Storing the Evolving Web Efficiently

Xixuan Feng
University of Wisconsin-Madison
Madison, WI 53706, USA
xfeng@cs.wisc.edu

ABSTRACT

Many web applications operate on large amount of web data.
How to store and access the data itself is becoming a serious
problem, especially with the dynamic of the web. This paper
introduces an approach that helps applications to manage
evolving web data efficiently, saving a lot of storage space
with fast access to the data. One important feature of this
framework is that the worst case of random access time is
bounded by a simple parameter, and this enable applica-
tion specific systems based on it. The results on 3 syntactic
datasets and 2 real-world datasets show that the approach
adaptively performs well.

1. INTRODUCTION

The web has achieved great development since it was in-
vented over two decades ago. The question, about how to
manage the large amount of data on the web, is always
drawing much attention, in both industry and academia.
Techniques like information retrieval, information extraction
and knowledge discovery have been very popular in the data
management community recently. Efficiently access to web
data is essential for all of above methods.

While some traditional applications such as search engine
mainly make use of the current snapshot of the web, his-
torical web data is necessary in terms of time-dependent
use of the web (e.g., news trends). In addition, even if a
web application can run with only the newest snapshot of
web data, historical data is important in the aspects of de-
bugging, undoing and evaluation. However, due to the fast
development of the web, storing historical web data can be
extremely costly. For example, DBLife [2] operates on over
10,000 URLs and more than 120MB of data is crawled ev-
ery day [1]. This university application with less than 10
maintainers can generate up to 50GB of data for one year,
without even considering the significant growth of the web.

In this paper, we purpose a framework that not only removes
duplication between web data snapshots in order to save
storage space, but also provides fast access to both current
and past snapshots. An upper bound of access time will be
proved.

As is shown in Figure 1, pl and p2 are webpage snapshots
of the same URL (the place where some database group
or researcher lists its publications), but crawled at different
time. When storing p2 in the presence of pl, our method
reuses cl and c2 by setting up pl as the reference of p2 and

saves only the difference (also noted as delta) c3.

|Publications |--c1
[SIGMOD-09 [--.

[SIGMOD-09 | c2
[SIGMOD-09 [--
I

pl

|Publications |--c1
| ICDE-10 |--c3
| SIGMOD-09 [--.
| SIGMOD-09 | c2
| SIGMOD-09 [
|

p2

Figure 1: Two pages crawled at different time.

In the remaining sections of this paper, some of the chal-
lenges and how the framework handles each of them is dis-
cussed in section 2. Section 3 gives a formal definition of
the problem our framework solves. And the solution follows
in section 4. The evaluation is presented in section 5. In
section 6, there is a summary that what I have learned in
the project and how the approach may be improved.

2. CHALLENGES

The idea seems to be simple, but there are several difficulties
in designing an optimal solution. First, storing delta of a
reference instead of full text costs extra time to recover the
original file if the operation processes the data randomly.
We introduce a parameter k, guaranteeing that no pages rely
on more than (k — 1) other pages to be constructed. This
allows applications to choose the trade-off between storage
space and random access time. The system with a larger k
saves more space but requires longer average random access
time.

Second, it’s clear that it is a common case that many con-
secutive snapshots share the same URL also have a lot of
overlapping content. However, the case is not guaranteed.

Storing the difference between 2 completely distinct pages
consumes more storage space than either full-text of the two
pages. Our method includes a detector to identify such a
case. When this happens, we store full-text instead of the
difference between the two.

3. PROBLEM DEFINITION

Let U = w1, ua2, ..., um be a set of URL operated by an in-
formation management system M. For instance, DBLife
considers a set of URL that relates to the database commu-
nity. We consider the case that M crawls these URLs at
regular time interval and generates V;, the set of webpage
snapshots, at time interval <.

Our problem definition can be stated as follows. Given any
u in U, let p1,p2,...,pn denote the consecutive snapshots
(retrieved at regular time interval) of the webpage with the
URL u, and pn+1 be the snapshot next to p,,. Therefore, the
problem come down to minimize the storage space used to
save pnp+1 into the database, and at the same time, provide
a way to load p1, ..., pn+1 into memory fast enough.

4. SOLUTION

First, we design the following 3 tables to save the webpages:
urls (uid serial, url text UNIQUE), snapshots (pid serial, uid
integer NOT NULL, timestamp date, UNIQUE (uid, times-
tamp)), content (pid integer NOT NULL UNIQUE, delta
text, ref_id integer). Table urls is storing URLs with IDs.
Table snapshots identifies a single page file with its URL and
timestamp. Finally, Table content is the table which the file
data actually locates. Deltas are of form (place_to_insert,
text). Besides delta, it also specifies which snapshot should
the delta be applied to (reference snapshot). It is important
to notice that the ref_id can be null, which indicates the full-
text is stored. The following figure illustrates the layout of
Table content with the data in the example in Figure 1.

| p1 | (0, "Publication\n...") | NULL |
|

|- .
| p2 | (12, "ICDE-10\n") | pl |
- -

| |
I

Table content

Figure 2: Table content layout.

Next, in order to provide fast recovery of snapshots, we
group no more than k (k is a parameter chosen by users)
consecutive snapshots with the same URL into one cluster,
and the first snapshot of a cluster is stored in the database
as full-text. This provides an upper bound of random ac-
cess to any snapshots, because, in the worst case, at most
1 full-text and k deltas are loaded and k times of recovery
are performed. In addition, the number of snapshots in one
cluster can be less than k& when two snapshots generate a
delta that larger than the newest snapshot, in which case
we start a new cluster.

