WrtVMM: A Virtual Machine Monitor for Embedded Devices

Aaron Gember
agember@cs.wisc.edu

ABSTRACT

We built a virtual machine monitor for the Linksys WRT54GL
wireless router to run Embedded Xinu as a guest OS within
OpenWrt. The system uses a kernel module and signal han-
dlers to support the virtualization of the guest OS. Suffi-
cient support is provided to allow Xinu to startup, handle
timer interrupts, provide I/0O, and execute processes in the
Xinu shell. The virtual machine performance for processor
and memory intensive tasks is similar to the execution time
when running the two operating systems alone. Network
throughput is unaffected by the VMM.

1. INTRODUCTION

Embedded devices are becoming smaller, faster, and more
powerful with every passing day. This increase in embedded
hardware performance is most evident in the mobile phone
market, but also extends to other embedded platforms. Em-
bedded devices ranging from global positioning systems to
printers and Blu-Ray players to home network routers are
providing more functionality for their users. Developers are
challenged to add new services to a diversity of devices and
still keep the core services functioning as expected.

Some techniques have already been implemented to provide
a framework for developing hardware independent services.
Use of an embedded Java Virtual Machine (JVM) is a com-
mon solution used by embedded application developers to
write code that can be run on a diverse set of hardware.
The shortcoming of the JVM is the overhead of using just-in-
time compilation on an already resource constrained system.
Other vendors provide a high-level application API for their
devices, but the great variability in APIs requires develop-
ers to customize their solutions for each platform. There
remains a need for providing a device independent frame-
work for embedded hardware and protecting the low-level
systems on the devices.

Virtualization is a long standing technique that has been
successfully deployed in the PC and server market to ad-
dress the needs of device independence and preservation of
core services. Virtual machines (VMs) allow developers to
setup applications and services in a hardware independent
manner, making it easy to clone and migrate the services
to various devices. In addition, isolation of services within a
virtual machine prevents errant applications from interfering
with applications running outside the VM. These benefits of
flexibility, ease of use, and security make things easier for ad-
ministrators and developers and hopefully provide a better

Yueh-Hsuan Chiang
yhchiang@cs.wisc.edu

Xixuan Feng
xfeng@cs.wisc.edu

experience for the user.

Since virtualization has seen such success in the PC market,
we decided to apply the same techniques to embedded de-
vices. Our goal was to build an embedded virtual machine
monitor (VMM) for the Linksys WRT54GL wireless router
[12] and run Embedded Xinu [7] as a guest operating system.
The approach we use is known as paravirtualization because
some modifications are made to the guest OS to allow it to
run as a virtual machine. (Full virtualization proved too
complex for the time available.)

We selected home networking hardware as our embedded
platform of choice because of its low cost and wide avail-
ability. Home networking hardware is an embedded device
which has the potential to serve more purposes than just pro-
cessing network packets. These devices can be used as print
servers or network file servers, while still routing network
traffic. We chose to virtualize an entire operating system
(rather than just a part of an application interface) because
it provides more flexibility and greater isolation between ser-
vices. Embedded Xinu can provide applications with all
the standard operating system primitives including process
management and communication, memory management, de-
vices, networking, and a user shell. Our VMM supports sys-
tem bootstrapping and startup, privileged instruction emu-
lation, interrupt handling, simple memory management, and
simple I/O. We have not included network virtualization in
the scope of this project because of its complexity.

Using virtual machines in wireless routers can have some
of the same benefits of their desktop-based counterparts.
Building an embedded VMM for embedded networking hard-
ware has three primary motivations:

1. Isolation between core networking functional-
ity and additional services: As more services—
print server, network file server, etc.— are added to
the router, the risk of instability increases. Errors in
one of the additional services could lead to the degra-
dation or failure of the networking services the router
provides. Additional services should be run in a vir-
tual machine to protect networking routing from being
negatively affected.

2. Ability to move and clone services between routers:

Some network services can take a significant amount
of effort to configure. Therefore, the ability to easily
move a service and its configuration between systems

can be a major benefit. A virtual machine allows a
user to easily move services between routers, clone the
service across multiple routers, or share the setup with
other interested users. Good examples of services that
could benefit are a Squid proxy server or OpenLDAP
server.

