
Building Community Wikipedias: A Machine-Human Partnersh ip Approach

Pedro DeRose1, Xiaoyong Chai1, Byron J. Gao1, Warren Shen1

AnHai Doan1, Philip Bohannon2, Jerry Zhu1
1University of Wisconsin-Madison,2Yahoo! Research

Abstract

The rapid growth of Web communities has motivated many
solutions for building community data portals. These solu-
tions follow roughly two approaches. The first approach (e.g.,
Cimple, Libra, Citeseer) employs semi-automatic methods to
extract and integrate data from a multitude of data sources.
The second approach (e.g., Wikipedia, Intellipedia) deploys
an initial portal in wiki format, then invites community mem-
bers to revise and add material. In this paper we consider
combining the above two approaches to building community
portals. The new hybrid machine-human approach brings
significant benefits. It can achieve broader and deeper cov-
erage, provide more incentives for users to contribute, and
keep the portal more up to date with less user efforts. In a
sense, it enables building “community wikipedias”, backed
up by an underlying structured database that is continuously
updated using automatic techniques. We outline our ideas
for the new approach, describe its challenges and opportu-
nities, and provide initial solutions. Finally, we describe a
real-world implementation and preliminary experiments that
demonstrate the utility of the new approach.

1 Introduction
The growing presence of Web communities has motivated

many solutions to build community data portals. These so-
lutions follow roughly two approaches. The first,machine-
based, approach employs semi-automatic methods to extract
and integrate data from a multitude of data sources, to cre-
ate structured data portals. Examples include Cimple, Libra,
Rexa.info, BlogScope, and Blogosphere [16, 21, 6, 17, 11, 5].

The above approach incurs relatively little human efforts,
often generates a reasonable initial portal, keeps portalsfresh
with automatic updates, and enables structured queries over
portals. However, it usually suffers from inaccuracies, caused
by imperfect extraction and integration methods, and limited
coverage, because it can only infer whichever information is
available in the data sources.

The second,human-based, approach manually deploys an
initial portal in wiki format, then invites community users
to revise and add materials. Examples include Wikipedia,

Intellipedia, umasswiki.com, ecolicommunity.org, and many
wiki-based intranets. This approach avoids many problems of
the machine-based approach, but suffers from its own limita-
tions. In particular, it may be difficult to solicit sufficient user
participation, can incur significant user efforts to keep por-
tals up to date, and cannot accommodate structured queries,
because users contribute mostly text and images.

In this paper we consider combining the above two com-
plimentary approaches to build community portals. Specifi-
cally, we use “machines” to deploy an initial portal in wiki
format, then allowbothmachines and human users to revise
and add materials. Machines can add structured information
to certain parts of wiki pages, while users can add both text
and structured information. Machines and human can also
correct and augment each other’s contributions, in a synergis-
tic fashion. We refer to this approach asCwiki. The following
example illustrates the approach.

Example 1.1. Suppose we applyCwiki to build a portal for the
database community. We can start by applying a semi-automatic
approach (i.e., “machines”) to extract structured data from the Web,
then use the data to create and deploy wiki pages, such as pageW in
Figure 1.a. PageW contains “structured data pieces” mixed with
ordinary wiki text, and will display as the HTML page in Figure 1.b.
In effect,W describes a person entity who has three attributes: id
= 1, name = David J. DeWitt, and title = Professor. This person
also participates in a relationship called “interests” with an entity
of type “topic”, whose name is “Parallel Database”.

OnceW has been deployed, a userU may come in and edit
pageW , e.g., by correcting the value of attribute title from “Pro-
fessor”, which was generated by machines, to “John P. Morgridge
Professor”. U may also contribute a structured data piece “<#
person(id=1){organization}= UW #>”, to state that this person is
working for an organization called “UW”. Finally,U adds free text
“since 1976” after this data piece. The edited pageW ′ is shown in
Figure 1.c.

Later a machineM may discover from data sources that the
above person also participates in “interests” relationship with topic
“Privacy”. M can then add this piece of information to the page,
as “<# person(id=1).interests (id=5).topic(id=6){name}=Privacy
#>”. With high confidence,M may also correct the value of at-
tribute organization from “UW”, which was contributed byU , to
“UW-Madison”. The resulting wiki pageW ′′ is in Figure 1.d, and
it will display as the HTML page in Figure 1.e. Thus, pageW has
been evolved over time, with both machines and users’ contributing

<# person(id=1){name}=David J. DeWitt #>

<# person(id=1){title}=Professor #>

Interests:
<# person(id=1).interests(id=3)
.topic(id=4){name}=Parallel Database #>

David J. DeWitt
Professor

Interests:
Parallel Database

<# person(id=1){name}=David J. DeWitt #>

<# person(id=1){title}=John P. Morgridge
Professor #>

<# person(id=1) {organization}=UW #>
since 1976

Interests:
<# person(id=1).interests(id=3)
.topic(id=4){name}=Parallel Database #>

<# person(id=1){name}=David J. DeWitt #>

<# person(id=1){title}= John P. Morgridge
Professor #>

<# person(id=1){organization}=UW-Madison#>
since 1976

Interests:
<# person(id=1).interests(id=3)
.topic(id=4){name}=Parallel Database #>

<# person(id=1).interests(id=5)
.topic(id=6){name}=Privacy #>

David J. DeWitt
John P. Morgridge Professor
UW-Madison since 1976

Interests:
Parallel Database
Privacy

(a) (b) (c) (d) (e)

Figure 1. An example to illustrate the machine-human approach.

and correcting each other’s contributions.

As described, this new hybrid machine-human approach
enables building “community wikipedias” that are backed up
by an underlying structured database that is continuously up-
dated using automatic techniques. The approach can bring
significant benefits. First, it can achieve broader and deeper
coverage, because it exploits both machines and human users.
Second, it can provide more incentives for users to contribute,
because the initial portal built by machines can already be
reasonably useful and comprehensive, thus motivating users
to further improving it. Third, it can keep the portal more up
to date, with less user efforts, because machines can contin-
uously monitor data sources and update certain parts of the
portal. Finally, the structured data in the wiki pages of the
portal is also stored in an underlying structured database,thus
enabling a variety of structured queries over the portal.

In the rest of the paper we elaborate on the above ap-
proach. First, we consider how to build an initial wiki-
based portal, using machines. We cast this as aview creation
problem: store the data generated by machines in a struc-
tured databaseG, create structured views overG, then export
the views in wiki pages. The key questions are then: How
to model and implement the structured databaseG? What
should be the view language? And how to export the struc-
tured data of the views into wiki pages? As parts of our
solution, we represent the machine-generated data using an
entity-relationship (ER) model, define a path-based view lan-
guage over this model, extend the standard wiki language [2]
with s-slots– constructs to embed structured data into the nat-
ural text of wiki pages, then show how to export the views in
wiki pages, using s-slots (Section 4.3).

Next, we consider how to manage user contributions to the
portal. If a userU has edited a wiki pageW , then we want
to extract the “structured” part ofU ’s edits, and “push” it all
the way into the underlying databaseG. The key questions
here are: What is it thatU is conceptually allowed to edit?
And how to efficiently infer such edits based on whatU has
done to a wiki pageW? To answer these questions, we cast
the problem of processing user contributions as a problem of
mappingU ’s edits over the wiki page into edits over the cor-
responding view, then from this view into edits overG. This
is aview updateproblem. But it is complicated (compared to
RDBMS view update) by the facts that here (a)U can also
edit theschema, not just the data, of the view, and (b)U ’s
edits, being limited to the wiki interface, are often ambigu-

ous. Furthermore, after we have updated databaseG with
edits fromW , we must decide how to propagate this update
to other views and corresponding wiki pages. In Section 5 we
elaborate on these issues, then provide a solution.

Finally, for the sake of completeness (but not as a part of
the contribution of this paper), in Section 6 we briefly touch
upon the problem of managingmultipleusers, where we ex-
tend current solutions employed inWikipedia (namely, opti-
mistic concurrency control and access rights based on a user
hierarchy) to handle concurrent editing and malicious users.
We also consider how to let machines join users in updating
the portal. The key challenge is the following: once a user
has entered an edit, can machines be allowed to overwrite the
edit, and when?

We have been applying the above solution to build a com-
munity wikipedia for the database research community (see
the live system at [1]). In Section 7 we report on our expe-
rience and preliminary experiments that demonstrate the po-
tentials of this approach, and suggest opportunities for future
research.

To summarize, we make the following contributions:

• Introduce a new hybrid approach that employs both ma-
chines and human users to build community portals,
backed up by an underlying structured database. As far
as we know, ours is the first work that studies this direc-
tion in depth.

• Provide solutions to modeling the underlying structure
database, representing views over this database with a
path-based language, and exporting these views in wiki
pages.

• Provide an efficient solution to process user edits in
wiki pages and “push” these edits into the underlying
database. The solution recasts this problem as translat-
ing edits across different user interfaces.

• Empirical results over a real-world implementation that
demonstrates the promise of the approach and suggests
opportunities for future research.

2 Related Work
We are not aware of any published work that has stud-

ied combining “machines” and human approaches to build-
ing community portals. Many portals (e.g., Wikipedia) do

employ automatic programs (called “bots”) to generate new
pages according to some template, and to detect problems
(e.g., vandalism) with current pages. But these programs
do not contribute structured data nor do they update existing
data, as we do here.

Perhaps the work closest to ours is Semantic Wikipedia
[24]. This work develops new wiki language constructs that
allow users to add structured data to wiki pages. We also de-
velop similar wiki language constructs (see Section 4.3). But
our constructs are far more powerful: we can embed arbi-
trary ER data graphs in a wiki page, whereas the constructs
in [24] in a sense only allow embedding node and relationat-
tributes. More importantly, Semantic Wikipedia and several
similar efforts, including semantic wikis [3] and Metaweb
[4], have focused largely onextending wiki languagesso that
userscan contribute structured data. They have not focused
on allowing machines to contribute, nor do they study how to
“push” structured contributions from users into an underlying
database. Our work here is therefore complementary to these
efforts.

Many semi-automatic approaches have been developed to
build structured portals (see [14] for an extensive discussion).
Any of these can be employed as “machines” in our current
work.

Processing structured user edits in our context is a vari-
ation on the classical view update problem [10, 12]. Un-
like relational view update, however, in our context users can
also edit the schemas of views as well as of the underlying
database. Since users employ the wiki interface, which is
rather limited for expressing structured edits, this posesprob-
lems in interpreting user intentions that do not arise in rela-
tional view updates.

We recast processing structured user edits in our context
as a problem of translating these edits across different user
interfaces (wiki, ER, and relational, see Section 5.2). Such
UI translations have been studied, e.g., translating a natural-
language user query into a structured one [9, 19]. Translating
free natural-language queries is well known to be difficult [9,
19]. Our problem here is still difficult, but more manageable,
as we only translatestructurededits.

