Building Community Wikipedias: A Machine-Human Partnership Approach

Pedro DeRose Xiaoyong Chadli, Byron J. Gad, Warren Sheh
AnHai Doart, Philip Bohannot, Jerry Zhd
lUniversity of Wisconsin-Madisort,Yyahoo! Research

Abstract Intellipedia, umasswiki.com, ecolicommunity.org, andnya
wiki-based intranets. This approach avoids many probldms o
The rapid growth of Web communities has motivated manythe machine-based approach, but suffers from its own lmita
solutions for building community data portals. These solu- tions. In particular, it may be difficult to solicit sufficienser
tions follow roughly two approaches. The first approach.(e.g participation, can incur significant user efforts to keep-po
Cimple, Libra, Citeseer) employs semi-automatic methods t tals up to date, and cannot accommodate structured queries,
extract and integrate data from a multitude of data sources. because users contribute mostly text and images.
The second approach (e.g., Wikipedia, Intellipedia) dgplo In this paper we consider combining the above two com-
an initial portal in wiki format, then invites community mem plimentary approaches to build community portals. Specifi-
bers to revise and add material. In this paper we consider cally, we use “machines” to deploy an initial portal in wiki
combining the above two approaches to building communityformat, then allonbothmachines and human users to revise
portals. The new hybrid machine-human approach brings and add materials. Machines can add structured information
significant benefits. It can achieve broader and deeper cov-to certain parts of wiki pages, while users can add both text
erage, provide more incentives for users to contribute, and and structured information. Machines and human can also
keep the portal more up to date with less user efforts. In a correctand augment each other’s contributions, in a syserg
sense, it enables building “community wikipedias”, backed tic fashion. We refer to this approach@wiki. The following
up by an underlying structured database that is continupusl example illustrates the approach.
updated using automatic techniques. We outline our ideas
fqr_ the new approa(_:h,_descrlb_e Its ch_allenges and OPPO”U' database community. We can start by applying a semi-automat
nities, and. provide 'n't'_al Solutlons._ Flnally, we Qescmla approach (i.e., “machines”) to extract structured datarfighe Web,
real-world implementation and preliminary experimentatth then use the data to create and deploy wiki pages, such asipzige
demonstrate the utility of the new approach. Figure 1.a. PageV contains “structured data pieces” mixed with
ordinary wiki text, and will display as the HTML page in Figut.b.
In effect,IV describes a person entity who has three attributes: id
1 Introduction =1, name = David J. DeWitt, and title = Professor. This person
also participates in a relationship called “interests” witan entity
of type “topic”, whose name is “Parallel Database”.

Example 1.1. Suppose we appl€wiki to build a portal for the

The growing presence of Web communities has motivated

many solutions to build community data portgls. Thgse SO- OnceW has been deployed, a usér may come in and edit
lutions follow roughly two approaches. The firstachine- 556117 e.g., by correcting the value of attribute title from “Pro-

base_d approach employs semi-.automatic methods to extractfessor”, which was generated by machines, to “John P. Maigei
and integrate data from a multitude of data sources, to cre-professor”. U may also contribute a structured data piece %

ate structured data portals. Examples include Cimpled,ibr person(id=1)forganizatior}= UW #>", to state that this person is

Rexa.info, BlogScope, and Blogosphere [16, 21, 6, 17, 11, 5] working for an organization called “UW”. Finally[J adds free text
The above approach incurs relatively little human efforts, “since 1976” after this data piece. The edited pag€ is shown in

often generates a reasonable initial portal, keeps pdresh Figure 1.c.

with automatic updates, and enables structured querigs ove Later a machined may discover from data sources that the

portals. However, it usually suffers from inaccuraciesiseal ?bqve pfrson also participates in “interests relatlonphrmth topic

by imperfect extraction and integration methods, and &ahit Privacy”. M can then add this piece of information to the page,

. - as“<# person(id=1).interests (id=5).topic(id=name=Privacy
coverage, because it can only infer whichever informatson i 4" With high confidence M may also correct the value of at-
available in the data sources.

tribute organization from “UW”, which was contributed by, to

The secondhuman-basedpproach manually deploys an “Uw-Madison”. The resulting wiki pagéV” is in Figure 1.d, and
initial portal in wiki format, then invites community users it will display as the HTML page in Figure 1.e. Thus, padéhas
to revise and add materials. Examples include Wikipedia, been evolved over time, with both machines and users’ durting

<# person(id=1){name}=David J. DeWitt #p| <# person(id=1){name}=David J. DeWitt #> | | David J. DeWitt

<# person(id=1){title}=John P. Morgridge ||<# person(id=1){titile}=John P. Morgridge
Professor #> Professor #>

<# person(id=1){name}=David J. Dewitt #»| David J. DeWitt

Professor John P. Morgridge Professor

<# person(id=1){title}=Professor #> N N
UW-Madison since 1976

. Interests: <# person(id=1){organization}=UW-Madi
nterests: Parallel Database <# person(id=1) {organization}=UW #> s‘nfe 197(§ oro) e
<# person(id=1).interests(id=3) since 1976 ! Interests:

.topic(id=4){name}=Parallel Database #> Interests: Parallel Database
<# person(id=1).interests(id=3) Privacy
.topic(id=4){name}=Parallel Database #>

Interests:

<# person(id=1).interests(id=3)
.topic(id=4){name}=Parallel Database #>
<# person(id=1).interests(id=5)
.topic(id=6){name}=Privacy #>

(@ (b) (c) (d) (e)
Figure 1. An example to illustrate the machine-human approach.

and correcting each other’s contributions. ous. Furthermore, after we have updated datalbaseth
As described, this new hybrid machine-human approachedits fromW, we must decide how to propagate this update
enables building “community wikipedias” that are backed up to other views and corresponding wiki pages. In Section 5 we
by an underlying structured database that is continuoysly u elaborate on these issues, then provide a solution.
dated using automatic techniques. The approach can bring Finally, for the sake of completeness (but not as a part of
significant benefits. First, it can achieve broader and deepethe contribution of this paper), in Section 6 we briefly touch
coverage, because it exploits both machines and human usersipon the problem of managimgultiple users, where we ex-
Second, it can provide more incentives for users to cortgibu tend current solutions employed\Vkikipedia (namely, opti-
because the initial portal built by machines can already bemistic concurrency control and access rights based on a user
reasonably useful and comprehensive, thus motivatingsuser hierarchy) to handle concurrent editing and malicious siser
to further improving it. Third, it can keep the portal more up We also consider how to let machines join users in updating
to date, with less user efforts, because machines can eontinthe portal. The key challenge is the following: once a user
uously monitor data sources and update certain parts of théhas entered an edit, can machines be allowed to overwrite the
portal. Finally, the structured data in the wiki pages of the edit, and when?
portal is also stored in an underlying structured datalibas, We have been applying the above solution to build a com-
enabling a variety of structured queries over the portal. munity wikipedia for the database research community (see
In the rest of the paper we elaborate on the above ap-the live system at [1]). In Section 7 we report on our expe-
proach. First, we consider how to build an initial wiki- rience and preliminary experiments that demonstrate the po
based portal, using machines. We cast this @s\wa creation tentials of this approach, and suggest opportunities fioréu
problem: store the data generated by machines in a strucfesearch.
tured databas€, create structured views ovéf, then export To summarize, we make the following contributions:
the views in wiki pages. The key questions are then: How
to model and implement the structured datab&@&e What
should be the view language? And how to export the struc-
tured data of the views into wiki pages? As parts of our
solution, we represent the machine-generated data using an
entity-relationship (ER) model, define a path-based view la

guage over this model, extend the standard wiki language [2] o provide solutions to modeling the underlying structure
with s-slots- constructs to embed structured data into the nat- database, representing views over this database with a

ura! text of Wik.i pages, then sh_ow how to export the views in path-based language, and exporting these views in wiki
wiki pages, using s-slots (Section 4.3). pages.

Next, we consider how to manage user contributions to the
portal. If a userl/ has edited a wiki pag#’, then we want e Provide an efficient solution to process user edits in

e Introduce a new hybrid approach that employs both ma-
chines and human users to build community portals,
backed up by an underlying structured database. As far
as we know, ours is the first work that studies this direc-
tion in depth.

to extract the “structured” part @f’'s edits, and “push” it all
the way into the underlying databa&e The key questions
here are: What is it thal/ is conceptually allowed to edit?
And how to efficiently infer such edits based on whahas

done to a wiki pagéV? To answer these questions, we cast
the problem of processing user contributions as a problem of

mappingU'’s edits over the wiki page into edits over the cor-
responding view, then from this view into edits ov&r This

is aview updatgroblem. But it is complicated (compared to
RDBMS view update) by the facts that here {(&)can also
edit theschemanot just the data, of the view, and (b)s
edits, being limited to the wiki interface, are often ambigu

wiki pages and “push” these edits into the underlying
database. The solution recasts this problem as translat-
ing edits across different user interfaces.

e Empirical results over a real-world implementation that

demonstrates the promise of the approach and suggests
opportunities for future research.

Related Work

We are not aware of any published work that has stud-
ied combining “machines” and human approaches to build-
ing community portals. Many portals (e.g., Wikipedia) do

employ automatic programs (called “bots”) to generate new v, — W, v)

pages according to some template, and to detect problemsp,., M [— v, — W, =58

(e.g., vandalism) with current pages. But these programs gource Vo Wy g =X/

do not contribute structured data nor do they update egistin \ v W /%@,‘@/ >

data, as we do here. —— y 7 ’ w4
Perhaps the work closest to ours is Semantic Wikipedia g

[24]. This work develops new wiki language constructs that
allow users to add structured data to wiki pages. We also de-

velop similar wiki language constructs (see Section 4.8). B gatabases. Next, it initializes an empty text databage
our constructs are far more powerful: we can embed arbi-which will be used in the future to store text generated by
trary ER data graphs in a wiki page, whereas the constructs;sers. TherCwiki generates structured views ov@r(e.g.,

in [24] in a sense only allow embedding node and relagibn v, _ v in Figure 2), and exports them in wiki pages (e.g.,
tributes More importantly, Semantic Wikipedia and several vy, _yy7,). The initial portalV then consists of all such wiki
similar efforts, including semantic wikis [3] and Metaweb pages.