3. Elimination of additional hardware for simple
network-based services: Rather than requiring a
desktop computer to be constantly running, simple
network-based services can be run on the router. Print
servers and network file servers (for routers with USB
ports) are already popular. But other services like a
Voice over IP phone, a small HTTP or LDAP server, a
Squid Proxy server, or simple email relay agent could
be run on a router. Running the service inside a virtual
machine allows a configuration similar to the desktop
equivalent.

Throughout the paper we use the terminology “Xinu alone”
to refer to the execution of Xinu directly on the hardware
without virtualization. We use “Xinu as guest” to refer to
the execution of Xinu in the virtual machine running on top
of OpenWrt.

The rest of this paper is organized as follows. Section 2
discusses the hardware and software platforms used. An
overview of our system architecture is given in section 3.
The implementation details of key aspects of the VMM are
discussed in sections 4 through 7. We discuss challenges in
section 8 and evaluate the VMM in section 9. Related work
is discussed in section 10. Lastly, we conclude and discuss
future work in section 11.

2. PLATFORMS

To build a VMM for an embedded device, we needed to se-
lect three core components: an embedded hardware device,
a host OS, and a guest OS. Since the project was partially
inspired by one of the author’s prior experience with Embed-
ded Xinu, this simple operating system was selected as the
guest OS. As consequence, the Linksys WRT54GL wireless
router became a natural choice for the hardware platform.
Lastly, OpenWrt was selected as the host OS because of its
Linux base and easy to use development environment.

2.1 Linksys WRTS54GL (Hardware)

The Linksys WRT54GL wireless router is a widely available
home networking device sold in most electronics stores for
about $55. The router contains one of Broadcom’s BCM47xx
family “system-on-a-chip” with a 32-bit, 200MHz embedded
MIPS processor [6]. It is equipped with 16MB of RAM and
a memory management unit which relies on a translation
lookaside buffer (TLB) for memory address mappings. Four
MB of flash memory provides persistent storage on the de-
vice. For networking, the router features one WAN port,
four LAN ports, and 802.11 wireless. The hardware’s low
price and broad Linux support make it an ideal platform for
developing an embedded VMM.

Some minor modifications to the hardware — the addition
of two serial ports — allows us to have fuller access to the
router’s internals. (Details on adding the two serial ports are

available from [5].) Using a desktop computer and a serial
connection, we are able to access the Common Firmware En-
vironment (CFE) on the router. CFE provides a mechanism
for downloading and applying a boot image to the router
and bootstrapping the host OS startup. The WRT54GL is
a well equipped embedded device, but it still exemplifies the
challenges associated with embedded systems.

2.2 OpenWrt (Host OS)

Ever since users first discovered Linksys was running Linux
on the routers in the WRT54G family, numerous open source
Linux distributions have been target towards this hardware.
We considered DD-Wrt [1], Tomato, and FreeWrt, but se-
lected OpenWrt for its well designed and easy to use develop-
ment environment. The latest version of OpenWrt uses the
2.6.30 version of the Linux kernel. The build environment
automatically downloads the kernel source and applies a set
of patches to allow the kernel to run on the WRT54GL. The
build system also builds the necessary cross-compiler tools
— a difficult task typically deemed to require some form of
magic.

OpenWrt features a package system which allows for the
inclusion of additional libraries and software in the operat-
ing system. The uClibc C library included with OpenWrt
makes it easy for developers to run existing Linux appli-
cations (with some minor patching) or develop new soft-
ware. The packages, a base filesystem, and the Linux kernel
are compiled into a single binary file which is stored in the
router’s flash memory using TFTP and CFE. Once Open-
Wrt is installed on the router, users can use the serial ports
to communicate with the BusyBox shell and work with the
system.

2.3 Embedded Xinu (Guest OS)

The Embedded Xinu operating system was first developed
at Purdue University in the mid-1980s. Most recently, Xinu
has been targeted towards embedded networking hardware
from Linksys. Xinu, which stands for “Xinu Is Not Unix,”
is not based on Unix or Linux. The OS is designed for re-
search and educational purposes, with simplicity in mind.
Xinu provides most of the standard functionality of today’s
operating systems: process management, memory manage-
ment, 1/0, networking, and a user shell. The OS lacks a
filesystem and memory protection is in its infancy, but this
makes it no less desirable of a system. In fact, this simplic-
ity is what makes Embedded Xinu a perfect choice for our
guest OS.