Thirdly, it is about how we choose the reference page for each
page. Intuitively, picking the previous adjacent snapshot is

a simple and effective way, given that webpages are devised
little by little. However, we consider another common case:
modify-undo. People often use a fixed template to represent
the idle state. For example, notification boards contain only
page frame when no notifications are available. If we always
use the previous snapshot as reference snapshot, multiple
copies of this sort of templates will be stored. Therefore,
we choose a snapshot in the same cluster but giving a mini-
mum delta as the reference snapshot. Although we relax the
constraint by choosing a reference snapshot other than the
adjacent one, the upper bound of random access time still
holds.

5. EVALUATION

In this section, we compare three slightly different imple-
mentations of the framework: a) first-reference, which al-
ways chooses the first version in a cluster to be the refer-
ence page; b) previous-reference, which always chooses the
consecutive previous version to be the reference page; c)
best-reference, which always chooses the version the with
the smallest delta to be the reference page. We first show
the results on 3 different syntactic data sets trying to ana-
lyze what kinds of data each implementation performs well
on. And then we evaluate them using 2 real-world data sets,
to see how useful they are. A postgresql database server is
used to set up relational tables and store data.

5.1 Syntactic Datasets
5.1.1 Stable Pages

Even though the web is dynamic, when we deal with large
amount of data, it is very likely that some pages never
change after some time. The first syntactic data set con-
tains 1,000 identical pages, each of size 7.1KB. Figure 3

first
65 | previous - -
Space 60 |- -
Saved
(%) 55 —
50F .
45 o ! ! ! ! ! !

4 6 8 10 12 14 16 18 20
k

Figure 3: Stable Pages.

shows what percentage of storage space has been saved us-
ing 3 implementations upon k. The curves of first-reference
and best-reference are exactly the same because they al-
ways choose the same references. More ref_id are needed to
be stored, so previous-reference does not perform as good as
the other two. Even with a small k, about 50% of the stor-
age space can be saved in any implementations. It’s worth
noticing that postgresql has built-in compression, and all of
our results show improvement upon compressed data. This
means we have captured some aspects of saving space, which
the compression algorithm is not able to capture.

5.1.2 Notification Boards

The second type of syntactic data contains pages that all
have a same template, with one version only template but
no content, the next one filled with random content, and
then empty content with template only again, etc. It simu-
lates some web rss applications, e.g. Google Reader. Each
page has the template of size 5.0KB, and possibly content
of size ranged from 0.1 to 10KB. From Figure 4, previous-

40 + first
38 - previous - - -
best ‘.

36
Space347 .
Saved

%
%) 30 .- i
28 i
D
24 ‘ L | | | | ‘

4 6 8 10 12 14 16 18 20

k

Figure 4: Notification Boards.

reference is not good at such modify-undo data set. As to
the best-reference, it saves more space than first-reference
with a small k. However, it saves less than first-reference
when k is large enough. This would not happen without
compression, because the gap comes from smaller cardinal-
ity of the ref id of first-reference.

5.1.3 Incrementally Adding

Commenting boards and forum topics with many replies are
both very common on the web. In this data set, each page
has a random string (including empty string) in addition to
the consecutive previous one. This data set fits previous-

82

I I
80 ﬁI‘St R

revious - - - - - .
78 | P B -

best

Space 76 -
Saved 74
%) 72|
70 .
68 [.
66 \ \ \ \ \ \ \

Figure 5: Incrementally Adding.

reference perfectly.

5.2 Real-World Data
5.2.1 Website Homepages

I crawled 4 homepages from main portal and news sites, in-
cluding Yahoo, AOL, CNN and NYTimes. Because the time

constraint, the time interval I picked is one hour. That’s also
the reason why I choose such dynamic homepages. The total
size of files is about 140MB, and it costs 32MB in database
after compression. Figure 6 indicates that the best-reference

68 T T
66 |- first “,.1{';
previous - - - - - R

64 best + - -+ .-',""'"7 |
Space 62 [R n
Saved 60 |- .
(%) 581 L -
56*.-"/,6
54 | -
59 \ \ \ \ \ \ \

Figure 6: Homepages.

is more adaptive in real-world data, but it takes more time
to choose the smallest delta. When k becomes larger, this
can be worse, but, of course, it can be done totally offline
after all.

5.2.2 Real Incrementally Adding

The last data set is crawled from digg.com, a news inte-
gration web sites with many postings and replies. It should
verify the result of the Incrementally Adding syntactic data.
Even the data is in the form of incrementally adding, best-

I I
43 - first
42 - previous - - - f
41 + best -+ -- . —

Figure 7: Real Incrementally Adding.

reference performs better at this one. It shows the impor-
tance of adaptability in the real world.

6. SUMMARY

The evolving web is valuable. To use it, the first step is to
store it. We have presented a framework to improve the way
to store these evolving data. Our evaluation shows that this
framework takes good advantage of the evolving data, and
it saves a significant portion of storage space even upon the
compressed data.

There are a lot to improve this work. 1) Instead of bothering
the applications or users, how to set k as using the knowledge
from the data? 2) Use a better matcher to get smaller delta.
3) More work on measuring random access time. 4) Integrate
the optimization of storing stable pages. 5) etc.

7. REFERENCES

[1] F. Chen, A. Doan, J. Yang, and R. Ramakrishnan.
Efficient information extraction over evolving text data.
In ICDE, pages 943-952. IEEE, 2008.

[2] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick,
A. Doan, and R. Ramakrishnan. DBLife: A community
information management platform for the database
research community (demo). In CIDR, pages 169-172.
www.crdrdb.org, 2007.