[4], have focused largely oextending wiki languageso that Community users and machifé then revise and add ma-
userscan contribute structured data. They have not focusedigrials to. Suppose a user; has revised wiki pagéV;
on allowing machines to contribute, nor do they study how to jnto pagelV} (Figure 2). TherCwiki extracts the structured
“push” structured contributions from users into an undedy qata portionVZ from W} and uses it to update the structured
database. Our work here is therefore complementary to thes@jatabase:. Next, Cwiki extracts the text portiofi; from W3
efforts. and stores it in the text databage Cwiki also reruns ma-
Many semi-automatic approaches have been developed t@hine M/ at regular intervals (to obtain the latest information
build structured portals (see [14] for an extensive discungs from the data sources), updatéased on the output off,
Any of these can be employed as “machines” in our currentthen updates the views and wiki pages accordingly. Updating
work. a wiki pageW; for example means creating a new version
Processing structured user edits in our context is a vari-of 17, that combines the latest versions of its structured data
ation on the classical view update problem [10, 12]. Un- portion fromG and text portion fron®’. In addition to revis-
like relational view update, however, in our context us@ns ¢ ing existing wiki pages, as described above, both users and
also edit the schemas of views as well as of the underlyingmachines can add new pages or delete existing ones.
database. Since users employ the wiki interface, which is The next two sections describe the key contributions of

Figure 2. The Cwiki architecture

rather limited for expressing structured edits, this pgseb- this paper: how to build the initial portal and to manage user
lems in interpreting user intentions that do not arise iael ~ contributions. Section 6 briefly touches upon the issue of
tional view updates. managing multiple users and machine.

We recast processing structured user edits in our context
as a problem of translating these edits across different use4 Creating the Initial Community Portal
interfaces (wiki, ER, and relational, see Section 5.2). lSuc
Ul translations have been studied, e.g., translating aralatu
language user query into a structured one [9, 19]. Trangjati
free natural-language queries is well known to be diffic@t [
19]. Our problem here is still difficult, but more manageable

as we only translatstructurededits. 4.1 Creating a Structured Database G
Finally, our work can be viewed as a mass collaboration,

Web 2.0 effort to build, maintain, and expand a hybrid struc-)

tured data-text community database. Mass collaboratien ap d2tabaséz, how we extend a conventional RDBMS to cap-

proaches to data management have recently received increall’® temporal aspect @f, and how we initializ& using the

ing attention in the database community (e.g., mass collab-Cimple solution [14].

oration panel at VLDB-07, Web 2.0 track at ICDE-08, see :

also [8, 20, 25, 22, 15, 7]. Our work here contributes to this 4.1.1 Modeling Database

emerging direction. To model@, we can choose from a wide variety of data lan-

I guages. Since the data fraghwill eventually appear in wiki

3 The Cwiki Approach pages as structured constructs (see Section 4.3 for a motiva
In the rest of the paper we describe fhwiki approach. tion for this), we had to select a data language thdinary,

Figure 2 illustrates hovgwiki works. It starts by applying/, database-illiterateusers are familiar with, and can quickly

a machine-based solution, to extract and integrate data fro understand and edit. Since most users are already familiar

a set of data sources, then loads this data into a structuredvith the concepts of entity and relationship, as commonly

To create the initial portal, we proceed in three steps: em-
ploy a machinel/ to create a structured databasecreate
structured viewd/; over, then convert each vieW; into a
wiki pageW;.

Here we describe in detail the language we use to model

id=8 id=12 + person(id=1)}{nametitle} <# person(id=1){name}=David J. DeWitt #>

name= Statistics 7 name= Sigmod 02 + person(id=1).interests.topic{name} <# person(id=1){title}=John P. Morgridge
) services - person(id=1).interests.topic(name=Statistics){name Professor #>
interests id=11 _
id=7 as=general chgif 1d=14 (b) _— T !
O\ g envios MaMe= Sigmod 06 <# person(id=1) {organization}=UW-Madison #>
id=6 : id=13 id=6 i .
) interests e) ' interests Interests:
name=PIvacy “ia=s assuoral char neme= PIvasy Tia=s <# person(id=1).interests(id=3)
O/ interests™ id=1 Q/ interests™ a=1 topic(id=4){name}=Parallel Database #>
id=3 name= David J. DeWitt id=3 name= David J. DeWitt Ay .
id=4 title = John P. Morgridge Professor id=4 title = John P. Morgridge Professor <# person(ld—l).|melre§ts(|d-5) .
name= Parallel Database organization= UW-Madison name= Parallel Database organization= UW-Madison .topic(id=6){name}=Privacy #>

. (a) (© (d)
Figure 3. (a) A snapshot of the ER graph, (b) a sample view schema, (c) a sample data of the above aiyd) how the above
sample data is exported into a wiki page in the s-slot wikglage.

employed by current community portals, we choose an ERdatabase schema is to convert each entity (or relation) type

language to represent the datain into a table. And each attribute of the entity (or relatiomet
Specifically, we define the schenia of G to consist of becomes an attribute of the table. An example is shown in

a set of entity types, ..., F, and a set of relation types Figure 4.a. Tablg@ersonstore person entity instances. In the

Ry, ..., R,. Each entity/relation type is specified using a table, columnid gives the ID of a person entity, amme

set of attributes. Attributes are either atomic, takinghgtior title andorganizationare the three attributes describing each

numeric values, or set-valued. person. Such a design, however, is not space-optimized in

Next, we define the dat&'y of G to be a temporal ER our scenario for the following reasons:
data graph. This graph contains (a) a set of nodes that gpecif o A taple may be sparse. Take a person table for exam-

entity instances (or entities for short when there is no ambi ple. Most title values may be missing. This happens
guity), (b) a set of edges that specify relation instances (0 hen title values are obtained from data sources, but the
relations for short when there is no ambiguity), (c) tempora extractors are not powerful enough to extract them, or
information regarding attributes, entities, and relasiom.g., many title values are simply not available in the sources.

when an attribute/entity/relation was created, by whickrus
when it was deleted, by whom, when it was reinstated, etc.
This information will be used in managing users (Section 6).
We view machingV/ as a special usev!.

We requireG to be a temporal database that captures all
changes so far, so that later we can develop undo facilities e Last but not the least, as we will see later, space uti-

e Users may create new attributes for an entity type (e.g.,
creating attributediomepageand country for person.
In this case, we need to enlarge the schema of the entity
table, and entries for these new attributes are empty.

(not yet considered in this paper). Note also that eve,if lization gets worse when we extend an RDBMS to store
specifies that a person entity has an attribute email, this at temporal data. When an attribute is updated, instead
tribute can be missing from a particular person instance. of updating the value in place, wegically delete the
Figure 3.a shows for example the snapshot of adigyat record with the old value and insert a new record with
time 1. On this snapshot the nodes are entities and the edges ~ the new value. Other attribute values in the old record
are relations (labeled with relation names). The attrivare are copied to the new record. Consequently, we waste
described next to the nodes and edges. space in duplicating other attributes. Waste is significant
when the table is wide (i.e., contains many attributes)
4.1.2 StoringG using RDBMS and updates are frequent.
We want to queny- efficiently and may want to implement To address these problems, we chose to vertically partition
a variety of concurrency control schemes later (to managean entity or relation table along each attribute. Consider a
concurrent user edits), including lock-based schemes.- Con entity typeE. Let A, ..., A, be the set of attributeB has.

sequently, we decided to stof& andG, using an RDBMS. e convertE into n attribute tables. Each attribute tatflie
The key questions are then: (1) How to conv@gt essen- (1 < i < n)is defined ag; (id, value), whereid stores the
tially an ER graph, into a set of relational tables? (2) How |p of an entitye, andvalue stores thed; value ofe. In ta-

to extend a conventional RDBMS to store temporal data? (3)p|e T;, we only store those entities that have anvalue. A
How to manage data from multiple users and machine? Inpartitioning of the person table in Figure 4.a is given in-Fig
what follows, we first elaborate on and propose an initial So- ;ye 4.p-d. Note that tablpersontitie has only one record
lution to each question. Then we present a complete solutionsince title values for the other two persons are missing- Sim
to storingG using an RDBMS. ilarly, we can convert a relation type into a set of attribute
Converting G, into Relational Tables: As described tables. For a relation type, in addition to the attributdegap
above, schem@; consists of a set of entity types and relation we need one more table to store the IDs of the entities that
types. A standard approach to translatinginto a relational each relation relates, as we will see later.

person person_name person_title person_organization
id name title organization id value 5 value
1 | David J. DeWitt| Professor | UW-Madison 1 | David J. DeWitt id value 1 UW-Madison
2 Mike Brown NULL NULL 2 Mike Brown 1 Professor 3 Burdue
3 Chris Clifton NULL Purdue 3 Chris Clifton
@) (b) (c) (d)

Figure 4. Tables forpersonentities: (a) a single table for all attributes, and (b)y@ltical partitions of the single table.

Supporting Temporal Data: A user may enter an incorrect id value start stop

data value into the database, either unintentionally @mint 1 | UW-Madison | 2007-04-01 08:01:20 9999-12-31 23:59:59
tionally. Once detected, we need to be able to rollback the 3 Purdue | 2007-05-02 11:40:39 9999-12-31 23:59:59
data item to its previous correct value, which may be a long @

time ago. To provide such undo facilities, we requiteo id value Start stop

be a temporal database. Extending a conventional database | 1 | uw-Madison | 2007-04-01 08:01:20 2007-05-27 09:50:1Q
to support temporal data has been well-studied [23, 18]}: Cur 3 Purdue | 2007-05-02 11:40:35 9999-12-31 23:59:59
rently we use the transaction-time table solution whicheis d 1 uw 2007-05-27 09:50:19 9999-12-31 23:59:59

(b)
Figure 5. Examples of transaction-time tables fper-
sonorganization (a) before entity withid=1 is updated, and
(b) after entity withid=1 is updated.

scribed in detail in [23].

