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Abstract

We study the problem of online bipartite matching, where algorithms
have to draw irrevocable matchings based on an incomplete bipartite
graph. Specifically, we focus on algorithms that maximize number of
matchings (i.e. graphs with weight 0 or 1). First, competitive ratios of
a well-studied problem (only one side of the bipartite graph is incom-
plete) with adversarial, random order and iid models are presented.
Second, we discuss how some of these models apply to a similar but
rarely-studied problem: online bipartite matching with possibly both
sides incomplete.

1 Introduction

Bipartite matching is a fundamental problem in combinatorial algo-
rithm research. In particular, we focus on the problems with online
settings, which require algorithms that make optimal decision based
on currently available information. Karp and two Vazirani’s [6] con-
sidered adversarial inputs. They showed straightforward deterministic
algorithm GREEDY only has competitive ratio 1

2 , while a simple ran-
dom algorithm RANKING has an optimal competitive ratio 1 − 1

e .
It is still the best result known for adversarial inputs. After first
introduced by that, online bipartite matching has drawn much atten-
tion because of its many applications. In [5], the competitive ratio is
proved to be 1− 1

e under random order inputs. Recently, people that
don’t believe 1− 1

e is the bound of the problem have made significant
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progress based on stochastic (iid model) inputs [4], [1], [7]. Although,
most work addresses the problem that one side is fixed and the other
side arrives one by one. Full online bipartite matching is the problem
that allows both sides arrive in some order. The only result on full
online bipartite matching published is in [3], but no algorithm better
than competitive ratio 1

2 is purposed. In this paper, we formulate the
problem of full online bipartite matching based on different models
and try to build some bases for future breakthrough of the problem.

2 Online Bipartite Matching

In this section, we discuss the problem of online bipartite matching,
which has been studied extensively.

2.1 Adversarial Analysis

2.1.1 Problem Statement

In [6], the problem with adversarial inputs are as follows:

Problem 2.1. Given a bipartite graph G(U, V,E), |U | = |V | = n
containing a perfect matching, vertices V (the girls) arrive in an order
selected by the adversary, and edges incident to a vertex v ∈ V are
unknown by us only until the vertex arrives. As girl v arrives, we may
assign a boy u ∈ U to match her or leave v unmatched forever, and
the match is irrevocable. The task is to give a decision sequence that
maximize the size of resulting matching.

2.1.2 GREEDY

The most straightforward algorithm is a greedy algorithm that match
the first valid boy.
Online Matching
Input v: the new arrival girl; Uvalid: boys that has edges to v and

not picked before
Output u: the boy picked, possible NULL

if Uvalid is not empty then
return first boy in Uvalid;

else
return NULL;
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Theorem 2.1. If an online algorithm produces a maximal matching
upon G, the competitive ratio is at least 1

2 .

Proof. For every edge (u, v) in the perfect matching of B, either u or v
is present in the matching generated by the algorithm. Otherwise, the
matching can be augmented by adding (u, v). So, at least n

2 vertices
in the matching, i.e. it has a competitive ratio at least 1

2 .

GREEDY always produces a maximal matching upon G, so it has a
competitive ratio at least 1

2 . But the competitive ratio is actually no
better than 1

2 because the following input forces the algorithm has a
matching of size n

2 . Every vertex in first half (based on arrival order)
of V connect to all vertices in U , while the second half only connect
to those vertices in U selected by GREEDY, which are known by the
adversary. The paper also discussed if the we pick a random valid boy
instead of the first one, the competitive ratio become 1

2 + O( log(n)
n ),

which is no better than GREEDY asymptotically.

2.1.3 RANKING

To achieve a better competitive ratio, a randomized algorithm RANK-
ING is purposed in [6]. The algorithm first assigns a ranking to U be-
fore first arrival of girls. Upon each arrival, it matches the girl to the
boy with the highest rank.
Ranking

Randomly permute U and assign the ranking;
Online Matching
Input v: the new arrival girl; Uvalid: boys that has edges to v and

not picked before
Output u: the boy picked, possible NULL

if Uvalid is not empty then
return boy in Uvalid with the highest rank;

else
return NULL;

A mistake was first found by Erik Krohn and Kasturi Varadarajan in
the proof of Theorem 2.2 presented in [6] 17 years after it published.
A correct proof was then given in [5] and [2].

Theorem 2.2. RANKING with adversarial inputs has the competitive
ratio 1− 1

e , asymptotically.
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2.2 Random Order Analysis

2.2.1 Problem Statement

Problem 2.2. Given a bipartite graph G(U, V,E), |U | = |V | = n
containing a perfect matching, vertices V (the girls) arrive in a random
order, and edges incident to a vertex v ∈ V are unknown by us only
until the vertex arrives. As girl v arrives, we may assign a boy u ∈ U to
match her or leave v unmatched forever, and the match is irrevocable.
The task is to give a decision sequence that maximize the size of
resulting matching.

2.2.2 Duality Principle

In [6], a theorem on duality is proved.