Finally, our work can be viewed as a mass collaboration,
Web 2.0 effort to build, maintain, and expand a hybrid struc-
tured data-text community database. Mass collaboration ap-
proaches to data management have recently received increas-
ing attention in the database community (e.g., mass collab-
oration panel at VLDB-07, Web 2.0 track at ICDE-08, see
also [8, 20, 25, 22, 15, 7]. Our work here contributes to this
emerging direction.

3 The Cwiki Approach
In the rest of the paper we describe theCwiki approach.

Figure 2 illustrates howCwiki works. It starts by applyingM ,
a machine-based solution, to extract and integrate data from
a set of data sources, then loads this data into a structured

Data
Sources G

T

V1

V2

V3

W1

W2

W3

u1
V3’ W3’

T3’

M

Figure 2. TheCwiki architecture

databaseG. Next, it initializes an empty text databaseT ,
which will be used in the future to store text generated by
users. ThenCwiki generates structured views overG (e.g.,
V1 − V3 in Figure 2), and exports them in wiki pages (e.g.,
W1−W3). The initial portalW then consists of all such wiki
pages.

Community users and machineM then revise and add ma-
terials toW . Suppose a useru1 has revised wiki pageW3

into pageW ′
3 (Figure 2). ThenCwiki extracts the structured

data portionV ′
3 from W ′

3 and uses it to update the structured
databaseG. Next,Cwiki extracts the text portionT ′

3 fromW ′
3

and stores it in the text databaseT . Cwiki also reruns ma-
chineM at regular intervals (to obtain the latest information
from the data sources), updatesG based on the output ofM ,
then updates the views and wiki pages accordingly. Updating
a wiki pageWi for example means creating a new version
of Wi that combines the latest versions of its structured data
portion fromG and text portion fromT . In addition to revis-
ing existing wiki pages, as described above, both users and
machines can add new pages or delete existing ones.

The next two sections describe the key contributions of
this paper: how to build the initial portal and to manage user
contributions. Section 6 briefly touches upon the issue of
managing multiple users and machine.

4 Creating the Initial Community Portal

To create the initial portal, we proceed in three steps: em-
ploy a machineM to create a structured databaseG, create
structured viewsVi overG, then convert each viewVi into a
wiki pageWi.

4.1 Creating a Structured Database G

Here we describe in detail the language we use to model
databaseG, how we extend a conventional RDBMS to cap-
ture temporal aspect ofG, and how we initializeG using the
Cimple solution [14].

4.1.1 Modeling DatabaseG

To modelG, we can choose from a wide variety of data lan-
guages. Since the data fromG will eventually appear in wiki
pages as structured constructs (see Section 4.3 for a motiva-
tion for this), we had to select a data language thatordinary,
database-illiterateusers are familiar with, and can quickly
understand and edit. Since most users are already familiar
with the concepts of entity and relationship, as commonly

id = 6
name= Privacy

id = 1
name= David J. DeWitt
title = John P. Morgridge Professor
organization= UW-Madison

id = 4
name= Parallel Database

interests

interests

interests

id = 5

id = 7

id = 8
name= Statistics

services

id = 11
as=general chair

id = 12
name= Sigmod 02

id = 3

services
id = 13
as=tutorial chair

id = 14
name= Sigmod 06

(a)

id = 6
name= Privacy

id = 1
name= David J. DeWitt
title = John P. Morgridge Professor
organization= UW-Madison

id = 4
name= Parallel Database

interests

interests

interests

id = 5

id = 7

id = 8
name= Statistics

services

id = 11
as=general chair

id = 12
name= Sigmod 02

id = 3

services
id = 13
as=tutorial chair

id = 14
name= Sigmod 06

(a)

+ person(id=1){name,title}
+ person(id=1).interests.topic{name}
– person(id=1).interests.topic(name=Statistics){name}

id = 6
name= Privacy

id = 1
name= David J. DeWitt
title = John P. Morgridge Professor
organization= UW-Madison

id = 4
name= Parallel Database

interests

interests

id = 5

id = 3

(b)

(c)

<# person(id=1){name}=David J. DeWitt #>
<# person(id=1){title}=John P. Morgridge

Professor #>

<# person(id=1) {organization}=UW-Madison #>

Interests:
<# person(id=1).interests(id=3)

.topic(id=4){name}=Parallel Database #>

<# person(id=1).interests(id=5)
.topic(id=6){name}=Privacy #>

(d)
Figure 3. (a) A snapshot of the ER graphG, (b) a sample view schema, (c) a sample data of the above view,and (d) how the above
sample data is exported into a wiki page in the s-slot wiki language.

employed by current community portals, we choose an ER
language to represent the data inG.

Specifically, we define the schemaGs of G to consist of
a set of entity typesE1, . . . , En and a set of relation types
R1, . . . , Rm. Each entity/relation type is specified using a
set of attributes. Attributes are either atomic, taking string or
numeric values, or set-valued.

Next, we define the dataGd of G to be a temporal ER
data graph. This graph contains (a) a set of nodes that specify
entity instances (or entities for short when there is no ambi-
guity), (b) a set of edges that specify relation instances (or
relations for short when there is no ambiguity), (c) temporal
information regarding attributes, entities, and relations, e.g.,
when an attribute/entity/relation was created, by which user,
when it was deleted, by whom, when it was reinstated, etc.
This information will be used in managing users (Section 6).
We view machineM as a special userM .

We requireG to be a temporal database that captures all
changes so far, so that later we can develop undo facilities
(not yet considered in this paper). Note also that even ifGs

specifies that a person entity has an attribute email, this at-
tribute can be missing from a particular person instance.

Figure 3.a shows for example the snapshot of a tinyGd at
time 1. On this snapshot the nodes are entities and the edges
are relations (labeled with relation names). The attributes are
described next to the nodes and edges.

4.1.2 StoringG using RDBMS

We want to queryG efficiently and may want to implement
a variety of concurrency control schemes later (to manage
concurrent user edits), including lock-based schemes. Con-
sequently, we decided to storeGs andGd using an RDBMS.
The key questions are then: (1) How to convertGs, essen-
tially an ER graph, into a set of relational tables? (2) How
to extend a conventional RDBMS to store temporal data? (3)
How to manage data from multiple users and machine? In
what follows, we first elaborate on and propose an initial so-
lution to each question. Then we present a complete solution
to storingG using an RDBMS.

Converting Gs into Relational Tables: As described
above, schemaGs consists of a set of entity types and relation
types. A standard approach to translatingGs into a relational

database schema is to convert each entity (or relation) type
into a table. And each attribute of the entity (or relation) type
becomes an attribute of the table. An example is shown in
Figure 4.a. Tablepersonstore person entity instances. In the
table, columnid gives the ID of a person entity, andname,
title andorganizationare the three attributes describing each
person. Such a design, however, is not space-optimized in
our scenario for the following reasons:

• A table may be sparse. Take a person table for exam-
ple. Most title values may be missing. This happens
when title values are obtained from data sources, but the
extractors are not powerful enough to extract them, or
many title values are simply not available in the sources.

• Users may create new attributes for an entity type (e.g.,
creating attributeshomepageand country for person).
In this case, we need to enlarge the schema of the entity
table, and entries for these new attributes are empty.

• Last but not the least, as we will see later, space uti-
lization gets worse when we extend an RDBMS to store
temporal data. When an attribute is updated, instead
of updating the value in place, welogically delete the
record with the old value and insert a new record with
the new value. Other attribute values in the old record
are copied to the new record. Consequently, we waste
space in duplicating other attributes. Waste is significant
when the table is wide (i.e., contains many attributes)
and updates are frequent.

To address these problems, we chose to vertically partition
an entity or relation table along each attribute. Consider an
entity typeE. Let A1, . . . , An be the set of attributesE has.
We convertE into n attribute tables. Each attribute tableTi

(1 ≤ i ≤ n) is defined asTi(id, value), whereid stores the
ID of an entitye, andvalue stores theAi value ofe. In ta-
ble Ti, we only store those entities that have anAi value. A
partitioning of the person table in Figure 4.a is given in Fig-
ure 4.b-d. Note that tablepersontitle has only one record
since title values for the other two persons are missing. Sim-
ilarly, we can convert a relation type into a set of attribute
tables. For a relation type, in addition to the attribute tables,
we need one more table to store the IDs of the entities that
each relation relates, as we will see later.

Chris Clifton

Mike Brown

David J. DeWitt
name

NULLNULL2

Purdue

UW-Madison
organization

NULL

Professor
title

1

3

id

Chris Clifton

Mike Brown

David J. DeWitt
name

NULLNULL2

Purdue

UW-Madison
organization

NULL

Professor
title

1

3

id

person

(a)

Chris Clifton

Mike Brown

David J. DeWitt
value

2

1

3

id

Chris Clifton

Mike Brown

David J. DeWitt
value

2

1

3

id

person_name

(b)

Professor
value

1
id

Professor
value

1
id

person_title

(c)

Purdue

UW-Madison
value

1

3

id

Purdue

UW-Madison
value

1

3

id

person_organization

(d)

Figure 4. Tables forpersonentities: (a) a single table for all attributes, and (b)-(d)vertical partitions of the single table.

Supporting Temporal Data: A user may enter an incorrect
data value into the database, either unintentionally or inten-
tionally. Once detected, we need to be able to rollback the
data item to its previous correct value, which may be a long
time ago. To provide such undo facilities, we requireG to
be a temporal database. Extending a conventional database
to support temporal data has been well-studied [23, 18]. Cur-
rently we use the transaction-time table solution which is de-
scribed in detail in [23].

Specifically, to convert a non-temporal attribute table
T (id, value) into a temporal tableT ′, we appendT with
two columns, denoted asstart and stop. Thus we obtain
T ′(id, value, start, stop). Attributesstart andstopare two
timestamps:start indicates when a value was first inserted
into the database, andstopindicates when the value was up-
dated or deleted. Note that the primary key ofT ′ consists of
id andstop. This is because an entity (or relation) attribute
may take different values at different times. In our design,all
these values are stored in the same table with the same entity
(or relation) ID but differentstopvalues.

Figure 5.a gives an example of a temporal table forper-
sonorganization(Figure 4.d). In the example, at time 2007-
04-01 08:01:20, a user entered organization “UW-Madison”
for the person entity withid = 1 (person1 for short). At-
tributestartwas set to “2007-04-01 08:01:20” to indicate that
the value “UW-Madison” started to be current at the time of
insertion. Attributestopwas set to “9999-12-31 23:59:59”,
which is the largest timestamp, to indicate that the value
would be current forever.