Specifically, to convert a non-temporal attribute table
T(id,value) into a temporal table”’, we appendl’ with
two columns, denoted astart and stop Thus we obtain
T'(id, value, start, stop). Attributesstart andstopare two
timestamps:start indicates when a value was first inserted
into the database, arsfiopindicates when the value was up- By addingstart andstopto an attribute table and by do-
dated or deleted. Note that the primary keyldfconsists of ing logical deletions and updates, we keep track of all value
id andstop This is because an entity (or relation) attribute thatan attribute has taken, and for each value, the timegberi
may take different values at different times. In our desah, during which it was current. This way, we are able to recover
these values are stored in the same table with the same entitgn attribute value of any time in the past. Besides tracking
(or relation) ID but differenstopvalues. attribute values, we also need to maintain temporal inferma

Figure 5.a gives an example of a temporal tableder- tion regarding entities and relations themselves, e.geyvem
sonorganization(Figure 4.d). In the example, at time 2007- €ntity was created, and when a relation was deleted. To store
04-01 08:01:20, a user entered organization “UW-Madison” SUch temporal information, for each entity and relatioretyp
for the person entity withid = 1 (personl for short). At- We first create a special attribuéxists then create a tem-
tributestartwas set to “2007-04-01 08:01:20” to indicate that Poral table forexiststhe same as we do for other attributes.
the value “UW-Madison” started to be current at the time of Attribute existscan take one of the two values, 1, denoting
insertion. Attributestopwas set to “9999-12-31 23:59:59”, that the corresponding instance was created or reinswated,
which is the largest timestamp, to indicate that the value 0, denoting that the instance was deleted. Creating aryentit
would be current forever. or relation instance can thus be implemented as inserting a

Moreover, when an attribute value is updated or deIeted,Tecord into arexiststab_le with a value of 1,.and deleting an
we firstlogically delete its record, then insert a new record Instance can thus be implemented as logically updating the

with the new value (for update) or a NULL value (for dele- Value to 0. This way, we are able to tell from existstable
tion). Consider again the table in Figure 5.a. Suppose thatVhether an instance existed at a given time.

at time 2007-05-27 09:50:10, another user modified the orga-Managing Data from Multiple Users: Multiple users may
nization value of personl from “UW-Madison” to “UW". To contribute data into the database. For user management (Sec
reflect the modification in the table, first we located therdco tion 6), we need to know which user inserted, updated or
with the value “UW-Madison”, and changed tetptime of deleted a data item. Moreover, two users may disagree on
the record to the current time, denoting that the value of “UW the value for one data item. And we need to decide whose
Madison” stopped to exist at 2007-05-27 09:50:10. Next, we value to use in generatirig; for a wiki page (Section 4.2).
inserted a new record for value “UW”. We s&tartandstop To track the source of each data item, we further extend a
of the new record to “2007-05-27 09:50:10” and “9999-12- temporal tablel” by appending a columwho, which stores

31 23:59:59", respectively, denoting that “UW” would be the the ID of the user who entered that item. The resulting table
current value from 2007-05-27 09:50:10 on. The temporal 7" is defined ag" (id, value, start, stop, who). Note that
table after the modification is shown in Figure 5.b. the primary key does not change, since we only allow one

value of each attribute to be current at any time, regardiess
by whom.

Among all users, machin@/ is a special one. It au-

Ri,..

Formally, letG, and G4 be the schema and the data of
Let £y,..., E, be the set of entity types it,, and
., R, be the set of relation types id;. Suppose for

tomatically extracts and integrates data from a set of datasimplicity that each relation type is binary. We create thle f
sources. Thus it supplies data into the database much moréwing relational tables to stor@:

frequently than any particular human user. On the other
hand, M’s data suffers from inaccuracies due to the capac-
ity of the extraction and integration methogi uses. Con-
sequently,M’s data has lower credibility than other users’
data. Therefore, we need to distinguish from the rest
of users. As a solution, for each attribute we create
two temporal tablesA_m(id, value, start, stop, who)* and
A_u(id, value, start, stop, who). TableA_m stores attribute
values entered by/, and tabled_u stores values entered by
human users.

An attribute may have different values in tablésn and
A_u. To decide which value to use in generatirig we need
to resolve conflicts between the two tables. As a solution,
we define a view tablel_p over A_m and A_u. Table A_p
has the same schema.4sn and A_u, and it stores the [[ne-
gotiated]] value of each attribute. Tabfep is updated when
A_m or A_uis updated. Thus we can embed in its update pro-
cedure how we resolve conflicts in attribute values. Specif-
ically, when an attribute: is updated in either ofi_m and
A_u, we first check whethed is already inA_p. If not, we
simply inserta with its value intoA_p. (Values forstart,
stopandwhoare assigned accordingly.) Otherwise, we need
to decide whether we should overwrii&s value in A_p. A
reasonable approach is to allow a ugeto overwrite data
entered byM or another user. We also alloW to overwrite
its own data, but only allow it to overwrité’s data in certain
situations, for example, whel is sufficiently confident in

e An entity ID table Entity_I D(id, ename), whereid
andename store the ID and the type of an entity.

e For each entity typeF/, we create a special attribute
exists whose value can be either 1 or 0. Denete
istsas Ag. Let Aq,..., A, be the attributes oF in
G,. For each attributed € {Ay,..., A}, we create
three temporal tablesi_m, A_u and A_p. Each table
T € {A_m, A_u, A_p} is defined as follows:

T (id, value, start, stop, who),

whereid is the ID of an entity, andalueis the value
of attribute A of that entity. Timestampstart andstop
specifies a time period during which the value was cur-
rent. And finally,who gives the ID of the user who en-
tered that value.

e For each relation typ&, we create a relation ID table
R_ID. Let F; and E5 be the two entity types thak
relates inG, table R_I D is defined as follows:

R_ID(id, eidl, eid2),

whereid is the ID of a relation, andid1 andeid2 are
the IDs of the two related entities. Similar to converting
an entity type, we first create attributgistsfor R, then
create tablesi_m, A_u and A_p for attributeexistsand
each attribute of? in G,.

A user may create an entity type (same for a relation type and
an attribute), delete an entity type, or reinstate a deleneity
type. To enrich catalog data with temporal information, we
also create three meta tables:

e Table meta_entity(ename, start, stop, who), which
stores the names of the entity types that have been cre-
ated. Attributesstart, stop and who (same for those
attributes in tablesneta_relation andmeta_attribute
below) have the same semantics as they do in an attribute
table.

e Tablemeta_relation(rname, enamel, ename2, start,
stop, who), which stores the names of the relation types
that have been created. For each relation tifpehe
table also store the names of the two entity types ihat
relates.

its data.

An example of A.m, A.u and A_p for table per-
sonorganizationis shown in Figures 6. For simplicity of
illustration, we assume that a usér can overwrite ma-
chine M’s data butM cannot overwritel’s data. Based
on this assumption, when uséf, entered value “UW-
Madison” for personl, we first inserted the value into ta-
ble personorganizationu, then logically updated the exist-
ing value “UW” in tablepersonorganizationp. Value “UW”
was entered by/ and thus we overwrote it with’y’s value.

In contrast, wher\/ entered “MITRE” for person3 intper-
sonorganizationm, we did not update value “Purdue” in
personorganizationp since “Purdue” was entered by a hu-
man user.

Finally, tableA_p can be explicitly stored in the database

or computed as needed. In our design, we chose to material- ® Tablemeta_attribute(tname, aname, category, type,
ize A_p for efficiency. start, stop, who), which stores the name of each at-

A Complete Solution: With all the problems addressed, we tribute @nam¢ that each entity or relation typename

now present a complete solution to storidgn an RDBMS. has. Eor each attribute, the table also gives Its categ_ory
(atomic or set-valued) and data type (string or numeric)

specifications irtategoryandtype respectively.

1In an A_m table, who =“M" since M is the only machine involved.
We keeps attributayho in the table so that our design is easily extensible to

multiple machines. Examples of the meta tables are shown in Figure 7.

person_organization_m

id value start stop who
1 | UW-Madison | 2007-04-01 08:01:20 9999-12-31 23:59:59 M person_organization_p
3 MITRE | 2007-05-20 16:20:30 9999-12-31 23:59:5 M id value start Stop who
(a) 1 | UW-Madison | 2007-04-01 08:01:20 2007-05-27 09:50:10 M
person_organization_u I:> 3 Purdue 2007-05-02 11:40:35 9999-12-31 23:59:59 U,
id value start stop who 1 Uw 2007-05-27 09:50:1(0 9999-12-31 23:59:59 U,
3 Purdue 2007-05-02 11:40:3§ 9999-12-31 23:59:59 U, (c)
1 Uw 2007-05-27 09:50:10 9999-12-31 23:59:59 U,
(b)
Figure 6. An example of attribute tables farganizationof entity typeperson (a) A-m, (b) A_u, and (c)A_p.
meta_entity meta_relation
ename start stop who rname | enamel| ename2 start | stop who
person | 2007-03-12 05:10:009999-12-31 23:59:59 M interests person topic 2007-03-12 05:10:30 9999-12-31 23:59:59 M
pub 2007-03-12 05:10:109999-12-31 23:59:59 M write-pub person pub 2007-03-12 05:10:40 9999-12-31 23:59:59 M
topic | 2007-03-12 05:10:209999-12-31 23:59:59 M advise person person | 2007-05-24 16:04:27 9999-12-31 23:59:59 U,
@ (b)
meta_attribute
tname aname | category| type start stop who
person title atomic |CHAR(100) 2007-03-12 05:10:50 9999-12-31 23:59:59 M
person age atomic INT 2007-04-18 12:40:19 2007-06-10 10:30:2% U,
person age NULL NULL 2007-06-10 10:30:2% 9999-12-31 23:59:59 U,
(c)
Figure 7. Examples of meta tables: (&)eta_entity, (b) meta_relation, and (Cymeta_attribute.
4.1.3 |Initializing G the raw data sources.

To initialize G, we employ a machine-based solutids.
Many such solutions exist [14]. Currently we use tien-

ple solution which is described in detail in [14]. The solution
works in two steps: (1) creating an entity-relationship JER

graph, and (2) importing the ER graph into datab@se

Creating an Entity-Relationship Graph:

First, a com-

munity expert provide€imple with a set of relevant data
source. Use the community of database researchers as ap o Creating Views over Database G
example. Data sources can be home pages of database re-
searchers, DBLP, conference pages, etc.. The expect als¥iew Language Requirements: To create views ove, we

provides domain knowledge about entities and relations of must define a view language We now discuss the require-

interest. For examplgersonandconferencere two entity
types, and between them exists a relation type-talk

to create an ER graph of the community. Specificallyn-

DBLife is an example portal built using such a semi-
automatic solution.

