.

9. CONCLUSIONS AND FUTURE WORK

This paper proposes an effect-oriented approach to detecting severe concurrency bugs. By focusing
on the concurrency-memory error-propagation pattern revealed by our characteristics study, Con-
Mem effectively and predictively detects concurrency bugswith crash effects. In our evaluation with
10 real-world severe concurrency bugs, ConMem detects morebugs with significantly fewer false
positives than race and atomicity-violation detectors. Inaddition, ConMem-v prunes out all false
positives and provides a reliable way to expose all the true bugs reported by ConMem.

In general, ConMem has several nice features to help developers: predictive bug detection, no
training requirement, easy-to-validate bug results, highaccuracy, and high coverage on crash-effect
concurrency bugs. By looking at the interleaving space froma different perspective, ConMem com-
plements existing concurrency bug-detection tools.

In the future, ConMem can be extended in the following ways. First, we could use static analysis
to improve ConMem’s ability to identify pointer variables and buffer-index variables. Second, we
could try to identify more kinds of customized synchronization and further decrease the remaining
false positives of ConMem. Finally, we could also apply the effect-oriented idea to detecting other
types of severe bugs (e.g., security vulnerabilities, silent data corruption, etc.) in both C programs
and Java programs.

10. ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for their invaluable feedback. Shan Lu is supported
by a Claire Boothe Luce faculty fellowship, and her researchgroup is supported by NSF grant
CCF-1018180 and CCF-1054616. Thomas Reps’s research groupis supported by NSF under grants
CCF-0810053 and CCF-0904371, by ONR under grants N00014-09-1-0510 and N00014-10-M-
0251, by ARL under grant W911NF-09-1-0413, and by AFRL undergrants FA9550-09-1-0279
and FA8650-10-C-7088. Thomas Reps has an ownership interest in GrammaTech, Inc., which has
licensed elements of the technology reported in this publication.

REFERENCES

APACHEBUGZILLA . How important is the bug? http://issues.apache.org/bugwritinghelp.html.
BALAKRISHNAN , G., GRUIAN , R., REPS, T., AND TEITELBAUM , T. 2005. CodeSurfer/x86 – A platform for analyzing x86

executables, (tool demonstration paper). InCC.
BERGER, E. D., YANG, T., LIU , T., AND NOVARK , G. 2009. Grace: safe multithreaded programming for c/c++.In OOP-

SLA.
BOURDONCLE, F. 1993. Efficient chaotic iteration strategies with widenings. InInt. Conf. on Formal Methods in Prog. and

their Appl.
BUGZILLA @MOZILLA . A bug’s life cycle. https://bugzilla.mozilla.org/page.cgi?id=fields.html#severity.
BURNIM , J.AND SEN, K. 2009. Asserting and checking determinism for multithreaded programs. InFSE.
CADAR , C., DUNBAR, D., AND ENGLER, D. 2008. Klee: Unassisted and automatic generation of high-coverage tests for

complex systems programs. InOSDI.
CHEN, F., SERBANUTA, T. F.,AND ROSU, G. 2008. jpredictor: A predictive runtime analysis tool for java. InICSE.
CHUGH, R., VOUNG, J. W., JHALA , R.,AND LERNER, S. 2008. Dataflow analysis for concurrent programs using datarace

detection. InPLDI.
CLICK . 2010. The Click Modular Router Projec. http://read.cs.ucla.edu/click/click.
COVERITY. Software quality and security analysis. http://www.coverity.com/.
DEVIETTI , J., LUCIA , B., CEZE, L., AND OSKIN, M. 2009. Dmp: deterministic shared memory multiprocessing. In ASP-

LOS.
DIMITROV, M. AND ZHOU, H. 2009. Anomaly-based bug prediction, isolation, and validation: an automated approach for

software debugging. InASPLOS.
DINNING , A. AND SCHONBERG, E. 1991. Detecting access anomalies in programs with critical sections.SIGPLAN Not. 26,

85–96.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28

EDELSTEIN, O., FARCHI, E., NIR, Y., RATSABY, G.,AND UR, S. 2002. Multi-threaded java program test generation.IBM
Systems Journal.