Moreover, when an attribute value is updated or deleted,
we first logically delete its record, then insert a new record
with the new value (for update) or a NULL value (for dele-
tion). Consider again the table in Figure 5.a. Suppose that
at time 2007-05-27 09:50:10, another user modified the orga-
nization value of person1 from “UW-Madison” to “UW”. To
reflect the modification in the table, first we located the record
with the value “UW-Madison”, and changed thestoptime of
the record to the current time, denoting that the value of “UW-
Madison” stopped to exist at 2007-05-27 09:50:10. Next, we
inserted a new record for value “UW”. We setstart andstop
of the new record to “2007-05-27 09:50:10” and “9999-12-
31 23:59:59”, respectively, denoting that “UW” would be the
current value from 2007-05-27 09:50:10 on. The temporal
table after the modification is shown in Figure 5.b.

2007-05-27 09:50:10

2007-05-02 11:40:35

2007-04-01 08:01:20
start

9999-12-31 23:59:59

9999-12-31 23:59:59

2007-05-27 09:50:10
stop

UW1

Purdue

UW-Madison
value

1

3

id

2007-05-27 09:50:10

2007-05-02 11:40:35

2007-04-01 08:01:20
start

9999-12-31 23:59:59

9999-12-31 23:59:59

2007-05-27 09:50:10
stop

UW1

Purdue

UW-Madison
value

1

3

id

(a)

2007-05-02 11:40:35

2007-04-01 08:01:20
start

9999-12-31 23:59:59

9999-12-31 23:59:59
stop

Purdue

UW-Madison
value

1

3

id

2007-05-02 11:40:35

2007-04-01 08:01:20
start

9999-12-31 23:59:59

9999-12-31 23:59:59
stop

Purdue

UW-Madison
value

1

3

id

(b)

Figure 5. Examples of transaction-time tables forper-
son organization: (a) before entity withid=1 is updated, and
(b) after entity withid=1 is updated.

By addingstart andstop to an attribute table and by do-
ing logical deletions and updates, we keep track of all values
that an attribute has taken, and for each value, the time period
during which it was current. This way, we are able to recover
an attribute value of any time in the past. Besides tracking
attribute values, we also need to maintain temporal informa-
tion regarding entities and relations themselves, e.g., when an
entity was created, and when a relation was deleted. To store
such temporal information, for each entity and relation type,
we first create a special attributeexists, then create a tem-
poral table forexiststhe same as we do for other attributes.
Attribute existscan take one of the two values, 1, denoting
that the corresponding instance was created or reinstated,or
0, denoting that the instance was deleted. Creating an entity
or relation instance can thus be implemented as inserting a
record into anexiststable with a value of 1, and deleting an
instance can thus be implemented as logically updating the
value to 0. This way, we are able to tell from anexiststable
whether an instance existed at a given time.

Managing Data from Multiple Users: Multiple users may
contribute data into the database. For user management (Sec-
tion 6), we need to know which user inserted, updated or
deleted a data item. Moreover, two users may disagree on
the value for one data item. And we need to decide whose
value to use in generatingVd for a wiki page (Section 4.2).

To track the source of each data item, we further extend a
temporal tableT ′ by appending a columnwho, which stores
the ID of the user who entered that item. The resulting table
T ′′ is defined asT ′′(id, value, start, stop, who). Note that
the primary key does not change, since we only allow one

value of each attribute to be current at any time, regardlessof
by whom.

Among all users, machineM is a special one. It au-
tomatically extracts and integrates data from a set of data
sources. Thus it supplies data into the database much more
frequently than any particular human user. On the other
hand,M ’s data suffers from inaccuracies due to the capac-
ity of the extraction and integration methodsM uses. Con-
sequently,M ’s data has lower credibility than other users’
data. Therefore, we need to distinguishM from the rest
of users. As a solution, for each attributeA, we create
two temporal tables,A m(id, value, start, stop, who)1 and
A u(id, value, start, stop, who). TableA m stores attribute
values entered byM , and tableA u stores values entered by
human users.

An attribute may have different values in tablesA m and
A u. To decide which value to use in generatingVd, we need
to resolve conflicts between the two tables. As a solution,
we define a view tableA p overA m andA u. TableA p

has the same schema asA m andA u, and it stores the [[ne-
gotiated]] value of each attribute. TableA p is updated when
A m orA u is updated. Thus we can embed in its update pro-
cedure how we resolve conflicts in attribute values. Specif-
ically, when an attributea is updated in either ofA m and
A u, we first check whethera is already inA p. If not, we
simply inserta with its value intoA p. (Values forstart,
stopandwhoare assigned accordingly.) Otherwise, we need
to decide whether we should overwritea’s value inA p. A
reasonable approach is to allow a userU to overwrite data
entered byM or another user. We also allowM to overwrite
its own data, but only allow it to overwriteU ’s data in certain
situations, for example, whenM is sufficiently confident in
its data.

An example of A m, A u and A p for table per-
sonorganizationis shown in Figures 6. For simplicity of
illustration, we assume that a userU can overwrite ma-
chine M ’s data butM cannot overwriteU ’s data. Based
on this assumption, when userU2 entered value “UW-
Madison” for person1, we first inserted the value into ta-
ble personorganizationu, then logically updated the exist-
ing value “UW” in tablepersonorganizationp. Value “UW”
was entered byM and thus we overwrote it withU2’s value.
In contrast, whenM entered “MITRE” for person3 intoper-
sonorganizationm, we did not update value “Purdue” in
personorganizationp since “Purdue” was entered by a hu-
man user.

Finally, tableA p can be explicitly stored in the database
or computed as needed. In our design, we chose to material-
izeA p for efficiency.

A Complete Solution: With all the problems addressed, we
now present a complete solution to storingG in an RDBMS.

1In an A m table,who ≡“M” since M is the only machine involved.
We keeps attributewho in the table so that our design is easily extensible to
multiple machines.

Formally, letGs andGd be the schema and the data of
G. Let E1, . . . , En be the set of entity types inGs, and
R1, . . . , Rm be the set of relation types inGs. Suppose for
simplicity that each relation type is binary. We create the fol-
lowing relational tables to storeG:
• An entity ID tableEntity ID(id, ename), whereid

andename store the ID and the type of an entity.
• For each entity typeE, we create a special attribute

exists, whose value can be either 1 or 0. Denoteex-
ists as A0. Let A1, . . . , Ak be the attributes ofE in
Gs. For each attributeA ∈ {A0, . . . , Ak}, we create
three temporal tables,A m, A u andA p. Each table
T ∈ {A m, A u, A p} is defined as follows:

T (id, value, start, stop, who),

where id is the ID of an entity, andvalue is the value
of attributeA of that entity. Timestampsstart andstop
specifies a time period during which the value was cur-
rent. And finally,whogives the ID of the user who en-
tered that value.

• For each relation typeR, we create a relation ID table
R ID. Let E1 andE2 be the two entity types thatR
relates inGs, tableR ID is defined as follows:

R ID(id, eid1, eid2),

whereid is the ID of a relation, andeid1 andeid2 are
the IDs of the two related entities. Similar to converting
an entity type, we first create attributeexistsfor R, then
create tablesA m, A u andA p for attributeexistsand
each attribute ofR in Gs.

A user may create an entity type (same for a relation type and
an attribute), delete an entity type, or reinstate a deletedentity
type. To enrich catalog data with temporal information, we
also create three meta tables:
• Table meta entity(ename, start, stop, who), which

stores the names of the entity types that have been cre-
ated. Attributesstart, stop and who (same for those
attributes in tablesmeta relation andmeta attribute

below) have the same semantics as they do in an attribute
table.

• Tablemeta relation(rname, ename1, ename2, start,
stop, who), which stores the names of the relation types
that have been created. For each relation typeR, the
table also store the names of the two entity types thatR

relates.
• Tablemeta attribute(tname, aname, category, type,

start, stop, who), which stores the name of each at-
tribute (aname) that each entity or relation type (tname)
has. For each attribute, the table also gives its category
(atomic or set-valued) and data type (string or numeric)
specifications incategoryandtype, respectively.

Examples of the meta tables are shown in Figure 7.

(a)

9999-12-31 23:59:59

9999-12-31 23:59:59
stop

M

M
who

2007-05-20 16:20:30

2007-04-01 08:01:20
start

MITRE

UW-Madison
value

1

3

id

9999-12-31 23:59:59

9999-12-31 23:59:59
stop

M

M
who

2007-05-20 16:20:30

2007-04-01 08:01:20
start

MITRE

UW-Madison
value

1

3

id

(b)

U19999-12-31 23:59:592007-05-02 11:40:35Purdue3

U29999-12-31 23:59:592007-05-27 09:50:10UW1

stop whostartvalueid
U19999-12-31 23:59:592007-05-02 11:40:35Purdue3

U29999-12-31 23:59:592007-05-27 09:50:10UW1

stop whostartvalueid

person_organization_m

person_organization_u

(c)

U19999-12-31 23:59:592007-05-02 11:40:35Purdue3

9999-12-31 23:59:59

2007-05-27 09:50:10
stop

U2

M
who

2007-05-27 09:50:10

2007-04-01 08:01:20
start

UW

UW-Madison
value

1

1

id

U19999-12-31 23:59:592007-05-02 11:40:35Purdue3

9999-12-31 23:59:59

2007-05-27 09:50:10
stop

U2

M
who

2007-05-27 09:50:10

2007-04-01 08:01:20
start

UW

UW-Madison
value

1

1

id

person_organization_p

Figure 6. An example of attribute tables fororganizationof entity typeperson: (a)A m, (b) A u, and (c)A p.

M9999-12-31 23:59:592007-03-12 05:10:10pub

…
9999-12-31 23:59:59

9999-12-31 23:59:59
stop

…
2007-03-12 05:10:20

2007-03-12 05:10:00
start

Mperson

……
Mtopic

whoename

M9999-12-31 23:59:592007-03-12 05:10:10pub

…
9999-12-31 23:59:59

9999-12-31 23:59:59
stop

…
2007-03-12 05:10:20

2007-03-12 05:10:00
start

Mperson

……
Mtopic

whoename

meta_entity

(a)

…
person

person

person
ename1

…
person

pub

topic
ename2

M9999-12-31 23:59:592007-03-12 05:10:40write-pub

…
9999-12-31 23:59:59

9999-12-31 23:59:59
stop

…
2007-05-24 16:04:27

2007-03-12 05:10:30
start

Minterests

……
U1advise

whorname

…
person

person

person
ename1

…
person

pub

topic
ename2

M9999-12-31 23:59:592007-03-12 05:10:40write-pub

…
9999-12-31 23:59:59

9999-12-31 23:59:59
stop

…
2007-05-24 16:04:27

2007-03-12 05:10:30
start

Minterests

……
U1advise

whorname

meta_relation

(b)

…
NULL

atomic

atomic
category

…
age

age

title
aname

…
NULL

INT

CHAR(100)
type

U22007-06-10 10:30:252007-04-18 12:40:19person

…
9999-12-31 23:59:59

9999-12-31 23:59:59
stop

…
2007-06-10 10:30:25

2007-03-12 05:10:50
start

Mperson

……
U3person

whotname

…
NULL

atomic

atomic
category

…
age

age

title
aname

…
NULL

INT

CHAR(100)
type

U22007-06-10 10:30:252007-04-18 12:40:19person

…
9999-12-31 23:59:59

9999-12-31 23:59:59
stop

…
2007-06-10 10:30:25

2007-03-12 05:10:50
start

Mperson

……
U3person

whotname

meta_attribute

(c)

Figure 7. Examples of meta tables: (a)meta entity, (b) meta relation, and (c)meta attribute.