Importing the ER Graph into Database G: Cimple stores
the ER graph in a set of XML files. To initialize database
we first converty into a set of relational tables, as described
in Section 4.1.2. Then we use an import module to bulk load
the XML data intoG.

ments forL. First, we note that a primary goal of community
portals is to describe interesting entities and relationthée
ThenCimple uses simple but focused automatic methods community. Toward this goal, we use each wiki pageto
describe an entity or a relation-. A popular way to describe
ple first crawls the sources at regular intervals to obtain dataan entitye, say, is to describe a “neighborhood” ©@bn the

pages, then marks up mentions of relevant entities. Exam-ER data grapky, e.g., all or most nodes within two hops from
ples of mentions include people names (e.g., “D. DeWitt”, e. Consequently, languagémust be such that we can easily
“David J. DeWitt"), conference names, and paper titles.tiNex write and modify views that describe such “neighborhoods”.
Cimple matches mentions and groups them into entities (e.g., Second, when a user requests a wiki pageve material-
mentions “D. DeWitt” and “David J. DeWitt” refer to the ize it on the fly, to ensure the page contain the latest updates
same person entitylCimple then discovers relations among This in turn requires materializing the viei underlyingl’

the entities. As a resul€imple creates an ER graph from (see Section 5.3). Consequentlynust be such that its views

can be materialized quickly, to ensure real-time user auter
tion.

Finally, when a uset/ edits a wiki pagdl’, we assume
thatU may also edit the schema of vieWw underlyingW,
e.g., by removing all papers frof¥, U may be modifying

paths. Hencel, allows us to quickly write views that cap-
ture such neighborhood, in an intuitive manner. Second; eva
uating schema paths amounts to performing selection opera-
tions overG. Hence, views irC,, can be materialized quickly.
Finally, if a user edits a view schema (using a wiki page),

Vs schema to exclude all papers (Section 5.1 discusses thishen such edits can be quickly mapped into a set of inclusive

assumption in depth). Hence, languagenust be such that

and exclusive schema paths, allowing us to modify the view

we can modify a view schema quickly, based on user edits, toschema quickly and easily (see [13] for an in-depth discus-

ensure real-time user editing.

A Path-based View Language: The above requirements
led us to design a path-based view langudge To define
L,, first we definedata and schema pathbituitively, adata
pathis a path on the ER graph that (a) starts with an entity
nodee; and ends at an entity nodg, and (b) retains only
certain attributes for each node/edge along the path.

A schema pattpy = epi.rps.eps..... rpn_1.ep, then
specifies a set of data paths, which start with nege fol-
low edgerps, etc., then end with nodep,,. To further con-
strain these data paths, we express eaglasT;(C;){4;},
meaning that (agp; must have typd’; and satisfy condition
C; (which is a conjunction of conditions over the attributes),
and (b) we keep only those attributesepf that appear im;
(which is a set of attribute namesJ; is required, bu{C;)
and{A;} are optional. A missing4;} means that we retain
all attributes. We express each; in an analogous fashion.

Example 4.1. The schema patherson(id = 1){name, title}
specifies a single data path that corresponds to personyewntth
id=1 and that contains only attributes name and title of tartity.
The schema path, person(id=1).give-tutorial.cordme, specifies
a set of data paths, each of which starts with a person nodeevitb
is 1, follows an edge give-tutorial, then ends with a confendebr
each path, we retain all attributes of person node and gitertal
edge, but retain only the name attribute of conf node.

We can now define ER views considered in this paper as fol-

lows:

Definition 1 (Path-based ER views)A path-based ER view (or
view for short when there is no ambiguity) has a schemd’; =
(In, Ex), whereIn and Ez are disjoint sets of schema paths over
G. EvaluatingV, over G yields the view datd’;. V; is a sub-
graph of G that contains only data paths that are (a) specified by
some path schema i and (b) not specified by some path schema
in Ex. We refer to schema paths im and Ex as inclusive and
exclusive paths, respectively.

Example 4.2. Figure 3.b shows a samplé that has two inclusive
paths and one exclusive path. This view schema selects ampers
with id = 1, retains name and title of, then selects all interests
of e except those named “Statistics”. Evaluating this view scae
over the ER graphG of Figure 3.a produces the view daig; in
Figure 3.c.

We now discuss how languagg, satisfies the require-
ments outlined earlier. First, most “neighborhoods” of an e
tity e (e.g., all nodes within two hops efon ER graphy)

sion).

Creating Views over ER GraphG: Now that we have de-
fined the view languagg,, we can discuss ho@wiki uses

L, to create views ove. First, Cwiki decides on the set of
entities and relations to be “wikified”. Currently, for siligp

ity we consider all entities, but no relations. Next, for leac
entity e of a particular type (e.g., persorgQwiki specifies a
default view schemd’; that specifies a “neighborhood” of

e. Cwiki thus specifies as many default view schemas as the
number of entity types to be “wikified”. These default view
schemas are application specific. The data of the views is not
stored, but will be materialized on the fly, when creating and
refreshing wiki pages, which we discuss next.

4.3 Converting Views to Wiki Pages

Given a viewV with schemal/; and datal/; as defined
above, we now discuss convertifg into a wiki pageW.
In the following, we introduce our novel s-slot solution. We
also discuss some other non-trivial design issues, sudieas t
ordering of entities, the formation of URLs and the use of
schema pages.

A Spectrum of Solutions: Since most current wiki data
(e.g., Wikipedia) is natural text, the straightforwardwgimn

is to convertl; into a set of natural-language sentences. For
example, supposk; specifies that persal works for orga-
nizationY'. Then we can convert this into sentencé Works

for Y in wiki page . Knowing this template, if a user later
modifies the sentence to b&“works forY””, we can still
parse it back, realize that has been modified to B¢’, then
update the underlying databaSeaccordingly.

This was indeed the first solution we tried. It is very easy
for users to edit natural-language wiki pages generated by
this solution. But after extensive experiments, we fourad th
it is difficult to extract and update structured data. The set
of templates that we can use in natural language settings is
somewhat limited; hence, they get reused in multiple con-
texts, causing many ambiguities for the extractor. Further
more, supposé&’ has been updated so thstis now working
for Y’. To updatdV with this information, we must be able
to pinpoint the location o¥". This is equivalent to being able
to extracty’, a difficult task, as discussed earlier.

For these reasons, we wanted a solution witasetrivial
to pinpoint pieces of structured datontributed byl;. A
wiki page then contains multiple “islands” of structuredala
from V, in a “sea” of natural text contributed by users. We

can be expressed with a set of inclusive and exclusive dataefer to these “islands” as-slots(shorthand forstructured

slof). Below we describe this-slot solution In Section 7 we Input: ~ View data graptV/; describing entitye.
discuss how the natural-language and s-slot solutiong lie a | ©“P't \Wikipagew”

two ends of a spectrum of solutions that trade off (a) ease of
user edit, (b) ease of extracting and updating structuréa da
and (c) ease of moving data around on wiki pages.

The S-Slot Solution: We first define the notion of at-

tribute path. Recall that a schema pathhas the form
Ti(C1){A} T,.(Cn){A,}. We say thap is anattribute

1. initialize W' to be empty;

2. make title ofi¥ the s-slot corresponding to the name attribute;of
3. create a sectiofi in W for the attributes oé;

4. FOR each selected attribute typ®f e other than name ifv; DO

5. insert the s-slot correspondingdadnto S;

6. FOR each relationship typeof e in V; DO

7. create a sectioff,. in W for r;

8. identify a setP of data paths fronV; corresponding to-;

pathiff A; — A,,_, are empty sets and,, identifies a single 9. IF P is sortable THEN sorP:
attributea. Thus,p uniquely identifies attribute. Examples 10. FOR each edg, f) corresponding to an instanceDO
of attribute paths argerson(id = 1){title} and 1. createanitentin S; '
12. identify a subseP; C P of paths that sharge, f);
person(id = 1),Write-puliid = 5).pub(id = 14){name}. 13. insert intol the s-slots corresponding to all selected attributeRjin

An s-slots then has the formc# p = v #>, which specifies _
that the attributes uniquely identified by the attribute path Figure 8. Generating wiki pagé” from view dataVy

takes value). An example of wiki text including an s-slot is o))
page. Next, it displays the attributes @fthen the relation-

<# person(i d=1){name}=Davi d DeWtt #> works for ships. Figure 3.d shows how the data graptin Figure 3.c
jngzr ig%' d=1) . work-org. org(i d=13) { name} =Uw#> may have been displayed in a wiki page. In the following, we
’ explain the algorithmic details about how to generate a wiki

When a wiki page is rendered into an HTML page, only PageW fromaview data graphy.
the valuev of an s-slot< # p = v # > is presented The Algorithm Generating W from V;: The algorithm
while other parts, as meta data, are suppressed. Thus thpresented in Figure 8 generates a wiki p&igdrom a given
HTML presentation of the above example wiki text will dis- view data grapi/; for entity e. In line 1, W is initialized
play “David DeWitt works for UW since 1976". to be empty. In line 2, the s-slot corresponding to the name
An s-slot of<# p = v #> can be marked with a “nodis- attribute ofe is made title ofi¥. In lines 3-4, a section is
play” attribute as in<k # p = v nodisplay#>. In this case, created inl¥ for other selected attributes ef that provides
the whole s-slot will be suppressed and even the valwél the basic attributional information describiag In lines 5-
not be presented in the HTML page. Such s-slots are usefull3, a section is created It for each relationship type.
when the values are confidence scores used for entity order- Each section is labeled properly with a uniform default

ing, as to be discussed shortly. look. This can be done since in building an initial community
An s-slot of < # p = v # > can also be marked with portalV, the only participating user is the portal builder, for
an “invalid” attribute as in< # p = v invalid# >, indi- whom the semantics of each attribute type, entity type and
cating that the patl is broken and unsupported by the un- relationship type are transparent to him/her since he/stse w
derlying database, and thus, the validity of the valuex- the one who created the initial view schefria The selec-

pired. This situation is generally caused by deletion afestr tion of view V' delivers the builder’s intention and the look
tured data from other related wiki pages. When a page con-of the wiki page represents his/her preferences. For the sam
taining invalid structured data is requested, the “invadit reason, in line 7, the data pathslp for relationship type:
tributes will be added by machine for the corresponding s- can be extracted properly. Notice tHat itself does not em-
slots. <# p = v invalid#> will be presented in the HTML bed such information that how it should be decomposed and
page as #(invalid)”, reminding the user of the fact and leav- presented. Rather, the extraction mechanisms are hamticod
ing him/her the right to delete the s-slot or fix the brokerpat for each relationship section. For example, for the “writes