Theorem 2.3. GREEDY with random order inputs and RANKING
with adversarial inputs are duals of each other.

Proof. Base case:
n = 1, the matching produced by both algorithms are the same.
Inductive Step:
First we consider the matching produced by RANKING with adver-
sarial inputs, let v denote the highest-ranked boy, it matches to the
earliest-arrived girl who has an edge to v, say u. As to random or-
der inputs that boys arrive in the random order as they are ranked
in the adversarial case, v arrives first and is matched to u. And the
same matching produced in a graph removing v and u, hence, both
algorithms produce the same matching.

Therefore, the following theorem is also proved.

Theorem 2.4. GREEDY with random order inputs has the competi-
tive ratio 1− 1

e , asymptotically.

2.3 IID Analysis

Many significant results have been discovered since J. Feldman, A.
Mehta, V. Mirrokni and S. Muthukrishnan [4]. They are motivated
by the application of advertisement display problem.

4



2.3.1 Problem Statement

Problem 2.3. Given a bipartite graph G(A, I, E) over advertisers A
and impression types I, with |A| = k and |I| = m. ∀i ∈ I, ei is the
expected number of appearances of i, and

∑
i∈I ei = n. Let D denote

the distribution over I defined by Pr(i) = ei
n .

The task is, upon each i.i.d. draws of i ∼ D, to decide some advertiser
a ∈ A and (a, i) ∈ E to match i, or leave i unmatched, in order to
maximize the size of resulting matching.

The main different of this problem is that it knows about the edge
information of the expected bipartite graph, although the resulting
graph is very likely (with probability 1) to be different to the expected
bipartite graph. Still, it is natural to get hints from the expected
graph.

2.3.2 Suggested Matching

Offline Suggests
Input G(A, I, E): the bipartite graph; D: the distribution to draw i

from
Output fai: the maximal flow, ∀a ∈ A,∀i ∈ I, 0 if (a, i) /∈ E

Construct graph G+({s}
⋃

A
⋃

I
⋃
{t}, E+) by adding a source s

and sink t. ∀a ∈ A, add an edge (s, a) and define the capacity of
(s, a) to be 1. ∀i ∈ I, add an edge (i, t) and define the capacity of
(i, t) to be ei. Each edge (a, i) ∈ E has the capacity 1.
Perform max-flow algorithm and generate fai, for edge (a, i);

Online Matching
Input i: the new arrival impression; A: the set of advertisers
Output a: the advertiser picked, possible NULL

Draw an element from A, with Pr(a) = fai

ei
.

if a is not picked before then
return a;

else
return NULL;

The capacity of (s, a) is 1, so Fa =
∑

i fai ∈ {0, 1}. Let A∗ = {a ∈
A|Fa = 1}. Upon an arrival of i, each a ∈ A∗ has the probability of 1

n
to be chosen. Therefore, the analysis of this algorithm can be reduced
to the classic “balls in bins” problem. And the following Theorem is
proved in [4].
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Theorem 2.5. The approximation factor of the suggested matching
algorithm is 1− 1

e with high probability.

2.3.3 Two Suggested Matching

Offline Suggests
Input G(A, Î, Ê): the expected bipartite graph, where i ∈ I and

edges related are copied ei times;
Output

Construct graph G+({s}
⋃

A
⋃

Î
⋃
{t}, Ê+) by adding a source s

and sink t. ∀a ∈ A, add an edge (s, a) and define the capacity of
(s, a) to be 2. ∀i ∈ Î, add an edge (i, t) and define the capacity of
(i, t) to be 2. Each edge (a, i) ∈ Ê has the capacity 1.
Perform max-flow algorithm and generate the set Ef of edges with
non-zero flow on them;
Color the cycles and paths in Ef with alternating blue and red.
Odd-length paths are colored with more blue than red. Even-length
paths started with a ∈ A, alternate blue and red. Even-length paths
started with i ∈ I, first two colored blue, and then alternate red and
blue.

Online Matching
Input i: the new arrival impression; A: the set of advertisers
Output a: the advertiser picked, possible NULL

if a is not picked before AND (a, i) is blue then
return a;

else if a′ is not picked before AND (a′, i) is red then
return a′;

else
return NULL;

The first algorithm break through 1 − 1
e comes from the idea that

uses more hints from the expected graph. The intuition is to consider
different types of elements in A according to what color edges it is
incident to. The possibility are two blue edges, blue and red edges,
single blue edge, single red edge or no edge. A competitive ratio
1−2/e2

4/3−2/3e ≈ 0.67 is achieved.

Theorem 2.6. The approximation factor of the two suggested match-
ing algorithm is 0.67 > 1− 1

e with high probability.
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2.3.4 More Improved Results

Although it is a breakthrough result, two suggested matching is for
from the end. The idea of using offline hinting is used to achieve higher
competitive ratios [1], [7].

3 Full Online Bipartite Matching

In this section, we consider how some of the ideas from online bi-
partite matching can be borrowed and applied to full online bipartite
matching, which has few valuable results known.