4.1.3 Initializing G

To initialize G, we employ a machine-based solutionM .
Many such solutions exist [14]. Currently we use theCim-
ple solution which is described in detail in [14]. The solution
works in two steps: (1) creating an entity-relationship (ER)
graph, and (2) importing the ER graph into databaseG.

Creating an Entity-Relationship Graph: First, a com-
munity expert providesCimple with a set of relevant data
source. Use the community of database researchers as an
example. Data sources can be home pages of database re-
searchers, DBLP, conference pages, etc.. The expect also
provides domain knowledge about entities and relations of
interest. For example,personandconferenceare two entity
types, and between them exists a relation typegive-talk.

ThenCimple uses simple but focused automatic methods
to create an ER graph of the community. Specifically,Cim-
ple first crawls the sources at regular intervals to obtain data
pages, then marks up mentions of relevant entities. Exam-
ples of mentions include people names (e.g., “D. DeWitt”,
“David J. DeWitt”), conference names, and paper titles. Next,
Cimple matches mentions and groups them into entities (e.g.,
mentions “D. DeWitt” and “David J. DeWitt” refer to the
same person entity).Cimple then discovers relations among
the entities. As a result,Cimple creates an ER graph from

the raw data sources.
DBLife is an example portal built using such a semi-

automatic solution.

Importing the ER Graph into DatabaseG: Cimple stores
the ER graph in a set of XML files. To initialize databaseG,
we first convertGs into a set of relational tables, as described
in Section 4.1.2. Then we use an import module to bulk load
the XML data intoG.

4.2 Creating Views over Database G

View Language Requirements: To create views overG, we
must define a view languageL. We now discuss the require-
ments forL. First, we note that a primary goal of community
portals is to describe interesting entities and relations in the
community. Toward this goal, we use each wiki pageW to
describe an entitye or a relationr. A popular way to describe
an entitye, say, is to describe a “neighborhood” ofe on the
ER data graphG, e.g., all or most nodes within two hops from
e. Consequently, languageL must be such that we can easily
write and modify views that describe such “neighborhoods”.

Second, when a user requests a wiki pageW , we material-
ize it on the fly, to ensure the page contain the latest updates.
This in turn requires materializing the viewV underlyingW

(see Section 5.3). Consequently,Lmust be such that its views

can be materialized quickly, to ensure real-time user interac-
tion.

Finally, when a userU edits a wiki pageW , we assume
that U may also edit the schema of viewV underlyingW ,
e.g., by removing all papers fromW , U may be modifying
V ’s schema to exclude all papers (Section 5.1 discusses this
assumption in depth). Hence, languageL must be such that
we can modify a view schema quickly, based on user edits, to
ensure real-time user editing.

A Path-based View Language: The above requirements
led us to design a path-based view languageLp. To define
Lp, first we definedata and schema paths. Intuitively, adata
pathis a path on the ER graphG that (a) starts with an entity
nodee1 and ends at an entity nodeen, and (b) retains only
certain attributes for each node/edge along the path.

A schema pathp = ep1.rp2.ep3.rpn−1.epn then
specifies a set of data paths, which start with nodeep1, fol-
low edgerp2, etc., then end with nodeepn. To further con-
strain these data paths, we express eachepi asTi(Ci){Ai},
meaning that (a)epi must have typeTi and satisfy condition
Ci (which is a conjunction of conditions over the attributes),
and (b) we keep only those attributes ofepi that appear inAi

(which is a set of attribute names).Ti is required, but(Ci)
and{Ai} are optional. A missing{Ai} means that we retain
all attributes. We express eachrpi in an analogous fashion.

Example 4.1. The schema pathperson(id = 1){name, title}
specifies a single data path that corresponds to person entity with
id=1 and that contains only attributes name and title of thisentity.
The schema path, person(id=1).give-tutorial.conf{name}, specifies
a set of data paths, each of which starts with a person node whose id
is 1, follows an edge give-tutorial, then ends with a conf node. For
each path, we retain all attributes of person node and give-tutorial
edge, but retain only the name attribute of conf node.

We can now define ER views considered in this paper as fol-
lows:

Definition 1 (Path-based ER views). A path-based ER view (or
view for short when there is no ambiguity)V has a schemaVs =
(In,Ex), whereIn andEx are disjoint sets of schema paths over
G. EvaluatingVs over G yields the view dataVd. Vd is a sub-
graph ofG that contains only data paths that are (a) specified by
some path schema inIn and (b) not specified by some path schema
in Ex. We refer to schema paths inIn and Ex as inclusive and
exclusive paths, respectively.

Example 4.2. Figure 3.b shows a sampleVs that has two inclusive
paths and one exclusive path. This view schema selects a person e

with id = 1, retains name and title ofe, then selects all interests
of e except those named “Statistics”. Evaluating this view schema
over the ER graphG of Figure 3.a produces the view dataVd in
Figure 3.c.

We now discuss how languageLp satisfies the require-
ments outlined earlier. First, most “neighborhoods” of an en-
tity e (e.g., all nodes within two hops ofe on ER graphG)
can be expressed with a set of inclusive and exclusive data

paths. Hence,Lp allows us to quickly write views that cap-
ture such neighborhood, in an intuitive manner. Second, eval-
uating schema paths amounts to performing selection opera-
tions overG. Hence, views inLp can be materialized quickly.
Finally, if a user edits a view schema (using a wiki page),
then such edits can be quickly mapped into a set of inclusive
and exclusive schema paths, allowing us to modify the view
schema quickly and easily (see [13] for an in-depth discus-
sion).

Creating Views over ER GraphG: Now that we have de-
fined the view languageLp, we can discuss howCwiki uses
Lp to create views overG. First,Cwiki decides on the set of
entities and relations to be “wikified”. Currently, for simplic-
ity we consider all entities, but no relations. Next, for each
entity e of a particular type (e.g., person),Cwiki specifies a
default view schemaVs that specifies a “neighborhood” of
e. Cwiki thus specifies as many default view schemas as the
number of entity types to be “wikified”. These default view
schemas are application specific. The data of the views is not
stored, but will be materialized on the fly, when creating and
refreshing wiki pages, which we discuss next.

4.3 Converting Views to Wiki Pages

Given a viewV with schemaVs and dataVd as defined
above, we now discuss convertingVd into a wiki pageW .
In the following, we introduce our novel s-slot solution. We
also discuss some other non-trivial design issues, such as the
ordering of entities, the formation of URLs and the use of
schema pages.

A Spectrum of Solutions: Since most current wiki data
(e.g., Wikipedia) is natural text, the straightforward solution
is to convertVd into a set of natural-language sentences. For
example, supposeVd specifies that personX works for orga-
nizationY . Then we can convert this into sentence “X works
for Y ” in wiki pageW . Knowing this template, if a user later
modifies the sentence to be “X works for Y ′”, we can still
parse it back, realize thatY has been modified to beY ′, then
update the underlying databaseG accordingly.

This was indeed the first solution we tried. It is very easy
for users to edit natural-language wiki pages generated by
this solution. But after extensive experiments, we found that
it is difficult to extract and update structured data. The set
of templates that we can use in natural language settings is
somewhat limited; hence, they get reused in multiple con-
texts, causing many ambiguities for the extractor. Further-
more, supposeG has been updated so thatX is now working
for Y ′. To updateW with this information, we must be able
to pinpoint the location ofY . This is equivalent to being able
to extractY , a difficult task, as discussed earlier.

For these reasons, we wanted a solution whereit is trivial
to pinpoint pieces of structured datacontributed byVd. A
wiki page then contains multiple “islands” of structured data
from Vd, in a “sea” of natural text contributed by users. We
refer to these “islands” ass-slots(shorthand forstructured

slot). Below we describe thiss-slot solution. In Section 7 we
discuss how the natural-language and s-slot solutions lie at
two ends of a spectrum of solutions that trade off (a) ease of
user edit, (b) ease of extracting and updating structured data,
and (c) ease of moving data around on wiki pages.

The S-Slot Solution: We first define the notion of at-
tribute path. Recall that a schema pathp has the form
T1(C1){A1}.Tn(Cn){An}. We say thatp is anattribute
pathiff A1 − An−1 are empty sets andAn identifies a single
attributea. Thus,p uniquely identifies attributea. Examples
of attribute paths areperson(id = 1){title} and

person(id = 1).write-pub(id = 5).pub(id = 14){name}.

An s-slots then has the form<# p = v #>, which specifies
that the attributea uniquely identified by the attribute pathp
takes valuev. An example of wiki text including an s-slot is

<# person(id=1){name}=David DeWitt #> works for
<# person(id=1).work-org.org(id=13){name}=UW #>
since 1976.

When a wiki page is rendered into an HTML page, only
the valuev of an s-slot< # p = v # > is presented
while other parts, as meta data, are suppressed. Thus the
HTML presentation of the above example wiki text will dis-
play “David DeWitt works for UW since 1976”.

An s-slot of<# p = v #> can be marked with a “nodis-
play” attribute as in<# p = v nodisplay#>. In this case,
the whole s-slot will be suppressed and even the valuev will
not be presented in the HTML page. Such s-slots are useful
when the values are confidence scores used for entity order-
ing, as to be discussed shortly.

An s-slot of < # p = v # > can also be marked with
an “invalid” attribute as in< # p = v invalid# >, indi-
cating that the pathp is broken and unsupported by the un-
derlying database, and thus, the validity of the valuev ex-
pired. This situation is generally caused by deletion of struc-
tured data from other related wiki pages. When a page con-
taining invalid structured data is requested, the “invalid” at-
tributes will be added by machine for the corresponding s-
slots.<# p = v invalid#> will be presented in the HTML
page as “v(invalid)”, reminding the user of the fact and leav-
ing him/her the right to delete the s-slot or fix the broken path.