Now let V' be a view with schem&; that Cwiki has de- relationship, the paths of typperson.write-pub.pub.write-
fined over databas@ (see Section 4.2). The@wiki gener- ~ pub.persorstarting at entity: are extracted froni;.

ates the default wiki pagé” for V' in two steps: (a) evaluates In line 8, the extracted paths are possibly sorted if the or-
V, over G to obtain the view datd&/;, which is a subgraph dering information is provided in the paths. In lines 9—1®, t

of the ER graph®, then (b) converl/; into a wiki pagelv’ extracted paths are grouped such that each group correspond
using s-slots interleaved with English text. to a unique instance of the relationship typeThen, the s-

Step (a) is relatively straightforward. Step (b) can be ex- slots for the selected attributes of each group form an item
ecuted in many different ways. We currently adopt a de- and the item is inserted into the section.

fault solution. Suppose we know that vidw(and thus wiki The portal builder has every reason to capture the prefer-
pageW) describes entity, e.g., David DeWitt. Then our ences of the majority of users. The above hard-coded inter-
default solution first generates the lire #person(id = pretation mechanism translat&s into a default wiki page

1){name} = David DeWitt # > as the title of the wiki T, so that the initial community portahathw features

HTML pages with a uniform look that is easy to the eyes tity types respectively. Botleid andtitle are keys. When

of the majority of users. Latef)” would be edited by dif- a new entitye is inserted into the database, a default wiki
ferent individuals, and this default interpretation meatkm page will be created fo# and the mapping table is used to
will not be used in updating” by machine, in order nottoin- generate the page title. First, the entity ID«@fsay 15, is
tervene users’ intentions and interpretations. Insteldthe checked against existing ones in the mapping table. If no du-
fresh structured contents will be inserted into a specied se plicates, the name af say “David DeWitt”, is then checked
tion called “New”, from which users can pick up items and against existing page titles in the table. If no duplicalés,
move them around according to their own preferences. and “David DeWitt” will form a tuple and be inserted into

; . ; ; T the table. Otherwise, a concatenation of “DaiadWitt” and
Ordering of Entities: Handling the ordering of entities is a 15. i.e.. ‘DavidDeWitt15", will be used instead as the page

non-trivial design issue. In many cases, entities have @ nat title. Obviously. th titles th ted el
ral ordering depending on how much they relate to a commont'0 i‘e un\i’(';z;s y. the page titles thus-generated are gue

entity. For example, the related people of a person can be or-
dered by the closeness of their relationships to that personUse of Schema Page: As to be discussed if5.1, we
The related topics of a person can be ordered by the degree o#xpose view schemas in wiki pages to allow user editing.
interest and involvement of that person in those topics.’Asa Thus, a default schema pade; will be created for each
other obvious example, all the authors of a publication mustdefault wiki pageW. W, will have the same page ti-
be ordered by how they appear in the publication. To capturetle asW but under the namespace of “Schema”. For ex-

the ordering information, we assign each involving refatio ample, the URL for the schema page of the wiki page
ship a confidence score as attribute. of David DeWitt will be http://dblife-labs.cs.wisc.eduiki

In order for applicable entities to appear ordered in the t€St/index.php/Schema:DavizeWitt. ,
HTML page, the confidence score attribute needs to be se- Since all the default schema pages of the same type dif-
lected inV,. Then, the corresponding data paths/inwill feronly in en_tlty ID, they can be autom_an_cally gengr_ated an
present this ordering information and be ordered properly b bulk-loaded into the system when building the initial com-

the algorithm (line 9) convertink; to . The corresponding munity portgl. In particular, all the entities are first rﬁgied
s-slots int will be marked with “nodisplay” and thus those 1" the mapping table. Then, a default schema page is gener-

actual confidence score values will not be displayed in the @t€d for each tuple in the table according to the entity type
HTML page. This handling of entity ordering is not meant _stored_ in thg table._ Next, all these schema_l pages are written
to be systematic and sophisticated to cover arbitrary oxger " @ single file, which is then bulk-loaded into the database
needs; rather, it focuses on simplicity and adequacy ingerm SUPPOrting the wiki system, without utilizing the interéaof

of fulfilling the basic ordering functionality. the system. o _
])) The set of all wiki pages generated as above constitutes
Formation of URLs: ~ The formation of URLS raises ihe injtial community portalV. The next section discusses

another non-trivial design issue. For the HTML page how users can contribute to this portal.
specified by a URL of http://dblife-labs.cs.wisc.edu/wiki

test/index.php/DavideWitt, the corresponding wiki page 5 Managing User Contributions
will have a URL of http://dblife-labs.cs.wisc.edu/wiki-
test/index.php?title=DavifeWitt&action=edit. “David De-

Witt” is the page titlefor the HTML page as well as the wiki
page. As page title is the only replaceable elementin a URL,5.1 What Can Users Edit?

the formation of URLs comes down to the formation of page gnsider a usdl’ editing a wiki pageV. We allowU to

titles. edit both text and structured dataléf. Editing text is trivial.
Within the same namespace, each entitinust have a Editing structured data df meansl/ can modify or delete
unigue page title. A natural solution to achieve this unique s-slots, or insert new ones.
ness is to use entity ID’s as titles. However, such pagestitle |n modifying an s-slots =<#p = v#>, U can modify
are neither informative to users nor cooperative with dearc the attribute pathp as well as value, but is not allowed to
engines. Entity names seem to be the most informative;tities modify the formatting characters (e.g:#, =, and#>). If
however, they cannot guarantee the uniqueness since taultip {7 were to do so, then the parser would fail to recognize the
entities may share the same name. In our design, a mapping-siot, and hence would interpret the modified s-slot as text
table is maintained to map each entity ID to a unique pagenot structured data.
titte. In general cases, entity names are used as page titles | etV be the underlying view of’. Conceptually, editing
In cases a title is used by another entity, a concatenation ofstructured data of’ means editing one or a combination of
entity name and ID will be used. the following components: the data &f the schema of’,
In particular, we create a mapping table with three fields the data oi7, and the schema af (denotedVy, Vs, G4, G4,
eid, title, andtype storing entity ID’s, page titles and en- respectively).

In this section we discuss what users can edit and how to
process those edits.

In traditional settings such as RDBMS, ordinary users can | Basic ER Actions Va | Vs | Ga | Gs
only edit view data and thus also the underlying relational | 1: Modify attribute value v v
database data. This maps to editiigandG in our case. as: Insert an existing attribute | v | v | opt.
Should we also allow users to edif andG,? We decided to as: Insert a new attribute A A A 4
allow these actions, because there is often a natural need to | %4 Insert an existing entity v | v |opt
do so. For example, a usér may naturally want to modify a"’f Insert a new entity . U A 4
W so that it no longedisplaysemails. To do this{J must a6- Insert an eX'St'ng.relat'anh” Y |/ | opt
modify Vs. U cannot modifyV,; because this would mean ar. Insert & new rglatlonshlp YV v

. . . . ag: Delete an attribute v | v | opt. | opt.
removingcertain emails fronG, not the desired effect. As 207 Delete an entity 7 T [opt. | opt.
another example, a usér may naturally want to add to an a10: Delete a relationship 7 v T opt. | opt

entitye (described ifV) a new attribute: that has not existed
so far in the portal. To do thi€/ must modify bothG, and
Vs.

The next question then is: what is the best way to allow

users to modify; andGs? A possible option is to expose

these schemas in wiki pages, for users to edit. For example

we can expos¥; in a wiki pagelV,. Then wherlJ editsV/,
we interpret such edits as editing, and whenJ edits W,
we interpret such edits as editifg.

The above option would greatly reduce the ambiguity in
interpreting user edits. However, we decided against i, be
cause we found from experimentation that it is difficult for

ordinary, database-illiterataisers to remember this option.

In fact, users often are not even aware of the distinction be-
tween data and schema edits. Instead, they appear to prefer t

edit only the wiki pagdV, then rely onCwiki to assist them
in executing the right kind of edit actions.

For these reasons, we alldWwto edit only wiki pagelV,
then askU (in English) to clarify if he or she intends to edit

Table 2. Basic ER actions that we have defined.

Appendix A give their implementations. Abusing notation,
we will refer to these basic actions asasic relational ac-
tions to distinguish them from the basic ER actions that we
will introduce soon below.

Now givenV;, we must infer the sequence of basic rela-
tional actions that we believe usErintends to execute. To
do this in a manageable fashion, we introduce an intermediat
user interface: th&R interface This interface would display
an ER data graph (e.gl}y) in a graphical fashion, and al-
low users to execute a numberlmdsic ER actionssuch as
modifying a node or an edge, deleting a node, etc.

The first column of Table 2 lists the ten basic ER actions
we have defined. We have implemented each ER action as a
sequence of relational actions. For example, actipiisee
the table) translates into the sole relational action thadim
fies the value of an entity attribute (in bdith andG).

However, it turns out that an ER action can ém@bigu-

the data or the schema. In what follows we discuss this pro-g ;5 in that it can map into different sequences of relational

cess in detail.

5.2 Infer & Execute Structured Edits

Suppose usdr has edited wiki pag®” into W’. Then we
can parséV’ to extract a text portioff” and a structured data

portion D’. The text portion can immediately be stored in a
text databasé" (see Figure 2). The structured data portion

D’ consists of all s-slots ifV.

Next, we can merge all s-slots i’ together to obtain
an ER graph that we will refer to d3;. Given that each s-
slot maps uniquely into an attribute in the ER graphthe
merging process is relatively straightforward, and henitle w

actions, depending on the user intention, as the followiig e
ample illustrates:

Example 5.1. Suppose a usdy applies actiorus (see Table 2) to
delete an attributer of, say, a person entityin an ER graph, e.g.,
Va. ThenU may mean to delete from (a) Vs, i.e., do not display
z in viewV, or (b) G4, thus declaring that entity does not have
attribute z, or (¢) G5, thus declaring that attribute does not exist
for person (the entity type @j.

