User-Centric Research Challengesin
Community Information M anagement Systems

AnHai Doart, Philip Bohannoh, Raghu Ramakrishnan
Xiaoyong Chal, Pedro DeRose Byron J. Gab, Warren Sheh

I University of Wisconsin-Madisor, Yahoo! Research

Abstract

In Cimple, a joint project between Wisconsin and Yahoo! Rebe we are building systems that man-
age information for online communities. In this paper wecdss the fundamental roles users play in
such systems, then the difficult user-centric researchlerges raised by these roles, with respect to
contributing to the system, accessing and using it, anddgieg the social interaction of users.

1 Introduction

In numerous online communities (e.g., those of databasaresers, movie fans, and biologists) members often
want to discover, guery, and monitor relevant communitgimfation. Community information management
systemgor CIM systemsgor short) aim to address such information needs [13]. fgesteration CIM systems
fall roughly into two classes: message boards and strutfonetals. In message-board systems (e.g., Usenet,
Yahoo! Groups, DBworld), users exchange messages on &gpivs and the history of these messages provides
a searchable repository of community knowledge. In conhtpastal systems include most enthusiast Web sites
(e.g.,shakespeare-online.corand provide structured contents. While some portals (Eiteseer [16]) have
successfully presented automatically crawled contenséng) most portal sites are maintained by a few system
builders.

In Cimple, a joint project between Wisconsin and Yahoo! Research,reeeveloping techniques to build
next-generation CIM systems [13]. Our first goal is to supgotlaborative contribution and managemesft
a wide range of content (e.g., text, structured data, injagesr second goal is to minimize the information
gathering load on community members by integrattngwled Web contentFor example, in th®BLife pro-
totype (see [12] and http://dblife.cs.wisc.edu), builtagsart of theCimple project, information of use to the
database research community is crawled on a nightly bakis cliallenge then is to integrate this data with the
community-contributed text and structured data, whilepkeg quality high.

Several current projects are similar@mple in spirit, or share many of the goals. Examples include Im-
pliance, MAFIA, and Avatar projects at IBM Almaden [8, 15,]2BlogScope at the University of Toronto
[7], BlogoCenter at UCLA [1], Dataspaces and PayGo at Gofifle 27], SHARQ and ORCHESTRA at the
University of Pennsylvania [32, 9], Libra at MSR-Asia [28¢lated efforts at the University of Washington,
MSR-Redmond [11, 17], Siemens Research [33], and many{eay., [6, 25], see also [14]). A key com-
monality underlying many of these projects is tive and diverse rolegsers play in building and using the

Copyright 2007 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must beinbd from the IEEE.

Bulletin of the [EEE Computer Society Technical Committee on Data Engineering

systems. Consequently, we believe that for these emergifap2.0” projects, it is important to discuss which
fundamental roles users play, and what user-centric cigdiethese roles entail.

In this paper we contribute to this broader discussion, girgdvom our initial experience i€imple. We be-
gin by observing that CIM users often play three fundamenuials: active contributors, information explorers
andsocial players First, CIM users often act as active contributors, ediang supplying the system with data,
code, and domain knowledge. Second, CIM users often hagefilhed information needs (e.qg., find interesting
relationships betweeX andY’), or have precise information needs but do not know how toesgthem in
structured query formats, or are too “lazy” to express th&onsequently, they often behave as information
explorers. Finally, CIM users operate in a social contexthat they often interact with other users in the same
community and that the CIM data captures many of such inierac

We then discuss the user-centric challenges raised by the abservations. We consider in particular three
key challenges: (1) how to make it easy for users to con&iblata, code, and knowledge to the system, (2) how
can users easily access and query the system, and move s&grflem one query mode to another, and (3)
how to motivate users to interact more, then capture anai»guich interactions. Finally, we discusgputation
management, explanatipandundq capabilities that we believe are critical to address ttevalthallenges.