3. ARCHITECTURE

Figure 1 shows the four main components that make up our
system: the OpenWRT Linux kernel sits on the hardware,
the VMM module is installed into the kernel, the vmm-
launch process and Embedded Xinu are in user space.

We are using the standard OpenWRT Linux kernel, mini-
mizing and even eliminating modifications of its source. By
doing this, we do not require user to have knowledge of the
Linux kernel source to use the system. The Linux kernel
module is a very important mechanism in the system. The
VMM module provides necessary communication between
the host OS and guest OS.

The vmm-launch component prepares the environment for
the guest OS to run, including some signal handlers that
receive notifications from the host OS or the VMM module.
Slight modifications have been made to Xinu to allow it
to operate correctly in the virtualized environment. From
OpenWRT’s point of view, Xinu runs under the vmm-launch
process in user space.

4. MEMORY MANAGEMENT

The first challenge running Xinu as a guest OS is memory.
As an operating system, Xinu expects to stay at kernel seg-
ment, but OpenWrt already resides in the kernel segment.
In addition, we need some executable memory in which to
place the Xinu code.

4.1 Embedded Xinu Memory Management
Memory on MIPS-based processors is divided into four seg-
ments, which includes one user segment and three kernel
segments.

4.1.1 User Segment
The user segment of memory, USEG, ranges from 0x00000000

through 0x7FFFFFFF. This memory is both mapped and cached.

Any attempted access in this segment must with the CPU
privilege level set to user mode or the processor must be
in the exception state with the error level bit set. When a
TLB exception occurs in the USEG range of addresses, a
special fast exception handler, at 0x80000000, is consulted
instead. Exception code to handle TLB faults simply per-
forms a lookup of the faulting address in the system page
table, checks to see if it is valid and in the correct address
space, and inserts the mapping in the TLB hardware. We
have disabled the use of user segment memory and memory
protection in the version of Xinu we are running as a guest.

4.1.2 Kernel Segment

While the first part of memory is dedicated to the user seg-
ment, the remainder is the kernel segment. Unlike the user
segment, the kernel segment is sub-divided into three seg-
ments with different memory access properties. They are
KSEGO, KSEG1, and KSEG2.

KSEGO is the range of memory addresses from 0x80000000
through Ox9FFFFFFF; it is unmapped and uncached. Embed-
ded Xinu exclusively uses this segment. A generic exception
handler is loaded at 0x80000180. Xinu also makes use of re-
served memory starting at 0x80000200 to store an array of
exception handler entry points and 0x80000280 to store an
array of interrupt handler entry points. As for loading the
kernel, Xinu loads the kernel code beginning at 0x80001000.

Embedded Xinu | User
Space

vmm-launch

Kernel
Space

vmm-module

OpenWrt Linux Kernel

Hardware

Figure 1: System architecture

Upon booting, CFE transfers execution control to that ad-
dress. Xinu uses the remaining memory from this segment
as the user memory heap. Once this memory is initialized,
calls to malloc and free will use the user heap for memory al-
location and automatically insert mappings into the system
page table. All mappings are 1-1 since there is no backing
store for a virtual memory subsystem.

KSEG]1 is the range of memory addresses from 0xA0000000
through OxBFFFFFFF. This memory is unmapped and un-
cached. Embedded Xinu uses KSEG1 to to access some
hardware devices which are mapped out-of-range of phys-
ical memory and some hardware devices use dynamically
allocated memory for sharing. Such devices on WRT54GL
include the serial ports (or UART), the Ethernet hardware,
and the Wireless LAN.

KSEG?2 is the range of memory addresses from 0xC0000000
through OxFFFFFFFF. This memory is both mapped and cached.
Embedded Xinu does not make use of any KSEG2 memory.

4.2 VMM Module

To enable embedded Xinu to run as a guest OS, the VMM
module, a Linux kernel module, is introduced into our sys-
tem. Linux kernel modules are a widely-used mechanism to
implement device drivers which contain several fundamen-
tal driver operation prototypes. Once these operations of
the VMM module have been carefully designed and special-
ized, the VMM module is able to provide its operations and
enable Xinu to run as a guest OS.

The following lists some important operations of the VMM
module:

e mmap() is used to request a mapping of device (or
kernel) memory to a process’s address space. We uti-
lize this operation to allocate executable memory and
map it to the vimm-launch process’s address space where
our guest OS runs. When the mmap function of the
VMM module is called, a starting memory address
is passed as an input parameter. The VMM module
allocates executable memory and performs page-wise
memory mapping to map the memory pages into the
user process’s memory address space.