Now let V be a view with schemaVs that Cwiki has de-
fined over databaseG (see Section 4.2). ThenCwiki gener-
ates the default wiki pageW for V in two steps: (a) evaluates
Vs over G to obtain the view dataVd, which is a subgraph
of the ER graphG, then (b) convertVd into a wiki pageW
using s-slots interleaved with English text.

Step (a) is relatively straightforward. Step (b) can be ex-
ecuted in many different ways. We currently adopt a de-
fault solution. Suppose we know that viewV (and thus wiki
pageW) describes entitye, e.g., David DeWitt. Then our
default solution first generates the line< #person(id =
1){name} = David DeWitt #> as the title of the wiki

Input: View data graphVd describing entitye.
Output: Wiki pageW .

1. initializeW to be empty;
2. make title ofW the s-slot corresponding to the name attribute ofe;
3. create a sectionS in W for the attributes ofe;
4. FOR each selected attribute typea of e other than name inVd DO
5. insert the s-slot corresponding toa into S;
6. FOR each relationship typer of e in Vd DO
7. create a sectionSr in W for r;
8. identify a setP of data paths fromVd corresponding tor;
9. IF P is sortable THEN sortP ;

10. FOR each edge(e, f) corresponding to an instance ofr DO
11. create an itemI in Sr ;
12. identify a subsetPf ⊆ P of paths that share(e, f);
13. insert intoI the s-slots corresponding to all selected attributes inPf ;

Figure 8. Generating wiki pageW from view dataVd

page. Next, it displays the attributes ofe, then the relation-
ships. Figure 3.d shows how the data graphVd in Figure 3.c
may have been displayed in a wiki page. In the following, we
explain the algorithmic details about how to generate a wiki
pageW from a view data graphVd.

The Algorithm Generating W from Vd: The algorithm
presented in Figure 8 generates a wiki pageW from a given
view data graphVd for entity e. In line 1, W is initialized
to be empty. In line 2, the s-slot corresponding to the name
attribute ofe is made title ofW . In lines 3–4, a section is
created inW for other selected attributes ofe, that provides
the basic attributional information describinge. In lines 5–
13, a section is created inW for each relationship type.

Each section is labeled properly with a uniform default
look. This can be done since in building an initial community
portalW , the only participating user is the portal builder, for
whom the semantics of each attribute type, entity type and
relationship type are transparent to him/her since he/she was
the one who created the initial view schemaVs. The selec-
tion of view V delivers the builder’s intention and the look
of the wiki page represents his/her preferences. For the same
reason, in line 7, the data paths inVd for relationship typer
can be extracted properly. Notice thatVd itself does not em-
bed such information that how it should be decomposed and
presented. Rather, the extraction mechanisms are hard-coded
for each relationship section. For example, for the “writes”
relationship, the paths of typeperson.write-pub.pub.write-
pub.personstarting at entitye are extracted fromVd.

In line 8, the extracted paths are possibly sorted if the or-
dering information is provided in the paths. In lines 9–13, the
extracted paths are grouped such that each group corresponds
to a unique instance of the relationship typer. Then, the s-
slots for the selected attributes of each group form an item
and the item is inserted into the section.

The portal builder has every reason to capture the prefer-
ences of the majority of users. The above hard-coded inter-
pretation mechanism translatesVd into a default wiki page
W , so that the initial community portalmathw features

HTML pages with a uniform look that is easy to the eyes
of the majority of users. Later,W would be edited by dif-
ferent individuals, and this default interpretation mechanism
will not be used in updatingW by machine, in order not to in-
tervene users’ intentions and interpretations. Instead, all the
fresh structured contents will be inserted into a special sec-
tion called “New”, from which users can pick up items and
move them around according to their own preferences.

Ordering of Entities: Handling the ordering of entities is a
non-trivial design issue. In many cases, entities have a natu-
ral ordering depending on how much they relate to a common
entity. For example, the related people of a person can be or-
dered by the closeness of their relationships to that person.
The related topics of a person can be ordered by the degree of
interest and involvement of that person in those topics. As an-
other obvious example, all the authors of a publication must
be ordered by how they appear in the publication. To capture
the ordering information, we assign each involving relation-
ship a confidence score as attribute.

In order for applicable entities to appear ordered in the
HTML page, the confidence score attribute needs to be se-
lected inVs. Then, the corresponding data paths inVd will
present this ordering information and be ordered properly by
the algorithm (line 9) convertingVd toW . The corresponding
s-slots inW will be marked with “nodisplay” and thus those
actual confidence score values will not be displayed in the
HTML page. This handling of entity ordering is not meant
to be systematic and sophisticated to cover arbitrary ordering
needs; rather, it focuses on simplicity and adequacy in terms
of fulfilling the basic ordering functionality.

Formation of URLs: The formation of URLs raises
another non-trivial design issue. For the HTML page
specified by a URL of http://dblife-labs.cs.wisc.edu/wiki-
test/index.php/DavidDeWitt, the corresponding wiki page
will have a URL of http://dblife-labs.cs.wisc.edu/wiki-
test/index.php?title=DavidDeWitt&action=edit. “David De-
Witt” is the page titlefor the HTML page as well as the wiki
page. As page title is the only replaceable element in a URL,
the formation of URLs comes down to the formation of page
titles.

Within the same namespace, each entitye must have a
unique page title. A natural solution to achieve this unique-
ness is to use entity ID’s as titles. However, such page titles
are neither informative to users nor cooperative with search
engines. Entity names seem to be the most informative titles;
however, they cannot guarantee the uniqueness since multiple
entities may share the same name. In our design, a mapping
table is maintained to map each entity ID to a unique page
title. In general cases, entity names are used as page titles.
In cases a title is used by another entity, a concatenation of
entity name and ID will be used.

In particular, we create a mapping table with three fields
eid, title, and type, storing entity ID’s, page titles and en-

tity types respectively. Botheid and title are keys. When
a new entitye is inserted into the database, a default wiki
page will be created fore and the mapping table is used to
generate the page title. First, the entity ID ofe, say 15, is
checked against existing ones in the mapping table. If no du-
plicates, the name ofe, say “David DeWitt”, is then checked
against existing page titles in the table. If no duplicates,15
and “DavidDeWitt” will form a tuple and be inserted into
the table. Otherwise, a concatenation of “DavidDeWitt” and
15, i.e., “DavidDeWitt15”, will be used instead as the page
title. Obviously, the page titles thus-generated are guaranteed
to be unique.

Use of Schema Page: As to be discussed in§5.1, we
expose view schemas in wiki pages to allow user editing.
Thus, a default schema pageWs will be created for each
default wiki pageW . Ws will have the same page ti-
tle asW but under the namespace of “Schema”. For ex-
ample, the URL for the schema page of the wiki page
of David DeWitt will be http://dblife-labs.cs.wisc.edu/wiki-
test/index.php/Schema:DavidDeWitt.

Since all the default schema pages of the same type dif-
fer only in entity ID, they can be automatically generated and
bulk-loaded into the system when building the initial com-
munity portal. In particular, all the entities are first registered
in the mapping table. Then, a default schema page is gener-
ated for each tuple in the table according to the entity type
stored in the table. Next, all these schema pages are written
in a single file, which is then bulk-loaded into the database
supporting the wiki system, without utilizing the interface of
the system.

The set of all wiki pages generated as above constitutes
the initial community portalW . The next section discusses
how users can contribute to this portal.

5 Managing User Contributions
In this section we discuss what users can edit and how to

process those edits.

5.1 What Can Users Edit?

Consider a userU editing a wiki pageW . We allowU to
edit both text and structured data ofW . Editing text is trivial.
Editing structured data ofW meansU can modify or delete
s-slots, or insert new ones.

In modifying an s-slots =<#p = v#>, U can modify
the attribute pathp as well as valuev, but is not allowed to
modify the formatting characters (e.g.,<#, =, and#>). If
U were to do so, then the parser would fail to recognize the
s-slot, and hence would interpret the modified s-slot as text,
not structured data.

Let V be the underlying view ofW . Conceptually, editing
structured data ofW means editing one or a combination of
the following components: the data ofV , the schema ofV ,
the data ofG, and the schema ofG (denotedVd, Vs, Gd, Gs,
respectively).

In traditional settings such as RDBMS, ordinary users can
only edit view data and thus also the underlying relational
database data. This maps to editingVd andGd in our case.
Should we also allow users to editVs andGs? We decided to
allow these actions, because there is often a natural need to
do so. For example, a userU may naturally want to modify
W so that it no longerdisplaysemails. To do this,U must
modify Vs. U cannot modifyVd because this would mean
removingcertain emails fromG, not the desired effect. As
another example, a userU may naturally want to add to an
entitye (described inW) a new attributea that has not existed
so far in the portal. To do this,U must modify bothGs and
Vs.

The next question then is: what is the best way to allow
users to modifyVs andGs? A possible option is to expose
these schemas in wiki pages, for users to edit. For example,
we can exposeVs in a wiki pageWs. Then whenU editsW ,
we interpret such edits as editingVd, and whenU editsWs,
we interpret such edits as editingVs.

The above option would greatly reduce the ambiguity in
interpreting user edits. However, we decided against it, be-
cause we found from experimentation that it is difficult for
ordinary, database-illiterateusers to remember this option.
In fact, users often are not even aware of the distinction be-
tween data and schema edits. Instead, they appear to prefer to
edit only the wiki pageW , then rely onCwiki to assist them
in executing the right kind of edit actions.

For these reasons, we allowU to edit only wiki pageW ,
then askU (in English) to clarify if he or she intends to edit
the data or the schema. In what follows we discuss this pro-
cess in detail.

5.2 Infer & Execute Structured Edits

Suppose userU has edited wiki pageW into W ′. Then we
can parseW ′ to extract a text portionT ′ and a structured data
portionD′. The text portion can immediately be stored in a
text databaseT (see Figure 2). The structured data portion
D′ consists of all s-slots inW .

Next, we can merge all s-slots inD′ together to obtain
an ER graph that we will refer to asV ′

d . Given that each s-
slot maps uniquely into an attribute in the ER graphG, the
merging process is relatively straightforward, and hence will
not be discussed further, for lack of space. Our problem now
is: givenV ′

d , infer what actions userU intends to execute on
Vd, Vs, Gd, Gs, then execute those actions.

Basic Relational and ER Actions: To solve the above prob-
lem, we first define a set of basic actions thatU can execute
over Vd, Vs, Gd, Gs. For example, basic actions onVd in-
clude modifying the value of an entity or relation attribute,
and deleting an entity. Basic actions onVs include inserting
a new entity and deleting an attribute of a relationship. We
have implemented each basic action as a program over the
temporal relational database that storesG. The complete sets
of basic actions onVd, Vs, Gd andGs are given in Table 1.