2 TheFundamental Rolesof CIM Users

We now briefly describe CIM systems, then the roles theiraupky. To build a CIM system, such as the one
for the database research community, a builder (who is a eontynexpert) deploys an initial generic system

and supplies it with a set of relevant data sources (e.geareBer homepages, DBworld mailing list, conference
pages, etc.). The system then proceeds in three main st&ps [1

e Crawl, extract, and integratethedata: The system crawls the sources at regular intervals to ot&dan
pages, then extracts mentions of relevant entities frorpdlges. Example mentions include people names
(e.g., “Jim Gray” and “J. N. Gray”), conference names, anuakpditles. Next, it integrates these mentions
into entities, and discovers relationships among them, (&lign Gray gave a talk at SIGMOD-04"), thus
transforming the raw data into an entity-relationship (BRja graph.

e Provide user services over the data: Next, the system provides a variety of user services oveERe
data graph. For example, the system may create for eachntitgr¥ a superhomepagwhich contains
all information aboutX that the system finds from the raw community data. Other elamsgrvices
include browsing, keyword and structured querying, anditodng.

e Masscaollaboration: Finally, the system solicits and leverages the feedbackminaunity users to further
improve and evolve. For example, the system may publish esehsuperhomepage (as described earlier)
in wiki format, then allow users to correct and add inforroati A user may also suggest a new data source
for the system to crawl. As yet another example, if the systdars bothX andY to be PC chairs of
SIGMOD-04, a user may flag these inferences as incorrectsapply the domain constraint that each
SIGMOD conference has just one PC chair.

The Cimple project [13] (see also http://www.cs.wisc.€dahhai/projects/cimple) describes CIMS in more de-
tails. Within this project, to validate and drive CIMS resdg we have also been buildifi@BLife, a prototype
system that manages the data of the database research citynfse® [12] and http://dblife.cs.wisc.edu). For
CIM systems, we observe the following user roles.

Active Contributors: CIM users often want to contribute data, code, and knowléaltfee system. iDBLife,
for example, users sent us URLs of new data sources, votechether a picture claimed to represent a person

X is truly X, and inquired about supplying new codes for keyword seara@mntion disambiguation, among
others.

User willingness to contribute of course has been obsematlimerous Web 2.0 efforts. The amount
of contribution has also been observed to follow a Zipfiarridbistion: a relatively small percentage of users
contribute very actively, followed by a long tail of usersawtontribute little or nothing (e.g., see [5]). Our initial
experience suggests that this will also hold for CIMS. Cquosatly, we roughly divide human participants of a
CIM system into three categories: @ilders: a small, perhaps 1-3 person, team which deploys and masntain
the hardware and software (analogous to the DBA of an RDB S editors: a core of perhaps 10-20 highly
motivated persons who actively contribute to the systerd,(ayusers:the rest of the community. When there
is no ambiguity, we use “users” to refer to all three categgori

While users are willing to contribute in many Web 2.0 effpds noted aboven CIM contexts it is par-
ticularly important that they do soThis is because, by nature, CIM data comes from multiplerbgeneous
sources. They are often incomplete, only partially corrantl semantically ambiguous. Hence, it is vital that
users contribute so that the data can be gradually cleamsimbiguated, and augmented, especially in cases
where it is very difficult for systems, but relatively easy fmman users to make a decision. For example, it is
very difficult for DBLife to decide that a picture of is indeedX, whereas it would be easy for users who know
X. As another example, a user can quickly tell the system thlain“Halevy” and “Alon Levy” are the same
person, saving it much effort in attempting to determine Note that this is in sharp contrast to RDBMS set-
tings, where the data often has a closed-world well-defieatbsitics. Many data management settings outside
RDBMS however have semantic problems (e.g., CIM, but aleers@ matching, data integration, data cleaning,
dataspaces, and model management), and thus can sighjfisangéfit from user participations.

Information Explorers. Recent work has addressed the needs of users who approzatrstd data sources
with vague queries, by supporting keyword queries ovectirad data (e.g., [4, 21, 20, 18, 31]). Similarly, CIM
users often have diverse, ill-defined information needsnyManes a CIM user does not yet know exactly what
he or she wants (e.g., knowing only that he or she wants to fintething interesting on topi&’). Hence, the
user will start with keyword search and browsing, in an esqilary fashion. This is especially true in scientific
data management. Eventually the user may “zoom in” on a ggdnformation need (e.g., find all papers on
topic X thatY andZ wrote in 2004), at which point he or she may want to switch twectured query interface.
So a major problem is how to ensure a smooth transition atretgsogeneous query and browsing interfaces,
with minimal user effort.

Even if a CIM user starts with a precise information need, hale often is too “lazy” to compose a
structured (e.g., SQL) query, or simply does not know howddtdin DBLife, for example, few users appear
to be willing to take the effort to compose a structured quenknow how to compose syntactically correct
one. This is an acute problem, because it severely limitatitiy of all the structured data th&BLife has
extracted and integrated. Consequently, finding a way tovdky or “lazy” users to ask structured queries in
CIM contexts is very important, if we want to maximize thel futility of structured CIM data.