Since we do not know/’s intention, if U executes ac-
tion ag, then we first ask/ (in an English phrase) to choose
among options (a)-(c) in the above example. Next, we trans-

not be discussed further, for lack of space. Our problem nowlateas into the appropriate sequence of relational actions, de-

is: givenV;, infer what actions usdy intends to execute on
Vi, Vs, Gq, Gs, then execute those actions.

Basic Relational and ER Actions: To solve the above prob-
lem, we first define a set of basic actions thatan execute
over Vy, Vs, Gy, Gs. For example, basic actions dry in-
clude modifying the value of an entity or relation attribute
and deleting an entity. Basic actions Bhinclude inserting

pending orl/’s answer. For example, if chooses option (c),
then the sequence of relational actions is: deleteom V,
deletex from G, deletex from G..

For each ER action, Columns 2-5 of Table 2 shows which
componentsY(y, Vs, etc.) that the action may modify (“opt.”
means “optional”, depending on external conditions such as
user intentions).

a new entity and deleting an attribute of a relationship. We Mapping User Edits into Sequence of Basic Actions:
have implemented each basic action as a program over th&Vith the introduction of the ER interface, our problem can

temporal relational database that stogesThe complete sets
of basic actions oy, V;, G4 andG, are given in Table 1.

be recast as follows. When usgredits the structured data
portion of wiki pageW, we view it to be equivalent t&/

D

Actions on Vy Actions on V; Actions on G4 Actions on G
a1 | Modify an entity attribute value| Insert an entity attribute | Modify an entity attribute value| Create an entity attribute
a2 | Modify a relation attribute valug Insert a relation attribute| Modify a relation attribute valug Create a relation attribut
as | Insert an entity attribute Insert an entity Insert an entity attribute Create an entity type
as | Insert arelation attribute Insert a relation Insert a relation attribute Create a relation type
as | Insertan entity Delete an entity attribute| Insert an entity Drop an entity attribute
as | Insertarelation Delete a relation attribute Insert a relation Drop a relation attribute
a7 | Delete an entity attribute Delete an entity Delete an entity attribute Delete an entity type
ag | Delete a relation attribute Delete a relation Delete a relation attribute Delete a relation type
ag | Delete an entity Delete an entity
a0 | Delete arelation Delete a relation
Table 1. Basic relational actions oWy, Vs, G4 andGs.
Input: Data graphd/y andV;;. Vy=(E, R, A), VJ=(E', R/, A"), effect, as this theorem shows:
whereE, E’ are sets of entity instanceR, R’ are sets of
Output: rseé:tl'f;’r‘fcrg%;r‘éanggfo%”glq ff‘, are sets of attributes. Theorem 1. Let Sy, ..., S, be all sequences of basic ER actions

1. FOR each entity instaneec E’ — E DO
IF entity type exists THEN append, to Sg r;
ELSE appends to Sgr;
FOR each relationship instances R’ — R DO
IF relationship type exists THEN appead to Sk r;
ELSE append to Sgr;
FOR each attribute € A’ — A DO
IF attribute type exists THEN append to Sg Rr;
ELSE appends to Sgr;
. FOR each attribute € A — A’ DO
appendis t0 Sgr;
. FOR each relationship instances R — R’ DO
appendiio t0 SER;
. FOR each entity instaneec E — E’ DO
appendig t0 SR}
16. FOR each attribute € A N A’ DO
17. IF it has the same value Irj; andVé THEN appendu; t0 SER;
18. ReturnSgr;

© NG

Figure 9. GeneratingSg r from V; andV;

editing the ER grapl; in the ER interface, using basic ER
actions. We do not know what basic ER actiégh&xecutes.
But we do know the end result, which is the ER grafjhas
described earlier.

Thus, in this perspectivé] has executed a sequerger
of basic ER actions on the original ER gralgh transform-
ing it into a new ER grapl¥;. Our task then is to “reverse
engineerSggr, by comparing/; with V7, then execut€gr.
Figure 9 shows the pseudo code of our current algorithm to
reverse engine&gp.

To “push” the structured edits @f into the databasé,
we then execute the actions8fr sequentially. Recall that

that transform aV; into a V;. Then when executing ars;, the
set of questions we pose to ugémwill be the same for ali. If U
gives the same answers to these questions, then executing ,an
i € [1, k], results in the sam&y, V,, G4 andGs.

5.3 Propagate Structured Edits

Let W, and W5, be two wiki pages that describe two re-
searchersl and B, respectively. Supposé and B share one
publicationp. Sop appearsin both’; andW,. Now suppose
that a usel/ has edite in W;. When should we update
in W5? In general, once a user has edited the structured data
portion of a wiki pagdV, how should we propagate this edit
to other pages?

A solution is to immediately refresh other pages, e.g., page
W5 in the above example. We call thésager propagation
This solution ensures timely updates of pages, but can raise
tricky concurrency control issues. Hence, we currentlypado
alazy propagatiorapproach, where we refresh a page, say
Wa, only when a user requests the page again. At that mo-
ment, we rematerialize the page from the structured dagabas
G and the text databage Section 7 empirically shows that
we can refresh pages on the fly quickly, in a few seconds, thus
making this lazy approach a practical solution.

6 Managing Multiple Users and Machine

While not a contribution of this paper, for completeness
we will briefly touch on the key problems of managing mul-
tiple users and machines as they contribute to the porta. Th
full paper [13] discusses these problems and our proposed
solutions in detail.

each such action is a basic ER action (see Table 2), which First, we must manage concurrent editing of a wiki page
can be ambiguous. If this happens, recall also that we resolv by multiple users, or concurrent editing of some structured
the problem by asking uséf a disambiguating question. We data pieces (e.g., a paper) that appear in multiple wiki
then execute each basic ER action by executing the sequendeages. Currently we employ the optimistic concurrency con-
of relational actions that it maps to, as described earlier. trol scheme of Wikipedia for this purpose.

A minor problem is thaSz is not unique. Given any two Next, we must detect and remove malicious users. To do
Vy andV, multiple sequences of actios;r may exist that this, we currently employ a hierarchy of users, reminiscent
all transformV; into V. Fortunately they all have the same to the Wikipedia solution for the same problem. Specifically

14.0

we require users log in to edit, and employ a set of editors

. . - . . E 12.0 ‘ —e— Page reque ‘ -

whose job is to monitor most active wiki pages. £ 00 o~ v

Finally, if a userU has modified a data iteti¥, can ma- g °°] P
chine M overwriteU’s modification, and if so, then when? & 4o "
Our current solution allows/ to overwriteU’s data only for g 20 ,/./'/'/ L
certain pre-specified data types (e.g., certain attribnftpsr- 10 50 100 150 200 250 300 350 400 450 500 S50 600 650 700 750
son), if M is sufficiently confident in its data. For all other A Gt
data types, we do not allow to overwriteU’s modification, i [B Page size dswbutc |
but allow it to add a suggestion next&ds modifications, in 2 50.0%)
parentheses, e.g., “age is 45 (accordingfpage is 47)". E;‘ggj
7 Empirical Evaluation Sloon -

To evaluateCwiki, we have been applylng it to build a o 10 20 30 , 40 ‘_ 50 100 200 300 400
community wikipedia for the database community (see [1] Peoe sy O

for the current portal, still under continuous developrent
We now report on preliminary experiments with this portal,
which demonstrate the potentials Gfviki and suggest re-
search opportunities.

Figure 10. Time to request a wiki page and distribution of
page size.

o -) # of s-slots = 52 time in sec
Building an Initial Community Portal: ~ We began by em- [Type of edits | 5 edits | 10 edits | 15 edits | 20 edits | 25 edits

ploying DBLife as machineM (see Section 4). It took a [modification 0258 | 0266 | 0275 | 0283 [0.291
two-person team four weeks to devepLife from scratch. insertion 1041 [1314 | 1583 | 1826 | 2115
DBLife was first deployed on May of 2005, and has been Ld¢letion 1012) 1022 | 1253 | 1363 | 1483
on “auto pilot” since, requiring only about one hour of [fofsslots=196 timeinsec i : :
maintenance per month (for more details, see [14]). Each Ty‘(’i‘ff"f edits Sleldg'gs 1(1) gggs lf ;‘;’lts 2(1] ;2'7“ z? ;‘61'6“
day DBLife crawls 10,000+ database research related dat E(S)erlﬁfsmn o T 2214 T 2436 T 2662 | 2355
sources, extracts and integrates the data, to generatéya dai|gererion 1615 | 1633 | 1.649 | 1665 | 1.681
ER data graph.

We used one such daily ER data grapi{98M of XML
data) to initialize the structured datab&seG's schema has
five entities and nine relationships, ald#s data contains

164,043 entity instances and 558,260 relation instanoces, f currently examining how to modify the temporal desigrbf

a total Size of 413M. This size is greater than the ER datato efficiently accommodate frequent changes in uncertainty
graph size of 98M due to the extra space needed to store tem;

poral information. It took 216 seconds to loddnto G, and scores.] o
183 minutes to generate and store all wiki pages (164,043EXpressive Power of the S-Slot Wiki Language: In the
pages for entities). These results suggest that we carecreatCUTentDBLife system (seeiblife.cs.wisc.edu) each user
moderate-size initial portals (a one-time task) with rie&dy superhomepage is a structured vigover the underlying
little efforts. structured database. We found that the s-slot wiki language
Next, we wanted to know if the initial portal can be main- (Section 4.3) was sufficiently powerful to enable us to espre
tained efficiently, assuming no user contributions yet. We &l Structured data pieces in such views in wiki pages, excep
found that over 10 days, @3BLife contributed data to the WO types of data pieces: tdpand aggregate. A top-data
structured databasé€, G's size increased from 413M to Pieceis technically a view that lists the tbjitems of a ranked
600M. This was somewhat surprising, becaD®t ife data /ISt ©-9., the top three authors, cited papers, etc. Aneggge
should not have changed so much over 10 days. Upon a closef@t@ Piece is an aggregate view such as the total number of
inspection, we found that the confidence scores of most relaPaPers per author, or the total number of citations. _
tion instances inG (e.g., personX is related to persoi” We found that topt and aggregate views also appear in
with score .8) were changed BBLife everyday, due to the ~Many othgr_ community pqrtals. Thus, any future attempt to
changing raw data (retrieved IBBLife). Hence, the confi- extend wiki languages with s_tructured constructs must ad-
dence scores of most relation instanceGiwere updated ~ dress the problem of expressing such views. The challenge
everyday, leading to a rapid growth d#s size (recall that then is how to efficiently update such views.
is a temporal database that does not allow update in placeEfficiencies of User Interaction: Inthe next step, we exam-
hence changes are addedd» Once we disallowed updat- ined how fast users can interact with the portal. Figure 10.a
ing confidence scores, théhgrew very slowly (by less than shows the time it takes from when a user requests a page
5M). Thus, this experiment suggests that the currentdedign W until whenW is served. Note that to ensure freshness,

Figure 11. Time to process user edits on a wiki page.