Basic ER Actions Vd Vs Gd Gs

a1: Modify attribute value X X

a2: Insert an existing attribute X X opt.
a3: Insert a new attribute X X X X

a4: Insert an existing entity X X opt.
a5: Insert a new entity X X X X

a6: Insert an existing relationship X X opt.
a7: Insert a new relationship X X X X

a8: Delete an attribute X X opt. opt.
a9: Delete an entity X X opt. opt.
a10: Delete a relationship X X opt. opt.

Table 2. Basic ER actions that we have defined.

Appendix A give their implementations. Abusing notation,
we will refer to these basic actions asbasic relational ac-
tions, to distinguish them from the basic ER actions that we
will introduce soon below.

Now givenV ′
d , we must infer the sequence of basic rela-

tional actions that we believe userU intends to execute. To
do this in a manageable fashion, we introduce an intermediate
user interface: theER interface. This interface would display
an ER data graph (e.g.,Vd) in a graphical fashion, and al-
low users to execute a number ofbasic ER actions, such as
modifying a node or an edge, deleting a node, etc.

The first column of Table 2 lists the ten basic ER actions
we have defined. We have implemented each ER action as a
sequence of relational actions. For example, actiona1 (see
the table) translates into the sole relational action that modi-
fies the value of an entity attribute (in bothVd andGd).

However, it turns out that an ER action can beambigu-
ous, in that it can map into different sequences of relational
actions, depending on the user intention, as the following ex-
ample illustrates:

Example 5.1. Suppose a userU applies actiona8 (see Table 2) to
delete an attributex of, say, a person entitye in an ER graph, e.g.,
Vd. ThenU may mean to deletex from (a)Vs, i.e., do not display
x in view V , or (b) Gd, thus declaring that entitye does not have
attributex, or (c) Gs, thus declaring that attributex does not exist
for person (the entity type ofe).

Since we do not knowU ’s intention, if U executes ac-
tion a8, then we first askU (in an English phrase) to choose
among options (a)-(c) in the above example. Next, we trans-
latea8 into the appropriate sequence of relational actions, de-
pending onU ’s answer. For example, ifU chooses option (c),
then the sequence of relational actions is: deletex from Vs,
deletex from Gd, deletex from Gs.

For each ER action, Columns 2-5 of Table 2 shows which
components (Vd, Vs, etc.) that the action may modify (“opt.”
means “optional”, depending on external conditions such as
user intentions).

Mapping User Edits into Sequence of Basic Actions:
With the introduction of the ER interface, our problem can
be recast as follows. When userU edits the structured data
portion of wiki pageW , we view it to be equivalent toU

Actions onVd Actions onVs Actions onGd Actions onGs

a1 Modify an entity attribute value Insert an entity attribute Modify an entity attribute value Create an entity attribute
a2 Modify a relation attribute value Insert a relation attribute Modify a relation attribute value Create a relation attribute
a3 Insert an entity attribute Insert an entity Insert an entity attribute Create an entity type
a4 Insert a relation attribute Insert a relation Insert a relation attribute Create a relation type
a5 Insert an entity Delete an entity attribute Insert an entity Drop an entity attribute
a6 Insert a relation Delete a relation attribute Insert a relation Drop a relation attribute
a7 Delete an entity attribute Delete an entity Delete an entity attribute Delete an entity type
a8 Delete a relation attribute Delete a relation Delete a relation attribute Delete a relation type
a9 Delete an entity Delete an entity
a10 Delete a relation Delete a relation

Table 1. Basic relational actions onVd, Vs, Gd andGs.

Input: Data graphsVd andV ′

d . Vd=(E, R, A), V ′

d=(E′, R′, A′),
whereE, E′ are sets of entity instances,R, R′ are sets of
relationship instances, andA, A′ are sets of attributes.

Output: Sequence of GUI actionsSER.

1. FOR each entity instancee ∈ E′ − E DO
2. IF entity type exists THEN appenda4 to SER;
3. ELSE appenda5 to SER;
4. FOR each relationship instancer ∈ R′ − R DO
5. IF relationship type exists THEN appenda6 to SER;
6. ELSE appenda7 to SER;
7. FOR each attributea ∈ A′ − A DO
8. IF attribute type exists THEN appenda2 to SER;
9. ELSE appenda3 to SER;

10. FOR each attributea ∈ A − A′ DO
11. appenda8 toSER;
12. FOR each relationship instancer ∈ R − R′ DO
13. appenda10 to SER;
14. FOR each entity instancee ∈ E − E′ DO
15. appenda9 toSER;
16. FOR each attributea ∈ A ∩ A′ DO
17. IF it has the same value inVd andV ′

d THEN appenda1 to SER;
18. ReturnSER;

Figure 9. GeneratingSER from Vd andV ′

d

editing the ER graphVd in the ER interface, using basic ER
actions. We do not know what basic ER actionsU executes.
But we do know the end result, which is the ER graphV ′

d , as
described earlier.

Thus, in this perspective,U has executed a sequenceSER

of basic ER actions on the original ER graphVd, transform-
ing it into a new ER graphV ′

d . Our task then is to “reverse
engineer”SER, by comparingVd with V ′

d , then executeSER.
Figure 9 shows the pseudo code of our current algorithm to
reverse engineerSER.

To “push” the structured edits ofU into the databaseG,
we then execute the actions ofSER sequentially. Recall that
each such action is a basic ER action (see Table 2), which
can be ambiguous. If this happens, recall also that we resolve
the problem by asking userU a disambiguating question. We
then execute each basic ER action by executing the sequence
of relational actions that it maps to, as described earlier.

A minor problem is thatSER is not unique. Given any two
Vd andV ′

d , multiple sequences of actionsSER may exist that
all transformVd into V ′

d . Fortunately they all have the same

effect, as this theorem shows:

Theorem 1. Let S1, . . . ,Sk be all sequences of basic ER actions
that transform aVd into a V ′

d . Then when executing anySi, the
set of questions we pose to userU will be the same for alli. If U

gives the same answers to these questions, then executing any Si,
i ∈ [1, k], results in the sameVd, Vs, Gd andGs.

5.3 Propagate Structured Edits

Let W1 andW2 be two wiki pages that describe two re-
searchersA andB, respectively. SupposeA andB share one
publicationp. Sop appears in bothW1 andW2. Now suppose
that a userU has editedp in W1. When should we updatep
in W2? In general, once a user has edited the structured data
portion of a wiki pageW , how should we propagate this edit
to other pages?

A solution is to immediately refresh other pages, e.g., page
W2 in the above example. We call thiseager propagation.
This solution ensures timely updates of pages, but can raise
tricky concurrency control issues. Hence, we currently adopt
a lazy propagationapproach, where we refresh a page, say
W2, only when a user requests the page again. At that mo-
ment, we rematerialize the page from the structured database
G and the text databaseT . Section 7 empirically shows that
we can refresh pages on the fly quickly, in a few seconds, thus
making this lazy approach a practical solution.

6 Managing Multiple Users and Machine
While not a contribution of this paper, for completeness

we will briefly touch on the key problems of managing mul-
tiple users and machines as they contribute to the portal. The
full paper [13] discusses these problems and our proposed
solutions in detail.

First, we must manage concurrent editing of a wiki page
by multiple users, or concurrent editing of some structured
data pieces (e.g., a paper) that appear in multiple wiki
pages. Currently we employ the optimistic concurrency con-
trol scheme of Wikipedia for this purpose.

Next, we must detect and remove malicious users. To do
this, we currently employ a hierarchy of users, reminiscent
to the Wikipedia solution for the same problem. Specifically,

we require users log in to edit, and employ a set of editors
whose job is to monitor most active wiki pages.

Finally, if a userU has modified a data itemX , can ma-
chineM overwriteU ’s modification, and if so, then when?
Our current solution allowsM to overwriteU ’s data only for
certain pre-specified data types (e.g., certain attributesof per-
son), if M is sufficiently confident in its data. For all other
data types, we do not allowM to overwriteU ’s modification,
but allow it to add a suggestion next toU ’s modifications, in
parentheses, e.g., “age is 45 (according toM , age is 47)”.

7 Empirical Evaluation
To evaluateCwiki, we have been applying it to build a

community wikipedia for the database community (see [1]
for the current portal, still under continuous development).
We now report on preliminary experiments with this portal,
which demonstrate the potentials ofCwiki and suggest re-
search opportunities.

Building an Initial Community Portal: We began by em-
ploying DBLife as machineM (see Section 4). It took a
two-person team four weeks to developDBLife from scratch.
DBLife was first deployed on May of 2005, and has been
on “auto pilot” since, requiring only about one hour of
maintenance per month (for more details, see [14]). Each
day DBLife crawls 10,000+ database research related data
sources, extracts and integrates the data, to generate a daily
ER data graph.

We used one such daily ER data graphA (98M of XML
data) to initialize the structured databaseG. G’s schema has
five entities and nine relationships, andG’s data contains
164,043 entity instances and 558,260 relation instances, for
a total size of 413M. This size is greater than the ER data
graph size of 98M due to the extra space needed to store tem-
poral information. It took 216 seconds to loadA into G, and
183 minutes to generate and store all wiki pages (164,043
pages for entities). These results suggest that we can create
moderate-size initial portals (a one-time task) with relatively
little efforts.

Next, we wanted to know if the initial portal can be main-
tained efficiently, assuming no user contributions yet. We
found that over 10 days, asDBLife contributed data to the
structured databaseG, G’s size increased from 413M to
600M. This was somewhat surprising, becauseDBLife data
should not have changed so much over 10 days. Upon a closer
inspection, we found that the confidence scores of most rela-
tion instances inG (e.g., personX is related to personY
with score .8) were changed byDBLife everyday, due to the
changing raw data (retrieved byDBLife). Hence, the confi-
dence scores of most relation instances inG were updated
everyday, leading to a rapid growth inG’s size (recall thatG
is a temporal database that does not allow update in place,
hence changes are added toG). Once we disallowed updat-
ing confidence scores, thenG grew very slowly (by less than
5M). Thus, this experiment suggests that the current designof

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Page size (# of s-slots)

R
e

sp
o

n
se

 t
im

e
 (

se
c)

Page request

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

10 20 30 40 50 100 200 300 400
Page size (# of s-slots)

P
e

rc
e

n
t

o
f a

ll
p

a
g

e
s

Page size distribution

(a)

(b)

Figure 10. Time to request a wiki page and distribution of
page size.