Social Players: CIM users operate within a community. They are often awamndfinteract with other users,
and such interactions are often captured in the data mariggadCIM system. Exploiting such data on social
interaction can often significantly improve the quality dMS. For example, irDBLife, interaction in form of
citations, paper review, tagging, etc. can help identifyidexperts, and help improve ranking the results of
keyword searches. Hence, a key challenge is how to encoatmfpesocial interactions, and how to capture and
exploit them.

Finally, as we have alluded to several times, CIM users often significantly in their degree of motivation
and technical expertise. While we expect that a relativetglscore of users (e.g., the builders and editors, as
described earlier) are highly motivated and technicalbréite, the vast majority of users will just want to use the

system quickly if the need arises, then “move on with theedl'. This exacerbates the user-centric challenges
facing CIM systems, as we discuss next.

3 User-Centric Research Challenges

We now discuss the user-centric challenges, focusing ticpar on user contribution, user services, and social
interaction. Then we touch on reputation management, eaptan, and undo, capabilities that are central to
address the above challenges.

3.1 Effective User Contribution

Since user contribution is important for CIM, but the vasjongy of users are reluctant to contribute, we must
make it very easy for users to provide or modify system corepts1 We focus on three main components: data,
code, and domain knowledge.

Data: A user should be able to supply or edit any kind of data, usihigkever user interface that he or she
finds most convenient. The system then processes the dasabest ability. Example data include URL for a
new data source, raw data pages (e.g., a page listing adcgfEviOD papers), structured data, natural text,
and tags, among others. Example user interfaces include f8tJI and wiki. OurCimple experience suggests
that wiki pages can provide a good baseline user interfadbai anything can be posted in wiki pages and can
be easily edited. For instance,DBLife displays user superhomepages in wiki format, then it igively easy

for a user to correct and add information (especially natiesa). Other interfaces can excel in certain cases.
For example, a form interface is especially well suited &mdiing data pieces with small text fragments.

In the above context, a major challenge is to translate ust@wrs in an interface into actions over the
underlying data. For example, conceptuallpBLife superhomepage describes a portion of the underlying ER
data graph. Now suppose a user has revised a superhomepag&i fiormat). Then we must infer from the
revised wiki page the exact sequence of actions the userdeteto do over the ER data graph (e.g., remove a
node, rename an edge, etc.). This inference is non-trigiehtise user edits often are ambiguous: the same edit
can be mapped into multiple possible sequences of acticerstiog underlying data. Another challenge is that
users often want to enter the datmether with some context informatioRor example, when a user enters a
page that contains a list of names, he or she may also wany tbazthese are the names of persons who are on
the PC of SIGMOD-04.

Code: In practice, the code of a CIM system must often be tweakeaéstfine the system performance. To-
day such tweaking is typically done by a small team of devalsgncorporating suggestions from the members
at large, in a slow and tedious process. This process cangreved markedly if we can open up certain parts
of the code base for the multitude of members to edit.

To illustrate, consider extracting person names from thedata pages. A common method is to start with a
dictionary of names (e.g., “David Smith”, “Michael Jonest¢.), perturb each name to generate variations (e.g.,
“D. Smith”, “Smith, D”), then find occurrences of the varatis in the raw pages. The method perturbs each
name using thesame set of generic perturbation ruleshis often turns out to be insufficient. We found that
when deployed iDBLife the method often had to be tweaked. It missed for examplesaalere a persoX
has an unusual nicknamé& Whenever this was pointed out to us Kyor someone who knows’, someone on
our development team would have to tweak the code, to addd¢hrameY for X.

Clearly, allowing users to edit the code in such cases cagtida#ly reduce the workload of the development
team. Toward this goal, first we must make it very easy forsuseedit the code. But it is unlikely that we can
allow any user to edit coddirectly, as this can quickly result in corrupted code. A possiblgahsolution then

is to (a) decompose the code into a sequence of tasks, (bliafiaeetheoutputof each task, then (c) allow users

to edit only these outputs. For example, the name extraeseribed above can be decomposed into a sequence
of two tasks: generating variations for each name, thenrfghdiccurrences of the variations. Thus, the name
extractor shouldnaterializethe set of variations it generates for each name, and expese materialized sets

to the users, so that they can edit (e.g., add the nickianwethe set forX). In general, we can identify certain
“edit points” in the code, make sure that the code “matexéali these edit points, then expose them (e.g., via a
wiki interface) to allow users to edit.