G is efficient for maintaining all aspects of the initial pdrta
over time, except for confidence/uncertainty scores. We are

Editing tasks Time (sec) | Accuracy Inserting a data path generally involves adding several en-
editing a sentence of free text 13.2(10-21) | 100% tities and relationships to the database. Users need to type
modifying a data path 164(10-30) | 100% a complete legal path. Inserting two bonded data paths is a
inserting a data path 52 (30~60) 100% . .

inserting two bonded data paths 55 (30~85) 100% bit more comple_x since users ne_ed to make sure that several
inserting a paragraph of data paths 152 (60~240) | 100% entities (or relationships) are assigned the same id. tinger
deleting data paths 36.6 (15~60) | 100% a paragraph of data paths is probably the most complex task

Figure 12. User performance on several editing tasks. that generally involves multiple bonded data paths. Specifi

cally, the users were asked to add a publication with a title,
an ordered author list, and the conference, year, page,iand c
tation information. The results show that the editing tirme i
very reasonable considering the high complexity of the.task

we materialize/ on the fly, from the underlying structured
database and text databas€ (Section 5.3). Hence, it is
critical that such materialization can be done quickly, ite e
sure real-time user interaction. Deletion of data paths would generate some ambiguities
The results show that request time increases linearly. w.r.t since the user may mean to delete the structured data from the
page size, measured in the number of s-slots in the page, andnderlying database or just from the wiki page. Thus after
stays small, e.g., under 2 seconds for page sizes up to 15ahe user clicks the submit button, several questions may be
Figure 10.b shows that the vast majority of current pages hav presented as radio buttons to clear the possible ambiguitie
a size under 50 (the first five bars of the figure), and thus incurDeleting a single data path or many data paths would take
under 1 second request time. This result suggests that weimilar amount of time from the editing point of view. The
can materialize wiki pages quickly, and that the lazy update only difference is the number of questions to ask.

appr-oach (Sect|o.n 5.3) can V\.IOI’k We',l In practice. This experiment is strictly preliminary. But it does sug-
Since processing user edits requires us to translate thesgeg; that the current solutions may already be adequate in th

edits across different user interfaces and then to invoke th sense that users are able to correctly execute the variitus ed
underlying relational database, we wanted to know if it can ing tasks within a reasonable amount of time.

be done efficiently. Figure 11 shows the time it takes from

when a user submits his/her edits until when the edits have The experiment also suggests that it may be even easier
been processed, i.e., updatesianVy, G, Gq, if any, have for users to edit if we introduce some macro that hide the de-

been carried out. This time does not include the time usersta“S of the structured data and make the structured daks loo

spent answering disambiguating questions (Section 5i®. T Very clean. This point was confirmed by the users’ qualita-
top table of the figure shows edit times over a wiki page with tive feedback on how convenient it is to use the system. On a

52 s-slots (each time is averaged over 10 runs). Here eaci$cale of 1 (least convenient) to 5 (most convenient), the cur
edit is a user action that affects a single s-slot. rent system scored an average of 2.5. A typical comment is

The bottom table of the figure shows similar edit times, but that while the system is easy to learn and functioning well, i
over a wiki page with 196 s-slots. In both cases, the results!S verbose. These comments meet our expectations since our
show that the edit times remain small, under 2.2 seconds ford0@! for the current version focuses almost exclusivelynen t

the small wiki page and 2.9 seconds for the large wiki page. 2d€guacy instead of convenience.
This suggests tha&wiki can process user edits efﬁCientIy. In generaL as commented in Section 4.3, a lesson we

Ease of User Interaction: Next, we evaluated how easy learned from our curren®wiki experience is that there is a

it is for users to edit structured data in a wiki page We spectrum of solutions on how structured data can be repre-
conducted a preliminary experiment with 6 users, where eachsented in wiki pages. Our s-slot solution represents one-spe
user was asked to edit a certain item on the HTML represen-trum end and the natural-language solution (see Sectign 4.3
tation of . To do so, they had to go 10, locate and then the other. In between we can have solutions that presemt stru
edit the appropriate piece of structured data. We measuredured data using, e.g., XML formats (in wiki pages).

how long it took them to finish the given_ editing tasks andthe ¢ key tradeoff factors for these solutions include (a) how

correctness of thg results. For comparison purposes, we alseasy it is for users to edit, (b) how easy it is for machines to

asked users to edit some free text. re-extract structured data, and (c) how easy it is for users t
Figure 12 shows that 100% correctness was achieved formove various pieces of structured data around, i.e., negera

all the editing tasks. Editing time is measured from when the them in the wiki page.

edit button is clicked until when the new HTML page is ren-)

dered. Figure 12 shows the average and range of recorded 1he S-slot solution appears best for (b) and (c), and so-so

editing time over all the users. The results show that the for (8)- The natural-language solution is best for (a), sfes

simplest structured data editing task, modifying a data pat (¢), and difficult for (b). An XML-like solution appears best

(modifying an attribute), took comparable time to editing a for (&) and (b), but so-so for (c). Developing more solutions
sentence of free text. evaluating them, and selecting a good one is an interesting

future research direction.

8 Conclusions & Future Work [13] P. DeRose, X. Chai, B. J. Gao, W. Shen, A. Doan,

We have describe@wiki, an approach that employs both P. _Bor_\an.non, and). Zhu. Bundmg_ community
wikipedias: A machine-human partnership approach.

“machines” and human users to build structured community hitp://pages.cs.wisc.edu/ xchailcwiki.ppo07

portals. This new hybrid machine-human approach can bring[14] P. DeRose, W. Shen, F. Chen. A. Doan, and R. Ramakrishnan
significant benefits. It can achieve broader and deeper-cover

age, provide more incentives for users to contribute, aeg ke

Building structured web community portals: The case for an
incremental and compositional approachVIoDB-07.

the portal more up to date, with less user efforts. We have[15] A. Doan, P. Bohannon, R. Ramakrishnan, X. Chai, P. DeRos

appliedCwiki to build a “wikipedia” portal for the database
community [1]. We reported on our experience with this por-
tal that demonstrates the potentials @fviki and suggests
many research opportunities.

B. Gao, and W. Shen. User-centric research challenges in com
munity information management systemiEEE Data Engi-
neering Bulletin, Special Issue on Data Management in $ocia
Networks 2007.

Indeed, it is clear that our work here has only scratched[16] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee,

the surface of this direction (of combining “machines” and
human to build structured wikipedias). Virtually any prob-

lem that we have discussed can be “drilled down” deeper.

Example problems include: (a) extending the s-slot wiki lan
guage to handle top-and aggregate views and studying up-
dating for such views, (b) developing “macros” that hide the
low-level structured constructs to allow users to editaiert

structured data pieces more efficiently, (c) developing effi
cient eager-update-propagation schemes, (d) develoging b

R. McCann, M. Sayyadian, and W. Shen. Community infor-
mation managementEEE Data Engineering Bulletin, Special
Issue on Probabilistic Database29(1), 2006.

[17] C. Giles, K. Bollacker, and S. Lawrence. Citeseer: Atoau
matic citation indexing system. IDL-98.

[18] H. Gregersen and C. S. Jensen. Temporal entity-relsttip
models - a survey. Knowledge and Data Engineering
11(3):464—-497, 1999.

[19] V. Li, H. Yang, and H. V. Jagadish. Constructing a geceri
natural language interface for an xml databaseeMBT-06

ter solutions to handle machine updates to data already modf20] R. McCann, A. Kramnik, W. Shen, V. Varadarajan, O. Sebul

ified by users, and (e) learning how to leverage user edits to

improve the extraction and integration accuracy of machine

In addition, we will continue to develop the structured
wikipedia for the database community [1], as a real-world
application that we can use to evalu@wiki. Finally, we
plan to release th€wiki source code to encourage further
development and evaluation of community wikipedias in ad-
ditional domains.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]

http://dblife-labs.cs.wisc.edu/wiki-test/indekmainpage.
http://en.wikipedia.org/.
http://en.wikipedia.org/wiki/semantiwiki.
http://metaweb.com/.

http://oak.cs.ucla.edu/blogocenter.

http://rexa.info/.

Sixth international workshop on information integation the

web. 2007.

S. Amer-Yahia. A database solution to search 2\@bDB-07

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Nalu

language interfaces to databases—an introductitournal of

Language Engineerind.(1):29-81, 1995.

[10] F. Bancilhon and N. Spyratos. Update semantics oficelat
views. ACM Transactions on Database Systefi{d):557-575,
1981.

[11] N. Bansal and N. Koudas. Blogscope: Spatio-temporalyan
sis of the blogosphere. WWW-07

[12] U. Dayal and P. A. Bernstein. On the correct translatién

update operations on relational viewACM Transactions on
Database System3(3):381-416, 1982.

(8]
(9]

and A. Doan. Integrating data from disparate sources: A mass
collaboration approach. MCDE-05

[21] Z. Nie, J. Wen, and W. Ma. Object-level vertical seardh.
CIDR-07.

[22] R. Ramakrishnan. Community systems: The world online.
CIDR-07

[23] R. T. SnodgrassDeveloping Time-Oriented Database Appli-
cations in SQL Morgan Kaufmann Publishers, Inc., 1999.

[24] M. \olkel, M. Krotzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic wikipedia. WWW-06

[25] F. Wang, C. Rabsch, P. Kling, P. Liu, and P. John. Welebas
collaborative information integration for scientific raseh. In
ICDE-07.