Type of edits 5 edits 10 edits 15 edits 20 edits 25 edits

modification 0.258 0.266 0.275 0.283 0.291

insertion 1.041 1.314 1.583 1.826 2.115

deletion 1.012 1.122 1.253 1.363 1.483

Type of edits 5 edits 10 edits 15 edits 20 edits 25 edits

modification 1.183 1.209 1.231 1.247 1.266

insertion 1.971 2.214 2.436 2.662 2.855

deletion 1.615 1.633 1.649 1.665 1.681

of s-slots = 52 time in sec

of s-slots = 196 time in sec

Figure 11. Time to process user edits on a wiki page.

G is efficient for maintaining all aspects of the initial portal
over time, except for confidence/uncertainty scores. We are
currently examining how to modify the temporal design ofG

to efficiently accommodate frequent changes in uncertainty
scores.

Expressive Power of the S-Slot Wiki Language: In the
currentDBLife system (seedblife.cs.wisc.edu) each user
superhomepage is a structured viewV over the underlying
structured database. We found that the s-slot wiki language
(Section 4.3) was sufficiently powerful to enable us to express
all structured data pieces in such views in wiki pages, except
two types of data pieces: top-k and aggregate. A top-k data
piece is technically a view that lists the topk items of a ranked
list, e.g., the top three authors, cited papers, etc. An aggregate
data piece is an aggregate view such as the total number of
papers per author, or the total number of citations.

We found that top-k and aggregate views also appear in
many other community portals. Thus, any future attempt to
extend wiki languages with structured constructs must ad-
dress the problem of expressing such views. The challenge
then is how to efficiently update such views.

Efficiencies of User Interaction: In the next step, we exam-
ined how fast users can interact with the portal. Figure 10.a
shows the time it takes from when a user requests a page
W until whenW is served. Note that to ensure freshness,

Editing tasks Time (sec) Accuracy

editing a sentence of free text 13.2 (10~21) 100%

modifying a data path 16.4 (10~30) 100%

inserting a data path 52 (30~60) 100%

inserting two bonded data paths 55 (30~85) 100%

inserting a paragraph of data paths 152 (60~240) 100%

deleting data paths 36.6 (15~60) 100%

Figure 12. User performance on several editing tasks.

we materializeW on the fly, from the underlying structured
databaseG and text databaseT (Section 5.3). Hence, it is
critical that such materialization can be done quickly, to en-
sure real-time user interaction.

The results show that request time increases linearly w.r.t.
page size, measured in the number of s-slots in the page, and
stays small, e.g., under 2 seconds for page sizes up to 150.
Figure 10.b shows that the vast majority of current pages have
a size under 50 (the first five bars of the figure), and thus incur
under 1 second request time. This result suggests that we
can materialize wiki pages quickly, and that the lazy update
approach (Section 5.3) can work well in practice.

Since processing user edits requires us to translate these
edits across different user interfaces and then to invoke the
underlying relational database, we wanted to know if it can
be done efficiently. Figure 11 shows the time it takes from
when a user submits his/her edits until when the edits have
been processed, i.e., updates onVs, Vd, Gs, Gd, if any, have
been carried out. This time does not include the time users
spent answering disambiguating questions (Section 5.2). The
top table of the figure shows edit times over a wiki page with
52 s-slots (each time is averaged over 10 runs). Here each
edit is a user action that affects a single s-slot.

The bottom table of the figure shows similar edit times, but
over a wiki page with 196 s-slots. In both cases, the results
show that the edit times remain small, under 2.2 seconds for
the small wiki page and 2.9 seconds for the large wiki page.
This suggests thatCwiki can process user edits efficiently.

Ease of User Interaction: Next, we evaluated how easy
it is for users to edit structured data in a wiki pageW . We
conducted a preliminary experiment with 6 users, where each
user was asked to edit a certain item on the HTML represen-
tation ofW . To do so, they had to go toW , locate and then
edit the appropriate piece of structured data. We measured
how long it took them to finish the given editing tasks and the
correctness of the results. For comparison purposes, we also
asked users to edit some free text.

Figure 12 shows that 100% correctness was achieved for
all the editing tasks. Editing time is measured from when the
edit button is clicked until when the new HTML page is ren-
dered. Figure 12 shows the average and range of recorded
editing time over all the users. The results show that the
simplest structured data editing task, modifying a data path
(modifying an attribute), took comparable time to editing a
sentence of free text.

Inserting a data path generally involves adding several en-
tities and relationships to the database. Users need to type
a complete legal path. Inserting two bonded data paths is a
bit more complex since users need to make sure that several
entities (or relationships) are assigned the same id. Inserting
a paragraph of data paths is probably the most complex task
that generally involves multiple bonded data paths. Specifi-
cally, the users were asked to add a publication with a title,
an ordered author list, and the conference, year, page, and ci-
tation information. The results show that the editing time is
very reasonable considering the high complexity of the task.

Deletion of data paths would generate some ambiguities
since the user may mean to delete the structured data from the
underlying database or just from the wiki page. Thus after
the user clicks the submit button, several questions may be
presented as radio buttons to clear the possible ambiguities.
Deleting a single data path or many data paths would take
similar amount of time from the editing point of view. The
only difference is the number of questions to ask.

This experiment is strictly preliminary. But it does sug-
gest that the current solutions may already be adequate in the
sense that users are able to correctly execute the various edit-
ing tasks within a reasonable amount of time.

The experiment also suggests that it may be even easier
for users to edit if we introduce some macro that hide the de-
tails of the structured data and make the structured data looks
very clean. This point was confirmed by the users’ qualita-
tive feedback on how convenient it is to use the system. On a
scale of 1 (least convenient) to 5 (most convenient), the cur-
rent system scored an average of 2.5. A typical comment is
that while the system is easy to learn and functioning well, it
is verbose. These comments meet our expectations since our
goal for the current version focuses almost exclusively on the
adequacy instead of convenience.

In general, as commented in Section 4.3, a lesson we
learned from our currentCwiki experience is that there is a
spectrum of solutions on how structured data can be repre-
sented in wiki pages. Our s-slot solution represents one spec-
trum end and the natural-language solution (see Section 4.3)
the other. In between we can have solutions that present struc-
tured data using, e.g., XML formats (in wiki pages).

The key tradeoff factors for these solutions include (a) how
easy it is for users to edit, (b) how easy it is for machines to
re-extract structured data, and (c) how easy it is for users to
move various pieces of structured data around, i.e., rearrange
them in the wiki page.

The s-slot solution appears best for (b) and (c), and so-so
for (a). The natural-language solution is best for (a), so-so for
(c), and difficult for (b). An XML-like solution appears best
for (a) and (b), but so-so for (c). Developing more solutions,
evaluating them, and selecting a good one is an interesting
future research direction.

8 Conclusions & Future Work
We have describedCwiki, an approach that employs both

“machines” and human users to build structured community
portals. This new hybrid machine-human approach can bring
significant benefits. It can achieve broader and deeper cover-
age, provide more incentives for users to contribute, and keep
the portal more up to date, with less user efforts. We have
appliedCwiki to build a “wikipedia” portal for the database
community [1]. We reported on our experience with this por-
tal that demonstrates the potentials ofCwiki and suggests
many research opportunities.

Indeed, it is clear that our work here has only scratched
the surface of this direction (of combining “machines” and
human to build structured wikipedias). Virtually any prob-
lem that we have discussed can be “drilled down” deeper.
Example problems include: (a) extending the s-slot wiki lan-
guage to handle top-k and aggregate views and studying up-
dating for such views, (b) developing “macros” that hide the
low-level structured constructs to allow users to edit certain
structured data pieces more efficiently, (c) developing effi-
cient eager-update-propagation schemes, (d) developing bet-
ter solutions to handle machine updates to data already mod-
ified by users, and (e) learning how to leverage user edits to
improve the extraction and integration accuracy of machines.

In addition, we will continue to develop the structured
wikipedia for the database community [1], as a real-world
application that we can use to evaluateCwiki. Finally, we
plan to release theCwiki source code to encourage further
development and evaluation of community wikipedias in ad-
ditional domains.

References

[1] http://dblife-labs.cs.wisc.edu/wiki-test/index.php/mainpage.

[2] http://en.wikipedia.org/.

[3] http://en.wikipedia.org/wiki/semanticwiki.

[4] http://metaweb.com/.

[5] http://oak.cs.ucla.edu/blogocenter.

[6] http://rexa.info/.

[7] Sixth international workshop on information integration on the
web. 2007.

[8] S. Amer-Yahia. A database solution to search 2.0.WebDB-07.

[9] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural
language interfaces to databases–an introduction.Journal of
Language Engineering, 1(1):29–81, 1995.

[10] F. Bancilhon and N. Spyratos. Update semantics of relational
views.ACM Transactions on Database Systems, 6(4):557–575,
1981.

[11] N. Bansal and N. Koudas. Blogscope: Spatio-temporal analy-
sis of the blogosphere. InWWW-07.

[12] U. Dayal and P. A. Bernstein. On the correct translationof
update operations on relational views.ACM Transactions on
Database Systems, 7(3):381–416, 1982.

[13] P. DeRose, X. Chai, B. J. Gao, W. Shen, A. Doan,
P. Bohannon, and J. Zhu. Building community
wikipedias: A machine-human partnership approach.
http://pages.cs.wisc.edu/ xchai/cwiki.pdf, 2007.

[14] P. DeRose, W. Shen, F. Chen, A. Doan, and R. Ramakrishnan.
Building structured web community portals: The case for an
incremental and compositional approach. InVLDB-07.

[15] A. Doan, P. Bohannon, R. Ramakrishnan, X. Chai, P. DeRose,
B. Gao, and W. Shen. User-centric research challenges in com-
munity information management systems.IEEE Data Engi-
neering Bulletin, Special Issue on Data Management in Social
Networks, 2007.

[16] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee,
R. McCann, M. Sayyadian, and W. Shen. Community infor-
mation management.IEEE Data Engineering Bulletin, Special
Issue on Probabilistic Databases, 29(1), 2006.

[17] C. Giles, K. Bollacker, and S. Lawrence. Citeseer: An auto-
matic citation indexing system. InDL-98.

[18] H. Gregersen and C. S. Jensen. Temporal entity-relationship
models - a survey. Knowledge and Data Engineering,
11(3):464–497, 1999.

[19] Y. Li, H. Yang, and H. V. Jagadish. Constructing a generic
natural language interface for an xml database. InEDBT-06.

[20] R. McCann, A. Kramnik, W. Shen, V. Varadarajan, O. Sobulo,
and A. Doan. Integrating data from disparate sources: A mass
collaboration approach. InICDE-05.

[21] Z. Nie, J. Wen, and W. Ma. Object-level vertical search.In
CIDR-07.

[22] R. Ramakrishnan. Community systems: The world online.In
CIDR-07.

[23] R. T. Snodgrass.Developing Time-Oriented Database Appli-
cations in SQL. Morgan Kaufmann Publishers, Inc., 1999.