When the guest OS is shut down, the memory unmap-
ping request will be invoked and the unmap function of
the VMM module will be called. The allocated exe-
cutable memory will be unmapped and released.

e ioctl() offers a way to issue device-specific commands.
We utilize this operation to request secondary inter-
rupt handlers for notifying our guest OS of interrupts.
We discuss this in more detail in section 6.

4.3 Memory allocation for VM

As we mentioned in the architecture section, the vmm-launch
process serves as a medium between the guest OS and the
VMM module. When the vmm-launch process is started it
calls the mmap provided by the VMM module with the start-
ing address of the guest OS passed as an input parameter.
Then, the VMM module will allocate executable memory
and perform page-wise memory mapping to map it to the

user space memory starting at the desired address specified
by the input parameter. After the mmap is completed, the
memory region beginning at that starting address is mapped
to pages of executable memory, and vmm-launch will load
the Xinu code into that memory space. One MB of mem-
ory (1024 4 KB pages) are allocated for Xinu as guest. The
memory is mapped into user space beginning at 0x30000000.
The Xinu linker script is modified to compile a Xinu image
that can be loaded and executed beginning at 0x30001000
instead of the usual 0x80001000.

In addition to the memory region used for the code and stack
of Xinu as guest, a small piece of memory is allocated in the
same way to achieve CPU virtualization. We refer to this
special page of memory as the virtual CPU, or VCPU. This
memory stores virtualized hardware data structures such as
control registers. This virtual CPU is also supported by the
mmap operation of VMM module. We will explore how we
use this the VCPU to handle privileged instruction in the
next section.

S. PRIVILEGED INSTRUCTIONS

As an operating system, Xinu is responsible for low-level
control of the physical hardware. During system startup,
for example, Xinu’s first task is to flush the instruction and
data caches. Xinu reads from a special purpose register to
determine the cache sizes and uses the MIPS assembly cache
instruction to fill the caches with zeroes. Other examples of
low-level control include exception handling, interrupt con-
trol, and clock management. When running Xinu alone, the
OS has full reign over physical hardware.

OpenWrt is responsible for low-level control of the physical
hardware when running Xinu as guest. The Linux kernel has
full reign over physical hardware and the processor is placed
in kernel-mode. When Linux schedules a user process to ex-
ecute, such as Xinu as guest, the processor is switched to
user-mode. OpenWrt restricts user processes from accessing
special purpose registers — referred to as coprocessor 0 (CP0)
registers — and executing special assembly instructions — re-
ferred to as privileged instructions. Since the Linux kernel is
already controlling the physical hardware, we want Xinu as
guest to control virtual hardware. The challenge is to make
Xinu control virtual hardware without modifying the code
designed for controlling physical hardware.

5.1 [Illegal Instruction Signal (SIGILL)

If code attempts to execute a privileged instruction while
the processor is in user-mode, the hardware throws an ex-
ception. The processor stops execution of the current code
and jumps to an exception handler at a known memory loca-
tion. The Linux exception handler stores the current values
of the general purposes registers and the program counter.
A SIGILL signal is sent to the user process that was exe-
cuting when the exception occurred. When the user process
resumes execution, it receives the SIGILL signal and, by de-
fault, terminates the user process. When starting Xinu as
guest with the default signal handling behavior, Xinu will
execute a privileged instruction to flush the caches, result-
ing in an exception and process termination.

We register a custom SIGILL signal handler to transform
Xinu’s attempted control of physical hardware into control of

1 Privileged | User Space

' Instruction o

| Execution Xinu |

| |
| SIGILL “4 Emulate VCPU |
: Handler Instruction WrtVMM :

3 SIGILL Signal

Kernel

A
2 Exception

Hardware

Figure 2: Privileged instruction handling

virtual hardware. The same process still occurs when Xinu
as guest executes a privileged instruction, but instead of pro-
cess termination, our signal handler is triggered by the SIG-
ILL signal. The custom signal handler receives a structure
containing the execution context (values of general purposes
registers and the program counter) when the privileged in-
struction was attempted. We use and modify the execution
context and the special memory allocated to the VMM to
emulate the instruction and make Xinu as guest control vir-
tual hardware. After signal handling, the execution context
is restored and normal execution of Xinu resumes. Figure 2
shows the entire privileged instruction handling process.