Appendix

A Implementing Basic Relational Actions

We define a set of basic relational actions that a user can
execute ovely, V;, G4 andG,. There are 10 actions faf;,
8 for V5, 10 for G4, and 8 forGs. In the following, we give
our implementation of each action. To distinguish actions
in different categories, we prefix each action by its catggor
name. For example, we denote actigrfor V; asVj::a;.

A.1 Actions for V;

Action a;: Modify an Entity Attribute Value
Steps:
1. Executeiy:iaq.

Action as: Modify a Relation Attribute Value
Steps:
1. Executedy::as.

Action as: Insert an Entity Attribute

Leteid be the entity ID and” be the entity type. Lefl be
the attribute to insert.
Steps:

1. Execute+,::as;

2. Add an inclusive patl (id = eid){A} to V.

Action a4: Insert a Relation Attribute

Let rid be the relation ID and? be the relation type. Let

A be the attribute to insert.
Steps:
1. ExecuteG4::aq;
2. Add an inclusive patti(id = rid){A} to V.

Action as: Insert a New Entity

Let e be the entity to insert an# be its type.
Steps:

1. ExecuteG4::as, leteid be the ID ofe;

2. Add an inclusive patli (id = eid) to Vs.

Action ag: Insert a New Relation

Let r be the relation to insert anl be its type. Lekid,
andeids be the IDs of the two entities thatrelates, and®;
andE be their types.
Steps:

1. Execute5 4 a6, letrid be the ID ofr;

2. Add an inclusive patll; (id = eidy).R(id = rid).E2(id =

e’idQ) toVs.

Action a7: Delete an Entity Attribute

Let eid be the ID of the entity and’ be its type. LetA be
the attribute to delete.
Steps:

1. Execute&,::a7;

2. Add an exclusive patl(id = eid){ A} to V..

Action ag: Delete a Relation Attribute

Let rid be the ID of the relation an® be its type. LetA
be the attribute to delete.
Steps:

1. Execute7,::as;

2. Add an exclusive patR(id = rid){A} to V.

Action ag: Delete an Entity
Let e be the entity to delete. Letid bee’'s ID and E be
e’s type.
Steps:
1. FOR each relation that relate DO
ExecuteVy::aio;
2. FOR each attributd (includingexistg of e DO
ExecuteVy::a7;
3. Add an exclusive patl(id = eid) to Vs.

Action a;g: Delete a Relation

Letr be the relation to delete. Letd ber’s ID and R be
r’s type. Leteid; andeids be the IDs of the entities that
relates, andv; andF» be their types.

Steps:
1. FOR each attributd (includingexist3 of » DO
ExecuteVy::as;
2. Add an exclusive patt (id = eid1).R(id = rid).E2(id =
6id2) to Vs.

A.2 Actions for V,

Action ay: Insert an Entity Attribute

Let eid be the ID of the entity and be its type. LetA be
the attribute to insert.
Steps:

1. Add an inclusive patlt’(id = eid){A} to Vs.

Action as: Insert a Relation Attribute

Let rid be the ID of the relation an& be its type. LetA
be the attribute to insert.
Steps:

1. Add an inclusive pattR(id = rid){A} to V.

Action as: Insert an Entity

Let eid be the ID of the entity and’ be its type.
Steps:

1. Add an inclusive patlt (id = eid) to Vs.

Action a4: Insert a Relation
Letr be the relation to insert. Letd ber’s ID and R be
r’s type. Leteid; andeidy be the IDs of the entities that
relates, andv; andE» be their types.
Steps:
1. Add an inclusive pattl; (id = eid,).R(id = rid).E2(id =
6id2) to Vs.

Action a5: Delete an Entity Attribute

Let eid be the ID of the entity and’ be its type. LetA be
the attribute to delete.
Steps:

1. Add an exclusive pat'(id = eid){A} to V.

Action ag: Delete a Relation Attribute

Let rid be the ID of the relation an® be its type. LetA
be the attribute to delete.
Steps:

1. Add an exclusive patR(id = rid){A} to V.

Action a7: Delete an Entity
Let e be the entity to delete. Letid bee’s ID and E be
e’s type.
Steps:
1. FOR each relation that relateg DO
ExecuteV;::as;
2. FOR each attributd (includingexist9 of e DO
ExecuteV;::as;
3. Add an exclusive patl'(id = eid) to V.

Action ag: Delete a Relation

Letr be the relation to insert. Letd ber’s ID and R be
r’s type. Leteid; andeids be the IDs of the entities that
relates, andv; andF»; be their types.

Steps:
1. FOR each attributd (includingexist3 of » DO
ExecuteVs::ag;

2. Add an exclusive path; (id = eid:1).R(id = rid).E2(id =

6id2) to Vs.

A.3 Actions for Gy

We use the following notations to represent table§'in
E_A_m —table for attributed of entity typeF that stores
attribute values entered by machihg&

E_A_u —table for attributed of entity typeFE that stores
attribute values entered by human users;

E_A_p —table for attributed of entity typeFE that stores
attribute values used in generativig

R_A-m, R_A_u, R_A_p— similar to those above but for
relation typeR instead;

R_ID —relation ID table for relation typ&.

Action a;: Modify an Entity Attribute Value

Let F be the type of the entity and be the attribute. Let

w be the ID of the user who modifies.
Steps:
1. IFw = M THEN
Logically delete the current value afin E_A_m;
Insert the new value oft into E_A_m;
ELSE
Logically delete the current value afin £_A _u;
Insert the new value ofl into £_A_u;
2. IF the current value ifiy_A_p was entered by/
ORw !'= M THEN
Logically delete the current value ¢f in E_A_p;
Insert the new value ofl into E_A_p;

Action as: Modify a Relation Attribute Value

Let R be the type of the relation and be the attribute.

Letw be the ID of the user who modifies.
Steps:
1. IFw = M THEN
Logically delete the current value of in R_A_m;
Insert the new value ofl into R_A_m;
ELSE
Logically delete the current value &f in R_A_u;
Insert the new value ofl into R_A_u;
2. IF the current value if_A_p was entered by/
ORw !'= M THEN
Logically delete the current value ef in R_A_p;
Insert the new value ofl into R_A_p;

Action as: Insert an Entity Attribute
Let eid be the ID of the entity and’ be its type. LetA be
the attribute anav be the ID of the user who inserts
Steps:
1. IFw = M THEN
IF exists a record withid = eid

AND stop="9999-12-31 23:59:59” inE_A_m THEN
Logically delete the record;
Insert the new value oft into E_A_m;
ELSE
IF exists a record withd = eid
AND stop="9999-12-31 23:59:59” inF_A_m THEN
Logically delete the record;
Insert the new value ofl into £_A _u;
2. IF exists a record withd = eid
AND stop="9999-12-31 23:59:59" i _A_p THEN
IF the record was entered By OR w! = M THEN
Logically delete the record;
Insert the new value ofl into E_A _p;

Action a4: Insert a Relation Attribute
Letrid be the ID of the relation and’ be its type. LetA
be the attribute and be the ID of the user who inserts
Steps:
1. IFw = M THEN
IF exists a record withid = rid
AND stop="9999-12-31 23:59:59" ilR_A_m THEN
Logically delete the record;
Insert the new value ofl into R_A_m;
ELSE
IF exists a record withid = rid
AND stop="9999-12-31 23:59:59" ilR_A_m THEN
Logically delete the record;
Insert the new value ofl into R_A_u;
2. IF exists a record withd = rid
AND stop="9999-12-31 23:59:59" ilR_A_p THEN
IF the record was entered By OR w! = M THEN
Logically delete the record;
Insert the new value ofl into R_A _p;

Action as: Insert a New Entity

Let F be the entity type anthax_eid be the largest ID in
tableentity ID.
Steps:

1. Insert recordmax_eid + 1, E) into entity.ID.

Action ag: Insert a New Relation

Let r be the relation to insert anll be its type. Lekidl
andeid?2 be the IDs of the entities thatrelates. Letnax_rid
be the largest ID in tablB_ID.
Steps:

1. Insert recordmax_rid + 1, eidl, eid2) into R.ID.

Action a7: Delete an Entity Attribute
Steps:
1. Execute4::a1 with NULL as the attribute value.

Action ag: Delete a Relation Attribute
Steps:
1. Executes::a2 with NULL as the attribute value.

Action ag: Delete an Entity
Let e be the entity to delete.
Steps:

1. FOR each relation that relates: DO
ExecuteGG::a10;

2. FOR each attributd (includingexistg of e DO
ExecuteG4::ar;

Action ai9: Delete a Relation
Letr be the relation to delete.
Steps:
1. FOR each attributd (includingexist3 of » DO
ExecuteGG4::as;

A.4 Actions for G,

Action a;: Create an Entity Attribute

Let F be the type of the entity and be the attribute to
create.
Steps:

1. Insert attributed into tablemetaattribute

2. Create table®_A_m, E_A_u andE_A_p.

Action ay: Create a Relation Attribute

Let R be the type of the relation andl be the attribute to
create.
Steps:

1. Insert attributed into tablemetaattribute

2. Create table®_A_m, R_A_uandR_A_p.

Action a3: Create an Entity Type
Let F be the entity type to create.
Steps:
1. Insert entity typd? into tablemetaentity;
2. Execute5,:a, for attributeexists

Action ay4: Create a Relation Type
Let R be the relation type to create.
Steps:
1. Insert relation typeR into tablemetarelation;
2. Create tabl&?_I D;
3. Execute5:a, for attributeexists

Action as: Drop an Entity Attribute

Let F be the entity type and be the attribute to drop.
Steps:

1. Logically delete attributel in tablemetaattribute

2. Logically delete all records ikK_A-m, E_A_u andE_A_p.

Action ag: Drop a Relation Attribute

Let R be the relation type and be the attribute to drop.
Steps:

1. Logically delete attributel in tablemetaattribute

2. Logically delete all records iR-A-m, R_A_u and R_A_p.

Action a7: Drop an Entity Type
Let E be the entity type to drop.
Steps:
1. FOR each relation typR that relatesz DO
ExecuteG;::as;
2. FOR each attributd (includingexistd of £ DO

ExecuteG;::as;
3. Logically delete entity typd’ in metaentity,

Action ag: Drop a Relation Type
Let R be the relation type to drop.
Steps:
1. FOR each attributd (includingexist9 of R DO
ExecuteGs::ag;
2. Logically delete entity typd? in metarelation;