FARCHI, E., NIR, Y., AND UR, S. 2003. Concurrent bug patterns and how to test them. InIPDPS.
FLANAGAN , C. AND FREUND, S. N. 2004. Atomizer: a dynamic atomicity checker for multithreaded programs. InPOPL.
FLANAGAN , C. AND FREUND, S. N. 2009. Fasttrack: efficient and precise dynamic race detection. InPLDI.
FLANAGAN , C., FREUND, S. N., AND Y I , J. 2008. Velodrome: a sound and complete dynamic atomicitychecker for

multithreaded programs. InPLDI.
FLANAGAN , C. AND GODEFROID, P. 2005. Dynamic partial-order reduction for model checking software. InProceedings

of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL ’05. ACM, New York,
NY, USA, 110–121.

GODEFROID, P. 1996.Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion
Problem. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

GUO, P. J.AND ENGLER, D. 2009. Linux kernel developer responses to static analysis bug reports. InUSENIX.
HASTINGS, R. AND JOYCE, B. 1992. Purify: Fast detection of memory leaks and access errors. InUsenix Winter Technical

Conference.
JIN , G., THAKUR, A., L IBLIT , B., AND LU, S. 2010. Instrumentation and sampling strategies for cooperative concurrency

bug isolation. InProceedings of the ACM international conference on Object oriented programming systems languages
and applications. OOPSLA ’10. ACM, New York, NY, USA, 241–255.

JONES, R. W. M. AND KELLY, P. H. J. 1997. Backwards-compatible bounds checking for arrays and pointers in c programs.
In Automated and Algorithmic Debugging.

JOSHI, P. AND SEN, K. 2008. Predictive typestate checking of multithreaded java programs. InProceedings of the 2008
23rd IEEE/ACM International Conference on Automated Software Engineering. ASE ’08. IEEE Computer Society,
Washington, DC, USA, 288–296.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system.Communications of the ACM 21,7,
558–565.

LU, S., PARK , S., SEO, E.,AND ZHOU, Y. 2008. Learning from mistakes – a comprehensive study of real world concurrency
bug characteristics. InASPLOS.

LU, S., TUCEK, J., QIN , F., AND ZHOU, Y. 2006. AVIO: detecting atomicity violations via access interleaving invariants.
In ASPLOS.

LUCIA , B. AND CEZE, L. 2009. Finding concurrency bugs with context-aware communication graphs. InMICRO.
LUCIA , B., CEZE, L., AND STRAUSS, K. 2010. Colorsafe: architectural support for debugging and dynamically avoiding

multi-variable atomicity violations. InProceedings of the 37th annual international symposium on Computer architec-
ture. ISCA ’10. ACM, New York, NY, USA, 222–233.

LUCIA , B., DEVIETTI , J., STRAUSS, K., AND CEZE, L. 2008. Atom-aid: Detecting and surviving atomicity violations. In
ISCA.

LUCIA , B., WOOD, B. P.,AND CEZE, L. 2011. Isolating and understanding concurrency errors using reconstructed execu-
tion fragments. InProceedings of the 32nd ACM SIGPLAN conference on Programming language design and imple-
mentation. PLDI ’11. ACM, New York, NY, USA, 378–388.

LUK , C.-K., COHN, R., MUTH, R., PATIL , H., KLAUSER, A., LOWNEY, G., WALLACE , S., REDDI, V. J.,AND HAZEL-
WOOD, K. 2005. Pin: building customized program analysis tools with dynamic instrumentation. InPLDI.

MOZILLA DEVELOPERS.Bug 123930 (deadlock). https://bugzilla.mozilla.org/show bug.cgi?id=123930. Let them eat races.
MUSUVATHI , M., QADEER, S., BALL , T., BASLER, G., NAINAR , P. A.,AND NEAMTIU , I. 2008. Finding and reproducing

heisenbugs in concurrent programs. InOSDI.
NARAYANASAMY , S., PEREIRA, C., AND CALDER, B. 2006. Recording shared memory dependencies using strata. In

ASPLOS.
NARAYANASAMY , S., WANG, Z., TIGANI , J., EDWARDS, A., AND CALDER, B. 2007. Automatically classifying benign

and harmful data racesallusing replay analysis. InPLDI.
NETHERCOTE, N. AND SEWARD, J. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation. In

PLDI.
NETZER, R. H. B.AND M ILLER , B. P. 1991. Improving the accuracy of data race detection. In PPoPP.
O’CALLAHAN , R. AND CHOI, J.-D. 2003. Hybrid dynamic data race detection. InProceedings of the ninth ACM SIGPLAN

symposium on Principles and practice of parallel programming. PPoPP ’03. ACM, New York, NY, USA, 167–178.
OLSZEWSKI, M., ANSEL, J.,AND AMARASINGHE, S. P. 2009. Kendo: efficient deterministic multithreadingin software.