5.2 Instruction Emulation

The execution context provided to our SIGILL signal han-
dler contains the address stored in the program counter
prior to the illegal instruction exception. The address will
be within the Xinu code, loaded into memory as discussed
in section 4. We obtain the 4-byte encoding of the fault-
ing instruction from that address. The opcode is identified
using bitwise operators. We currently recognize four op-
codes: move to coprocessor 0 (mtc0), move from coproces-
sor 0 (mfc0), modify cache (cache), and jump (j). The first
three opcodes are privileged instructions. Jump is a spe-
cial case when the instruction is j ra (jump to the address
stored in the return address register), and the instruction is
directly followed by a mtcO or mfcO instruction; this special
case is a result of the mtcO or mfcO instructions taking two
processor cycles to complete.

After determining the faulting opcode, the appropriate be-
havior is emulated to control our virtual hardware. Since
our virtual machine has no explicit caching mechanisms, the
cache instruction is simply ignored. For a j ra instruction,
we check if a mtcO or mfcO instruction follows, and perform
the emulation for those two instructions. A mtcO instruction
is emulated using the following steps:

1. Determine the number of the general purpose register
which contains the value to store.

2. Determine the number of the coprocessor 0 (CPO) reg-
ister to which the value should be stored. If we do not
keep track of the CPO register being referenced, skip
to the end of the emulation process.

3. Obtain the value in the general purpose register from
the execution context.

4. Store the value in the appropriate memory location
within the VCPU based on the CPO register number.

The mfcO instruction is emulated using a similar set of steps.

The final task in the SIGILL signal handler is to update the
program counter in the execution context. After emulating
the instruction, we want to resume execution at the instruc-
tion just after the privileged instruction. For mtcO, mfcO,
and cache instructions, the program counter is incremented
by four. For the j ra instruction, the program counter is set
to the value of the return address register provided in the
execution context. The signal handler completes and execu-
tion of Xinu as guest resumes with the modified execution
state.

5.3 Limitations of Signal Handlers

Using a custom SIGILL signal handler to emulate privileged
instructions works well in most cases, but there are two limi-
tations of this method. First, not all instructions we need to
emulate result in a SIGILL signal. The system call instruc-
tion (syscall) is currently used for virtualizing I/O, but in
the future it should properly be emulated to allow system
calls within Xinu. Since syscall is not a privileged instruc-
tion, no SIGILL signal is generated and the instruction will
not be trapped for emulation.

The second limitation of our method stems from a limita-
tion of the Linux kernel: only one signal handler can be
executed at a time. A problem occurs when a privileged in-
struction must be executed as part of an interrupt handler,
which also uses a signal handler. The interrupt handling
code is already in the middle of a signal handler, so any
privileged instruction that is executed during this time will
result in process termination instead of calling the custom
SIGILL signal handler. Using multiple threads is one possi-
ble solution to the problem, but the Pthreads library in the
development version of OpenWrt does not function correctly.
The solution we adopt is to modify Xinu code and replace
the privileged instructions. A mtcO instruction is replaced
with two instructions: load the address of the CPO regis-
ter in the VCPU and store the value at that location. The
mfcO instruction is the similar. This solution is undesirable
because it requires modifications to the guest OS.

6. INTERRUPT HANDLING

The VMM must support interrupts for Xinu as guest to run
correctly. At the very least, we need timer interrupts to
enable scheduling with preemption. The challenge, again, is
to make Xinu receive interrupts from virtual hardware, since
OpenWrt is already responsible for processing interrupts re-
ceived from the physical hardware.

6.1 MIPS Interrupts

Interrupts are enabled and disabled by setting the appropri-
ate bits in the CPO0 cause register. There is a bit for each of
the 8 IRQ numbers. In the WRT54GL, IRQ 3 is the serial
ports and IRQ 7 is the hardware clock timer. The register
also has a master enable bit to enable or disable all inter-
rupts. Xinu has functions to enable and disable specific IRQ
numbers and functions to enable and disable all interrupts.

When an interrupt occurs in MIPS, two main actions are
taken by the processor. First, bit flags are set in the excep-
tion cause register to provide information about the cause
of the interrupt. There is a bit flag for each of the 8 possi-
ble IRQ numbers. Second, execution jumps to a predefined
kernel-only address (0x80000180), where the operating sys-
tem is expected to have placed an interrupt handler. There
is only space for 32 assembly instructions at the special mem-
ory location, so the OS usually does some minimal process-
ing then jumps to a more complex interrupt handler within
the kernel code.