Another possible solution (to make it easy to edit code eudly) is to definemultiple choicesat certain
points in the code. The default code always takes the defhaltes. But users can select other choices, thereby
changing the execution flow of the code. For example, considmodule that matches person names, e.g.,
deciding if “D. Smith” and “David Smith” refer to the same pen. This module may use the default choice
of always applying theamematching methodn to all superhomepages. But it should also offer several other
matching methods, and allow users to choose a particularhingt method for a particular superhomepage, if
the user so desires. Thus, while examining a superhomefageuser may decide to examine the code that
matches names withiff, then decide that a matching methad (offered in the code) is actually more accurate
for H. Consequently, the user tells the system (perhaps via a-baion interface) that, whenever matching
names withinH, it should use the matching methed instead of the default method.

This last example illustrates the power of collaborativdecediting in CIM settings. In such settings, the
small team that writes the initial code simply cannot exanaith superhomepages to write appropriate code for
each superhomepage. But they can write the code in a way Hiasit easy later for community users to adapt
the code to the peculiarities of each superhomepage.

To address malicious code editing, an initial solution idinat code editing to only “trusted” users (e.g.,
editors). Even in this case, distributed code editing isay very useful, as it spreads the workload over
multiple people. It is also very important to develop an ugdpability, so that undesired changes to the code
can be undone easily. We discuss this capability in morelg@taSection 3.4.

Domain Knowledge: When a CIM user finds something incorrect, he or she often krsmmne domain knowl-
edge that can be used to flag it as incorrect or to fix it. For g@nmwhen a user sees that the system claims
both A and B chair SIGMOD-04, he or she may be able to supply the knowldalgig‘only one person chairs a
SIGMOD conference”. We found such cases commonly occDBhife. Thus, just as domain knowledge (e.g.,
integrity constraints) plays an important role in RDBMS3lgo plays an important role in CIMS. Consequently,
it is important to find ways to allow users to express a broattyaof domain knowledge. The key challenge is
to make it very easy for lay users to do this.

A possible solution is to cast each piece of domain knowleaya constraing) op v, where(is a query
template formulated in a structured language (e.g, SQLjefers to a predefined operator (e.g.<5etc.), and
vis avalue. The user then interacts with the system to carisuthen selecbp andv. For example, to express
the constraint “only one person chairs a SIGMOD conferentte? user constructs a templagethat finds the
number of chairs of any given SIGMOD conference, then get® be=, andv to be 1. Another solution is
for the system to solicit domain knowledge from the user.é@mple, while constructing a profile of a typical
database researcher, a system may infer a constraint stioh database researcher has published four or more
SIGMOD papers in a year”. It can then ask users to verify thisstraint with answer “yes” or “no”.

3.2 Effective User Services

As discussed earlier, CIM users often have ill-defined mi@iion needs, or do not know how to formulate the
need in a structured query, or are too “lazy” to do so. Withis tontext, we must make it very easy for users to
access and utilize the system. We now discuss the challemgesig so, focusing on querying, context-sensitive
services, and system access.

Querying: A user should be able to query the system using whicheveryguedde he or she finds most
convenient, and should be able to switch seamlessly ameng tlith minimal effort. Example query interfaces
include keyword search, GUI search, and structured qugrytow to query effectively in each of these modes
remains a major challenge. For example, while much work Hdeegsed “plain-vanilla” keyword search (which
returns a ranked list of data pages), no satisfactory sol@xists today that can be adapted to work effectively,
with minimal tuning, in a CIM domain. Similarly, much work fimddressed keyword search over structured
data, but no consensus has emerged on the most effectii@osolé-urthermore, how to execute structured
gueries over extracted structured data has receivedvedialittle attention (with some exceptions [11, 22]).
This last problem is difficult because the extracted stmectwata is often incomplete and imprecise.