3.1 Adversarial Analysis

3.1.1 Problem Statement

Problem 3.1. Given a bipartite graph G(U, V,E), |U | = |V | = n
containing a perfect matching, vertices U (the boys) and V (the girls)
arrive in an order selected by the adversary, and edges incident to a
vertex are unknown by us only until the vertex arrives. As a vertex
arrives, we may assign a match of it to an eligible vertex on the other
side or leave unmatched (which may be matched later on), and the
match, once drawn, is irrevocable. The task is to give a decision
sequence that maximize the size of resulting matching.

This problem is harder than online bipartite matching with adver-
sarial inputs, since the latter is former problem with some restrictions
on input order. All boys arrive first and girls later.

3.1.2 GREEDY

The GREEDY algorithm still works on this problem. And we intro-
duce the following two theorems.

Theorem 3.1. GREEDY on the full online bipartite matching with
adversarial inputs has the competitive ratio at least 1

2 .

Proof. Also, it produces a maximal matching, which means it has a
competitive ratio at least 1

2 according to Theorem 2.1.

Theorem 3.2. GREEDY on the full online bipartite matching with
adversarial inputs has the competitive ratio at most 1

2 .
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Proof. Any bipartite graphs with n boys and girls, and a maximal
matching of size n

2 can be used to construct an adversarial input that
forces GREEDY produce that particular maximal matching. The or-
der is, first, to group vertices by pairs, based on the n

2 -sized matching.
Any following arrival of vertices won’t produce matching because the
existing matching is maximal.

3.1.3 RANKING

Here we discuss why RANKING does not work on the new problem
full online bipartite matching.
Similarly, since vertices are known beforehand, a ranking can still be
assigned to boys as in RANKING. However, upon an arrival of a girl,
not all boys are presented, so we are not sure whether the current
highest-ranked eligible boy is the overall highest-ranked eligible one.
If we somehow know the answer to this binary question, we could
produce the same matching as in one-sided online bipartite matching.
An idea that follows this would be making a guess of the answer. If
the guess is correct with high probability, an breakthrough algorithm
will be invented (better than 1

2).

3.1.4 Competitive Ratio and Online Restrictions

In full online bipartite matching settings, any matching consists of
two decisions, each one associated with one vertex of the matching.
Let’s denote the first arrival vertex passive and the later one active.
An algorithm left the passive vertex unmatched when it arrives, and
match the active vertex to the passive one.
Therefore, there is a trade-off between competitive ratio and online
restrictions like a vertex may expire if it does not get matched after
certain time it arrives.

3.2 Random Order Analysis

3.2.1 Problem Statement

Problem 3.2. Given a bipartite graph G(U, V,E), |U | = |V | = n
containing a perfect matching, vertices U (the boys) and V (the girls)
arrive in random order, and edges incident to a vertex are unknown by
us only until the vertex arrives. As a vertex arrives, we may assign a
match of it to an eligible vertex on the other side or leave unmatched
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(which may be matched later on), and the match, once drawn, is
irrevocable. The task is to give a decision sequence that maximize the
size of resulting matching.

3.2.2 GREEDY

GREEDY produces the exact same matching in the one-sided online
bipartite matching with random order input if all girls arrive in the
same order. Because each order (permutation) has the same proba-
bility in this model, the competitive ratio remains the same, which is
1− 1

e .

Theorem 3.3. GREEDY on the full online bipartite matching with
random order inputs has the competitive ratio at least 1− 1

e .

Proof. On the problem of one-sided online bipartite matching with
random order input, GREEDY has the competitive ratio at least 1− 1

e
regardless of the permutations of the boys. Therefore, GREEDY on
the full online bipartite matching produces matchings of size n − n

e ,
asymptotically, in the worst case. Hence, it has the competitive ratio
at least 1− 1

e .

An idea that is worth noting here is the duality of this result. If
we can find a dual with the adversarial inputs, the competitive ratio
will be improved to be 1− 1

e .

3.3 Marketing Clearing Analysis

Motivated by the problem of maximizing number of trades in the appli-
cations of marketing clearing, A. Blum, T. Sandholm and M. Zinkevich
consider the graph with buyers and sellers, in which edges are defined
by valid price and time overlapping. They have no better result than
the competitive ratio 1

2 without subsidize. But subsidize violate the
restrictions of irrevocable, which is essential to online algorithms.

4 Conclusion

In this paper, we first focus on a well-studied problem one-sided online
bipartite matching. Algorithms based on different input models are
discussed separately. A pair of duals represents the state-of-the-art
algorithms with adversarial and random order inputs in terms of com-
petitive ratio. A breakthrough result is presented, which makes use of
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offline statistics and more following work is continuing.
We then introduced a new problem, full online bipartite matching.
Compared to one-sided online bipartite matching, we showed full on-
line bipartite matching is harder to achieve the same competitive ratio.
And then we prove that the algorithm GREEDY competitive ratios
with adversarial inputs and random order inputs, respectively.
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