Xinu’s interrupt handling mechanism is composed of multi-
ple components:

e During system startup, a simple 15-instruction handler
is placed in the special memory location reserved for
the interrupt handler. This piece of code is called for
both exceptions and interrupts. Xinu uses bitwise op-
erators with the CPO0 cause register to determine if one
of the interrupt bit flags is set and calls the savestate
function.

e The savestate function, written in assembly, allocates
space on the stack of the interrupted process. The
value of the CP0 cause register and the values in all
general purpose registers are saved on the stack. After
saving the processor state, Xinu calls the dispatch
function.

e The dispatch function, written in C, uses the value
saved from the CPO cause register to determine which
specific IRQ number caused the interrupt. The IRQ
number is used as an index into an array of interrupt
vectors — functions designed to handle a specific type
of interrupt. The specific interrupt handling function
is called.

e In the case of a timer interrupt, the handling function
updates Xinu’s clock. It also updates the CP0 compare
register so that another timer interrupt is fired 1 ms
later. If a sleeping process has finished sleeping or a
process’s time quantum has expired, a new process is
scheduled to run.

e Lastly, the restorestate functions reloads the values
of the general purpose registers from the stack. It exe-
cutes the eret instruction to return from the interrupt
handler and resume executing the process which was
interrupted.

6.2 Cooperating Module and Signal Handler
Since OpenWrt normally handlers hardware interrupts, we
need to provide virtual interrupts to Xinu. One dilemma
here is whether we should let the host OS kernel notify the
guest OS of a physical hardware interrupt or not. In the case

of a timer interrupt, Xinu as guest should always also receive
a timer interrupt. In the case of a serial interrupt, Xinu as
guest should only receive an interrupt if the input is for the
VM. To solve the issue of providing virtual interrupts, we
employ a function in our VMM module and a signal handler
in the vmm-launch process.

In the VMM module, we can add a binding between an IRQ
number and a handler. The vmm-launch process calls the
ioctl function in the module to initiate the binding. The
module stores the Linux process id of the guest OS so the
interrupt handler knows which process to signal. The Linux
request_irq function is called to register a shared interrupt
handler for the timer interrupt, IRQ 7. A shared interrupt
handler means that Linux calls multiple handlers when an
interrupt occurs. We made a one line modification to the
Linux kernel to allow timer interrupts to be shared. All
other interrupts are shared by default.

The vmm-launch process also installs a signal handler for a
specific signal number, using the sigaction function. The
signal number must be a real-time signal number to force
signals to be handled in a timely manner. We use signal
number 57 for the timer interrupt. The signal handler func-
tion checks if Xinu as guest has enabled interrupts by read-
ing the value of the CPO status register in the VCPU. If the
timer interrupt is enabled, the appropriate bit is set in the
CPO cause register in the VCPU to indicate a timer inter-
rupt has occurred. The signal handler then jumps to the
standard Xinu interrupt handler, located at 0x30000180 for
Xinu as guest. Xinu proceeds to handle the interrupt as nor-
mal. When the Xinu handler completes, the signal handler
clears the interrupt cause bit in the CPO cause register in
the VCPU.

The entire process of interrupt handling is shown in figure
3. When a physical timer interrupt occurs, OpenWrt calls
the normal Linux interrupt handler and our secondary in-
terrupt handler. Our secondary interrupt handler sends a
real-time signal to the guest OS process. The custom signal
handler receives the signal, sets the appropriate registers in
the VPCU and calls the Xinu interrupt handler.

7. 1O

When Xinu runs alone it relies on two devices for providing
normal input and output (I/O): a UART (or serial) device
and a TTY device. The UART device is responsible for
directly controlling and communicating with the physical
serial port hardware. The TTY device is responsible for
input line buffering, formatting, and echoing; the device is
typically used as an intermediary between a user application
(like the shell) and the UART device.