Another major challenge is how to make smooth transitiomfome query mode to another. To move from
a less structured query mode to a more structured one, a corsohation is to interact with the user to refine
the query [23, 26]. In the Avatar project [23], for exampldvem a user asks a keyword query “tom phone” over
a corpus of emails, the system returns a ranked list of erfaitscontain these words. But it also provides an
opportunity for the user to move to more structured queryimgasking if the user means to find emails that
contain the phone number of Tom, or to find emails that comm ffom and contain the word “phone”. There
are often numerous possible structured-query interpoetator a keyword query. Hence a key difficulty facing
this solution is how to select only the most likely interpitiins, to show the user. User modeling (e.qg., [3]) may
help facilitate this selection. To move from a more struetuguery mode to a less structured one (e.g., when the
more structured query does not produce any result and heaselm “relaxed”, or when it cannot be executed
over a text corpus), a common solution is to “collapse” thectred query, for example, into a set of keywords
[30, 24]. The key issue is then how to select a good set of kegsvo

Yet another major challenge is that once a CIM system has ibedrgstructured database, how can it enable
users to easily pose structured queries over the databage&xd&mple, a user may want to know the average
number of citations per paper for a particular researcheiClearly the system cannot expect that most users
will be able to write a structured query (e.g., in SQL) expneg this information need. A possible solution is
then for the system to interact with the user in a GUI fash@moadnstruct a structured query.

Another possible solution is to generate form interfaces tapture the types of structured queries that
we expect users will commonly ask. This is also the prefeamgoroach for today RDBMS applications (e.g.,
amazon.com provides a small set of form interfaces for users to querytbooks). CIM users however often
have ill-defined and exploratory information needs (asudised in Section 2). Consequently they often want to
ask a far wider and more unpredictable range of structuredegi Thus, the CIM system may have to generate
a very large number of form interfaces. Hence, for this apgindo work, the system must be able to index these
interfaces, and then return the most relevant ones, giveersikeyword query.

Context-Sensitive Services. To minimize user efforts and maximize their utilization ofZ8V system, the
system should provide context-sensitive services. Fomeil@ when the user accesses a page that contains
publications, the system can consider all actions (qugryimonitoring, etc.) that a user may want to do with
those publications, then offer to execute those actiongsd loffers can be listed, e.g., on the right side of the
page, similar to the way advertisements are displayed icls@mgine result pages. The key challenge here is to
decide on which services to offer that would maximize usetifization of the system, a challenge that is akin
to deciding which advertisements to display in a searcHirpage.

Easy Accesstothe System: Finally, we cannot just rely on users going to the systemtfrage to ask queries

or to browse. Most users today suffer from information ovad. It is likely that they will just use a major
search engine (e.g., Google, Yahoo) most of the time to Bdaranformation, an observation also made by
[26]. Hence, it is very important that we “open up” a CIM systéor major search engines to crawl and index,
so that when a user asks a keyword query that can potentabynswered by the system, then the search engine

will return a page of the system in the top few results. The degllenges then are (a) how to maximize the
chance that search engines will place a CIM system page hitftreiranked list, if by accessing that page, the
user can fulfill his or her information need, and (b) once tberunas accessed the page, how to enable the user
to quickly express his or her information need, then anstver i

3.3 Encouraging, Capturing, and Exploiting Social | nteractions

So far we have discussed CIM users in isolation. But a disigigng characteristic of CIM settings is that the
users form a community: they often interact with one angthed such interactions are often captured in the
data. Hence, we should design CIM systems such that theyusagm such social interactions, capture them,
and exploit them.

To encourage social interactions, CIM systems can empldgthgya of social tools such as those that allow
users to tag, blog, comment, bookmark, form mailing lists, é\nd indeed many current social networking
systems deploy such tools. The main problem is that we sim@lgot know when a particular tool will work
(in that many users will use it). Hence, we foresee two majatlenges. The first challenge is to develop more
social tools, on the ground that expanding the tool colbecthakes it more likely that users will find something
they like, and thus initiating more social interaction. Beeond challenge is to develop a mechanism to system-
atically deploy combinations of social tools in a CIM seftirevaluate their effectiveness in encouraging user
participation, and then retain and improve the best ones.

Many CIM users also interactutsidethe system, but traces of such interactions are often apiarthe
raw data. For example, K appears on the PC of a workshop organized'hythen it is likely thatX andY
have exchanged emails and are sharing some common intéfestse, another challenge is to mine such social
interactions from the raw community data. While mining sbaiateractions is not a new topic, a distinguishing
aspect of CIM settings is the abundancetehporal data CIM systems crawl and archive community data
over time (e.g.PBLife has crawled and archived the data of the database reseanchuoty over the past 2.5
years). Exploiting the temporal aspect of this data maynails to infer social interactions and their strengths
more accurately.