[24] M. Volkel, M. Krotzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic wikipedia. InWWW-06.

[25] F. Wang, C. Rabsch, P. Kling, P. Liu, and P. John. Web-based
collaborative information integration for scientific research. In
ICDE-07.

Appendix

A Implementing Basic Relational Actions
We define a set of basic relational actions that a user can

execute overVd, Vs, Gd andGs. There are 10 actions forVd,
8 for Vs, 10 forGd, and 8 forGs. In the following, we give
our implementation of each action. To distinguish actions
in different categories, we prefix each action by its category
name. For example, we denote actionai for Vd asVd::ai.

A.1 Actions for Vd

Action a1: Modify an Entity Attribute Value
Steps:

1. ExecuteGd::a1.

Action a2: Modify a Relation Attribute Value
Steps:

1. ExecuteGd::a2.

Action a3: Insert an Entity Attribute
Let eid be the entity ID andE be the entity type. LetA be

the attribute to insert.
Steps:

1. ExecuteGd::a3;
2. Add an inclusive pathE(id = eid){A} to Vs.

Action a4: Insert a Relation Attribute
Let rid be the relation ID andR be the relation type. Let

A be the attribute to insert.
Steps:

1. ExecuteGd::a4;
2. Add an inclusive pathR(id = rid){A} to Vs.

Action a5: Insert a New Entity
Let e be the entity to insert andE be its type.

Steps:
1. ExecuteGd::a5, let eid be the ID ofe;
2. Add an inclusive pathE(id = eid) to Vs.

Action a6: Insert a New Relation
Let r be the relation to insert andR be its type. Leteid1

andeid2 be the IDs of the two entities thatr relates, andE1

andE2 be their types.
Steps:

1. ExecuteGd::a6, let rid be the ID ofr;
2. Add an inclusive pathE1(id = eid1).R(id = rid).E2(id =

eid2) to Vs.

Action a7: Delete an Entity Attribute
Let eid be the ID of the entity andE be its type. LetA be

the attribute to delete.
Steps:

1. ExecuteGd::a7;
2. Add an exclusive pathE(id = eid){A} to Vs.

Action a8: Delete a Relation Attribute
Let rid be the ID of the relation andR be its type. LetA

be the attribute to delete.
Steps:

1. ExecuteGd::a8;
2. Add an exclusive pathR(id = rid){A} to Vs.

Action a9: Delete an Entity
Let e be the entity to delete. Leteid bee’s ID andE be

e’s type.
Steps:

1. FOR each relationr that relatese DO
ExecuteVd::a10;

2. FOR each attributeA (includingexists) of e DO
ExecuteVd::a7;

3. Add an exclusive pathE(id = eid) to Vs.

Action a10: Delete a Relation
Let r be the relation to delete. Letrid ber’s ID andR be

r’s type. Leteid1 andeid2 be the IDs of the entities thatr
relates, andE1 andE2 be their types.

Steps:
1. FOR each attributeA (includingexists) of r DO

ExecuteVd::a8;
2. Add an exclusive pathE1(id = eid1).R(id = rid).E2(id =

eid2) to Vs.

A.2 Actions for Vs

Action a1: Insert an Entity Attribute
Let eid be the ID of the entity andE be its type. LetA be

the attribute to insert.
Steps:

1. Add an inclusive pathE(id = eid){A} to Vs.

Action a2: Insert a Relation Attribute
Let rid be the ID of the relation andR be its type. LetA

be the attribute to insert.
Steps:

1. Add an inclusive pathR(id = rid){A} to Vs.

Action a3: Insert an Entity
Let eid be the ID of the entity andE be its type.

Steps:
1. Add an inclusive pathE(id = eid) to Vs.

Action a4: Insert a Relation
Let r be the relation to insert. Letrid ber’s ID andR be

r’s type. Leteid1 andeid2 be the IDs of the entities thatr
relates, andE1 andE2 be their types.
Steps:

1. Add an inclusive pathE1(id = eid1).R(id = rid).E2(id =

eid2) to Vs.

Action a5: Delete an Entity Attribute
Let eid be the ID of the entity andE be its type. LetA be

the attribute to delete.
Steps:

1. Add an exclusive pathE(id = eid){A} to Vs.

Action a6: Delete a Relation Attribute
Let rid be the ID of the relation andR be its type. LetA

be the attribute to delete.
Steps:

1. Add an exclusive pathR(id = rid){A} to Vs.

Action a7: Delete an Entity
Let e be the entity to delete. Leteid bee’s ID andE be

e’s type.
Steps:

1. FOR each relationr that relatese DO
ExecuteVs::a8;

2. FOR each attributeA (includingexists) of e DO
ExecuteVs::a5;

3. Add an exclusive pathE(id = eid) to Vs.

Action a8: Delete a Relation

Let r be the relation to insert. Letrid ber’s ID andR be
r’s type. Leteid1 andeid2 be the IDs of the entities thatr
relates, andE1 andE2 be their types.
Steps:

1. FOR each attributeA (includingexists) of r DO
ExecuteVs::a6;

2. Add an exclusive pathE1(id = eid1).R(id = rid).E2(id =

eid2) to Vs.

A.3 Actions for Gd

We use the following notations to represent tables inG:
E A m – table for attributeA of entity typeE that stores

attribute values entered by machineM ;
E A u – table for attributeA of entity typeE that stores

attribute values entered by human users;
E A p – table for attributeA of entity typeE that stores

attribute values used in generatingVd;
R A m, R A u, R A p – similar to those above but for

relation typeR instead;
R ID – relation ID table for relation typeR.

Action a1: Modify an Entity Attribute Value
Let E be the type of the entity andA be the attribute. Let

w be the ID of the user who modifiesA.
Steps:

1. IF w = M THEN
Logically delete the current value ofA in E A m;
Insert the new value ofA into E A m;

ELSE
Logically delete the current value ofA in E A u;
Insert the new value ofA into E A u;

2. IF the current value inE A p was entered byM
ORw != M THEN

Logically delete the current value ofA in E A p;
Insert the new value ofA into E A p;

Action a2: Modify a Relation Attribute Value
Let R be the type of the relation andA be the attribute.

Let w be the ID of the user who modifiesA.
Steps:

1. IF w = M THEN
Logically delete the current value ofA in R A m;
Insert the new value ofA into R A m;

ELSE
Logically delete the current value ofA in R A u;
Insert the new value ofA into R A u;

2. IF the current value inR A p was entered byM
ORw != M THEN

Logically delete the current value ofA in R A p;
Insert the new value ofA into R A p;

Action a3: Insert an Entity Attribute
Let eid be the ID of the entity andE be its type. LetA be

the attribute andw be the ID of the user who insertsA.
Steps:

1. IF w = M THEN
IF exists a record withid = eid

AND stop=“9999-12-31 23:59:59” inE A m THEN
Logically delete the record;

Insert the new value ofA into E A m;
ELSE

IF exists a record withid = eid

AND stop=“9999-12-31 23:59:59” inE A m THEN
Logically delete the record;

Insert the new value ofA into E A u;
2. IF exists a record withid = eid

AND stop=“9999-12-31 23:59:59” inE A p THEN
IF the record was entered byM ORw! = M THEN

Logically delete the record;
Insert the new value ofA into E A p;

Action a4: Insert a Relation Attribute
Let rid be the ID of the relation andE be its type. LetA

be the attribute andw be the ID of the user who insertsA.
Steps:

1. IF w = M THEN
IF exists a record withid = rid

AND stop=“9999-12-31 23:59:59” inR A m THEN
Logically delete the record;

Insert the new value ofA into R A m;
ELSE

IF exists a record withid = rid

AND stop=“9999-12-31 23:59:59” inR A m THEN
Logically delete the record;

Insert the new value ofA into R A u;
2. IF exists a record withid = rid

AND stop=“9999-12-31 23:59:59” inR A p THEN
IF the record was entered byM ORw! = M THEN

Logically delete the record;
Insert the new value ofA into R A p;

Action a5: Insert a New Entity
Let E be the entity type andmax eid be the largest ID in

tableentity ID.
Steps:

1. Insert record(max eid + 1, E) into entity ID.

Action a6: Insert a New Relation
Let r be the relation to insert andR be its type. Leteid1

andeid2 be the IDs of the entities thatr relates. Letmax rid

be the largest ID in tableR ID.
Steps:

1. Insert record(max rid + 1, eid1, eid2) into R ID.

Action a7: Delete an Entity Attribute
Steps:

1. ExecuteGd::a1 with NULL as the attribute value.

Action a8: Delete a Relation Attribute
Steps:

1. ExecuteGd::a2 with NULL as the attribute value.

Action a9: Delete an Entity
Let e be the entity to delete.

Steps:

1. FOR each relationr that relatese DO
ExecuteGd::a10;

2. FOR each attributeA (includingexists) of e DO
ExecuteGd::a7;

Action a10: Delete a Relation
Let r be the relation to delete.

Steps:
1. FOR each attributeA (includingexists) of r DO

ExecuteGd::a8;

A.4 Actions for Gs

Action a1: Create an Entity Attribute
Let E be the type of the entity andA be the attribute to

create.
Steps:

1. Insert attributeA into tablemetaattribute;
2. Create tablesE A m, E A u andE A p.

Action a2: Create a Relation Attribute
Let R be the type of the relation andA be the attribute to

create.
Steps:

1. Insert attributeA into tablemetaattribute;
2. Create tablesR A m, R A u andR A p.

Action a3: Create an Entity Type
Let E be the entity type to create.

Steps:
1. Insert entity typeE into tablemetaentity;
2. ExecuteGs::a1 for attributeexists.

Action a4: Create a Relation Type
Let R be the relation type to create.

Steps:
1. Insert relation typeR into tablemetarelation;
2. Create tableR ID;
3. ExecuteGs::a2 for attributeexists.

Action a5: Drop an Entity Attribute
Let E be the entity type andA be the attribute to drop.

Steps:
1. Logically delete attributeA in tablemetaattribute;
2. Logically delete all records inE A m, E A u andE A p.

Action a6: Drop a Relation Attribute
Let R be the relation type andA be the attribute to drop.

Steps:
1. Logically delete attributeA in tablemetaattribute;
2. Logically delete all records inR A m, R A u andR A p.

Action a7: Drop an Entity Type
Let E be the entity type to drop.

Steps:
1. FOR each relation typeR that relatesE DO

ExecuteGs::a8;
2. FOR each attributeA (includingexists) of E DO

ExecuteGs::a5;
3. Logically delete entity typeE in metaentity;

Action a8: Drop a Relation Type
Let R be the relation type to drop.

Steps:
1. FOR each attributeA (includingexists) of R DO

ExecuteGs::a6;
2. Logically delete entity typeR in metarelation;