The UART device driver is asynchronous and conceptually
divided into a lower and an upper half (figure 4). Control
and status registers for the two NS16550 serial ports are
mapped to memory locations 0xB8000300 and 0xB8000400.
The UART device driver reads and writes control bits from
eight one-byte “registers” at each of these memory loca-
tions. The registers contain the status of the hardware FIFO
queue, the status of interrupts, the cause of interrupts, and
other control information. One of the eight registers is read
to receive a one-byte character or written to transmit a one-

| - - - -------------- |
| Interrupt Handler . User
| A |
:_ 5 Call /6 Return Xinu ! Space
| . P N |
| Signal U Mark VCPU |
(Handler | femw! | WrtVMM |
3 SIG57 Signal
. Interrupt | 2 Second 4 Eif l:n_el_l
' Handler Handler | \Module J'
A
1 Interrupt
Hardware

Figure 3: Interrupt handling

byte character. When an interrupt occurs, the lower-half
handles the interrupt by moving received data from hard-
ware to the inbound buffer or moving data from the out-
bound buffer to hardware. Data is read from or written to
the two buffers when a user application makes a read or
write call. The upper-half of the driver copies the data be-
tween the buffers in the driver and a user supplied buffer.
For certain system I/0, Xinu uses polling to communicate
with the physical hardware, but most I/O is performed asyn-
chronously using interrupts.

User Process

4 4
Read Write

L

Interrupt Handler
f f

Hardware

Lower Half

Upper Half

Figure 4: UART device in Xinu alone

The challenge of I/O when running Xinu as guest is sharing
with OpenWrt. OpenWrt expects to use the physical serial
port for I/O and have exclusive control over its functionality.
The guest OS is running as a user process, so it does not have
direct access to hardware or devices within the kernel. In

addition, input may be for Xinu or another process, so a
decision must be made to determine to whom input should
be provided.

7.1 Hypercalls

The solution is to allow OpenWrt to maintain exclusive con-
trol of the serial ports and require Xinu as guest to use
standard interfaces to request I/O from the Linux kernel.
Normally user processes in Linux rely on C standard library
functions or the read and write system functions for I/O.
Both of these methods “translate” the request into a sys-
tem call. The system call number is loaded into the first
argument register (a0) and the other arguments for the sys-
tem call are loaded into the subsequent argument registers.
On MIPS, the syscall instruction is executed which causes
execution to jump to the exception handler at a known ad-
dress (0x80001000 for our hardware). The exception handler
saves the state of the running process, looks up the system
call number in a table, and dispatches to the appropriate
handling function. The results of the system call are stored
in the return value register (v0), the process state is restored,
and the eret instruction is executed which causes execution
to jump back to the next instruction after the syscall.

We modified Xinu to use the same mechanism to perform
I/0. Instead of using the C standard library of Linux sys-
tem functions, we created a wrapper function within Xinu
that loads the appropriate system call number and argu-
ments and executes the syscall instruction. The syscall
instruction causes execution to jump to the exception han-
dler which OpenWrt has placed at the standard memory
location. We refer to this approach as a hypercall, because
the guest OS is making a “function call” into the host OS.
After the hypercall completes, Xinu will have performed I/O
by relying on OpenWrt. We created a special UART device
driver within Xinu, known as a uart-virtual device, which
makes a hypercall in the upper half read and write func-
tions. The device has no buffers or lower half since Xinu
relies on OpenWrt to provide this functionality. The TTY
device in Xinu is unmodified.

7.2 Shortcomings of Hypercalls

The hypercall mechanism provides functioning 1/O within
Xinu as guest, but it has two shortcomings. First, hyper-
calls require modifications to Xinu. We added a new UART
device with a different design than the original and addi-
tional code for making hypercalls. Second, hypercalls break
scheduling semantics within Xinu as guest. When Xinu
alone makes a read call and no input is currently available,
the process which made the request is placed on the wait
queue and another process is scheduled to run. When a pro-
cess running in Xinu as guest makes a read call, OpenWrt
places the entire guest OS on its wait queue and another
process in the host OS is allowed to run. Xinu as guest does
not have a chance to schedule another process to run while
a process is waiting for input.

The ideal solution is leave the UART device driver in Xinu
untouched and utilize the interrupt and privileged instruc-
tion mechanisms discussed earlier to virtualize the physical
serial hardware. When Xinu tries to read from the con-
trol and status registers of the serial ports, the VMM would
catch the illegal memory access, emulate the operations on

the registers and return control to Xinu. Xinu’s interrupt
handler can be called for a serial interrupt the same as we
have implemented with timer interrupts. Implementing I/0
without hypercalls is an important part of future work to
improve performance and correct scheduling semantics when
running Xinu as guest.