Once social interactions have been captured or inferrexy, ¢an be exploited for many purposes, such
as enhancing keyword search, identifying experts, findimgrging hot trends, viral marketing of ideas and
services, among others. This has been a very active areaezfroh (e.g., see the proceedings of recent WWW,
KDD, database, and Al conferences). In CIM contexts, sieeglihg data into the system and querying it pose
major difficulties (as discussed in Sections 3.1 and 3.2)jjrgrortant challenge is to find out how to exploit
social interactions to address these difficulties.

3.4 TheEnablers. Reputation Management, Explanation Generation, and Undo

We have discussed user contribution, user services, aal gteraction. These challenges share a set of core
problems, and hence it is important that we develop effectwlutions to these problems. We consider in
particular reputation management, explanation generadiod undo.

Reputation management means knowing how much to trust amiuand to manage’s contributions to
the CIM system. Much work has addressed reputation managd€mg., [2, 29]), but no consensus has emerged
on the best method, and it is unlikely that a single silvetdbdxists. Hence, like the case for social tools, an
important challenge is to develop solutions that deployt&on management tools, evaluate them, and retain
and improve the best ones.

Explanation generation means that the system can explainser why a particular inference is made (e.qg.,
why X is a PC member of conferendé) or not made (e.g., why didn’'t the system infer thatis also a PC
member ofY’). We found that users asked many such questions iDBigfe context, either because they simply
wanted to know, or because they used the explanations tdedenihow much to trust the inference made by the

system. We ourselves also often asked such questions faggiely purposes. Hence, providing explanations
is important for the effective development and utilizatmhCIM systems. Further, showing explanations also
often allows better user corrections. For example, if a os&r says “this output is wrong”, the system has to
infer which operator or datum involved in producing thatpuitis the culprit. However, if the user can see an
explanation, he or she may be able to pinpoint the error fsjstem.

Providing explanations on why a particular inference is enaah utilize lineage (a.k.a. provenance [10, 34])
maintained by the system. The problem of providing explanaton why a particular inference et made
appears to be far harder, and has received little attention.

Finally, the undo capability allows users to roll the systbatk to a previous state. This capability is
absolutely critical. As one user explained to us “withoubking that | can undo, | will not be willing to
experiment with the features that the system provides”. Alsip&dia demonstrates, undo is also important
for managing malicious users. To enable this capability)d €/stem must logeverything including all user
interactions. Then, the system must decide how much to alkews to undo. The problem is that if the system
allows users to undo deep into the “past”, it must limit canent editing of users, or risks losing user edits that
build on a “transaction” that is later undone. How to strike tight balance here is a difficult question.

4 Concluding Remarks

As our field expands beyond managing structured data, tddmmsnstructured data in “Web 2.0” contexts, it
is important that we discuss how the role of users has fundtaitye changed in the new contexts, and what
user-centric challenges those changes entail.

In this paper we have contributed to this broader discussioawing from our initial experience in the
Cimple project on community information management systems. Veerdmd how users of such systems
often act as active contributors, information explorergl social players. For the role of active contributors, the
key challenge is to enable users to supply or edit any kinéta,ccode, and domain knowledge, using whichever
user interfaces they find most convenient. For the role afrinfition explorers, the key challenge is to enable
users to query the system using whichever query mode theyrimst convenient, and to switch seamlessly
between the query modes with minimal effort. For the roleadfia players, the key challenge is to develop a
broad range of social tools and mechanisms to select the effestive tools. Finally, we made the case that
reputation management, explanation generation, and wedtritical in addressing the above challenges.

References

[1] http://oak.cs.ucla.edu/blogocenter.
[2] B. Adler and L. Alfaro. A content-driven reputation sgst for Wikipedia. InProc. of WWW-0,72007.

[3] E. Agichtein. Web information extraction and user maadgl! towards closing the gaplEEE Data Engineering
Bulletin, 28(4), 2005.

[4] S. Agrawal, S. Chaudhuri, and G. Das. DBexplorer: A syster keyword search over relational database®rbt.
of ICDE-02 2002.

[5] R. Almeida, B. Mozafari, and J. Cho. On the evolution ofdjgedia. InProc. of the Int. Conf. on Weblogs and Social
Media 2007.