In ASPLOS.
PARK , C.-S.AND SEN, K. 2008. Randomized active atomicity violation detectionin concurrent programs. InFSE.
PARK , S., LU, S.,AND ZHOU, Y. 2009 a. Ctrigger: Exposing atomicity violation bugs from their finding places. InASPLOS.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

A:29

PARK , S., VUDUC, R. W.,AND HARROLD, M. J. 2010. Falcon: fault localization in concurrent programs. InProceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1. ICSE ’10. ACM, New York, NY,
USA, 245–254.

PARK , S., ZHOU, Y., X IONG, W., YIN , Z., KAUSHIK , R., LEE, K. H., AND LU, S. 2009 b. Pres: probabilistic replay with
execution sketching on multiprocessors. InSOSP.

QADEER, S. AND WU, D. 2004. Kiss: keep it simple and sequential. InPLDI.
ROSSBACH, C. J., HOFMANN, O. S.,AND WITCHEL, E. 2009. Is transactional programming actually easier? InWDDD.
RUWASE, O. AND LAM , M. 2004. Cred: A practical dynamic buffer overflow detector. In NDSS.
SADOWSKI, C., FREUND, S. N.,AND FLANAGAN , C. 2009. Singletrack: A dynamic determinism checker for multithreaded

programs. InESOP.
SAVAGE , S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. 1997. Eraser: A dynamic data race

detector for multithreaded programs.ACM TOCS.
SECURITYFOCUS. Software bug contributed to blackout. http://www.securityfocus.com/news/8016.
SEN, K. 2008. Race directed random testing of concurrent programs. InPLDI.
SEN, K. AND AGHA, G. 2006. Automated systematic testing of open distributedprograms. InFSE.
SHI , Y., PARK , S., YIN , Z., LU, S., ZHOU, Y., CHEN, W., AND ZHENG, W. 2010. Do i use the wrong definition?: Defuse:

definition-use invariants for detecting concurrency and sequential bugs. InOOPSLA.
SULLIVAN , M. AND CHILLAREGE, R. 1992. A comparison of software defects in database management systems and oper-

ating systems. InFTCS.
SUMNER, N. AND ZHANG, X. 2009. Algorithms for automatically computing the causal paths of failures. InFundamental

Approaches to Software Engineering.
T IAN , C., NAGARAJAN, V., GUPTA, R., AND TALLAM , S. 2008. Dynamic recognition of synchronization operations for

improved data race detection. InISSTA.
VAZIRI , M., TIP, F.,AND DOLBY, J. 2006. Associating synchronization constraints with data in an object-oriented language.

In POPL.
WOO, S. C., OHARA , M., TORRIE, E., SINGH, J. P.,AND GUPTA, A. 1995. The SPLASH-2 programs: Characterization

and methodological considerations. InISCA.
X IONG, W., PARK , S., ZHANG, J., ZHOU, Y., AND MA , Z. 2010. Ad hoc synchronization considered harmful. InOSDI.
XU, M., BODÍK , R., AND HILL , M. D. 2005. A serializability violation detector for shared-memory server programs. In

PLDI.
Y I , J., SADOWSKI, C.,AND FLANAGAN , C. 2009. Sidetrack: generalizing dynamic atomicity analysis. InPADTAD.
YU, J. AND NARAYANASAMY , S. 2009. A case for an interleaving constrained shared-memory multi-processor. InISCA.
YU, Y., RODEHEFFER, T., AND CHEN, W. 2005. Racetrack: Efficient detection of data race conditions via adaptive tracking.

In SOSP.
Z. L I ET. AL . 2006. Have things changed now? – an empirical study of bug characteristics in modern open source software.

In ASID workshop in ASPLOS.
ZHANG, W., SUN, C.,AND LU, S. 2010. ConMem: Detecting severe concurrency bugs through an effect-oriented approach.

In ASPLOS.

ACM Transactions on Software Engineering and Methodology,Vol. V, No. N, Article A, Pub. date: January YYYY.