[6] S. Amer-Yahia. A database solution to search 2.0 (keyitalk). InProc. of WebDB-0,/2007.
[7]1 N. Bansal and N. Koudas. Blogscope: Spatio-tempordlaisaof the blogosphere. IRroc. of WWW-0,72007.

[8] B.Bhattacharjee, J. Glider, R. Golding, G. Lohman, V.rklaH. Pirahesh, J. Rao, R. Rees, and G. Swart. Impliance:
A next generation information management applianceCIDR, 2007.

[9] S. Boulakia, O. Biton, S. Davidson, and C. Froidevauxodiidesrs: Querying multiple sources with a user-centric
perspective. IBioinformatics 2007.

[10] P. Buneman and W. Tan. Provenance in databases (fjitdnidroc. of SIGMOD-072007.

[11] M. Cafarella, C. Re, D. Suciu, O. Etzioni, and M. Banktrustured querying of Web text data: A technical challenge.
In Proc. of CIDR-072007.

[12] P. DeRose, W. Shen, F. Chen, Y. Lee, and D. Burdick. D&L#& community information management platform for
the database research community (demoproc. of CIDR-072007.

[13] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, BCahn, M. Sayyadian, and W. Shen. Community
information managementEEE Data Engineering Bulletin, Special Issue on Probaititi Databases29(1), 2006.

[14] A.Doan, R. Ramakrishnan, and S. Vaithyanathan. Mamamiformation extraction (tutorial). IRroc. of SIGMOD-
06, 2006.

[15] Mehmet Altinel et. al. Mafia: A mashup fabric for intraraoplications (demo). IRroc. of VLDB-072007.
[16] C. Giles, K. Bollacker, and S. Lawrence. Citeseer: aio@uatic citation indexing system. Froc. of DL-98 1998.

[17] M. Gubanov and P. Bernstein. Structural text searchcamiparison using automatically extracted schemarar.
of WebDB-062006.

[18] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. EKRRanked keyword search over xml documents. In
Proc. of SIGMOD-032003.

[19] A. Halevy, M. Franklin, and D. Maier. Principles of datmce systems (invited paper).Rroc. of PODS-062006.

[20] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keydaearch in relational databases.Proc. of VLDB-02
2002.

[21] A. Hulgeri and C. Nakhe. Keyword searching and browsindatabases using BANKS. Proc. of ICDE-022002.
[22] A.Jain, A. Doan, and L. Gravano. SQL queries over urcstned text databases. roc. of ICDE-07 (poster2007.

[23] R. Krishnamurthy, S. Raghavan, J. Thathachar, S. yaiththan, and H. Zhu. Avatar information extraction system
IEEE Data Engineering Bulletin, Special Issue on Probatidi Databases29(1), 2006.

[24] J. Liu, X. Dong, and A. Halevy. Answering structured gae on unstructured data. Rroc. of WebDB-062006.

[25] J. Luxenburger and G. Weikum. Exploiting community beior for enhanced link analysis and web searcHrorc.
of WebDB-062006.

[26] J. Madhavan, A. Halevy, S. Cohen, X. Dong, S. JefferyKb, and C. Yu. Structured data meets the Web: A few
observationslEEE Data Engineering Bulletir29(4), 2006.

[27] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yid A. Halevy. Web-scale data integration: You can only
afford to pay as you go. IRroc. of CIDR-072007.

[28] Z. Nie, J. Wen, and W. Ma. Object-level vertical seartthProc. of CIDR-07 2007.

[29] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. FriedmRaputation systemsCommunications of the ACM
43(12):45-48, 2000.

[30] P. Roy, M. Mohania, B. Bamba, and S. Raman. Toward auticraasociation of relevant unstructured content with
structured query results. Proc. of CIKM-05 2005.

[31] M. Sayyadian, A. Doan, and L. Gravano. Efficient keywsedrch over heterogeneous relational databasésomn
of ICDE, 2007.

[32] N. Taylor and Z. Ives. Reconciling changes while tolergdisagreement in collaborative data sharingPtac. of
SIGMOD-06 2006.

[33] F. Wang, C. Rabsch, P. Kling, P. Liu, and P. John. Wekea®llaborative information integration for scientific
research. IrProc. of ICDE-07 2007.

[34] J. Widom. Trio: A system for integrated management addaccuracy, and lineage. Rroc. of CIDR-052005.