8. CHALLENGES

In this section we discuss some of the challenges we faced
throughout the project. It’s essentially the story of how we
learned from failures or bad performance, and improved the
system later on.

8.1 From Linking Libraries to Hypercalls
The first challenge was to be able to see some output from
the virtual machine. We could not directly communicate
with the serial hardware, so we attempted to use system
functions within OpenWrt. Many attempts were made to
link a Xinu kernel with the uClib library in OpenWrt. We
tried building our own shared library, using dynamic and
static libraries, and using a variety of compiler and linker
flags. All methods proved unsuccessful. The eventual solu-
tion we used is that discussed in the previous section: hy-
percalls.

8.2 From nalioc to the VMM Module

When we tried to allocate memory space for the guest OS,
we first used malloc to get the memory, put some code in it
and execute it. But by tracing the program, we learned that
the memory from malloc can be used for executing code. We
switched to building a kernel module. In the Linux kernel,
kmalloc is used for allocation of a piece of memory that is
physically contiguous, while vmalloc does not guarantee the
physical layout. However, because of hardware constraints,
kmalloc can allocate only up to 512KB memory, which is not
sufficient for our guest OS. We decided to use vmalloc, but
it failed again because we forgot to map the noncontiguous
memory page by page. Once we fixed this problem, the guest
OS initialization successfully until it tried to initialize timer
interrupt, which was our next challenge.

8.3 From Calling User Space to Signals

In order to let the guest OS have interrupts, the biggest is-
sue was how to notify a process in user space. Naturally, we
decided to have the kernel module help. But even after en-
abling the kernel to have an additional interrupt handler for
the timer interrupt, we were still in the kernel space, which
means calling the Xinu handler is not possible. Signal han-
dlers are the solution of this trouble. Before launching the
guest OS, the vimm-launch process registers a signal handler
for each interrupt, which can be triggered from the kernel
space by sending a specific signal.

8.4 From Instruction Replacement to Emula-
tion
Not all instructions can be executed in the user mode. At the
very beginning, we sacrificed the level of virtualization by
replacing such privileged instructions with direct reads from
the VCPU. But after we used the signal handlers to solve
the interrupt handling, we realized the kernel used signals
for privileged instructions: when it captures a process trying

to execute privileged instructions, is sends a SIGILL signal
to the process. Therefore, using signal handlers to emulate
the privileged instructions was even easier than virtualizing
interrupts.

9. EVALUATION

The evaluation of our virtual machine monitor focuses on
multiple facets of performance. Most evident is the perfor-
mance of our guest operating system. Xinu as guest needs
to have reasonable processing and memory throughput with
minimal time and space overhead. We use Xinu alone as
a comparison point for evaluating the performance of Xinu
as guest. We are also concerned with the performance of
our host operating system. One of our goals is to be able
to continue to use the core network routing functionality of
OpenWrt, meaning the time and space overhead of our vir-
tual machine needs to have a minimal affect on OpenWrt’s
performance. Lastly, our evaluation focuses on the VMM'’s
ease of use and the amount of code modifications required.

9.1 Timing

It is important we first discuss the timing mechanisms used
for evaluation because of their relevance to many of our per-
formance benchmarks. We are running two different operat-
ing systems, sometimes executing as single, stand-alone sys-
tems and sometimes executing in a host/guest configuration.
This diversity of configurations makes timing consistency a
difficult challenge. The most accurate mechanism for timing
we can use is the hardware clock, but not all evaluation con-
figurations allow us to access hardware at such a low level.
As a result, we are sometimes required to rely on the oper-
ating systems for providing us with timing information. We
also must be careful not to rely on any timing mechanism
whose performance we are actually evaluating (for example,
timing mechanisms within Xinu as guest are something we
evaluate in section 9.4).

When running Xinu alone we are able to directly access the
hardware clock. As described in section 6, the WRT54GL
contains a special count register which is incremented ev-
ery other processor cycle. Since our MIPS processor runs
at 200MHz, this translates to the count register being in-
cremented every 10 nanoseconds. About 42 seconds can
elapse before the count register wraps around. Obtaining
the value of the count register requires two instruction (mfc0
and a nop), which is negligible overhead. When benchmark-
ing Xinu alone, we read the value of the count register before
and after our desired code execution and calculate the dif-
ference to determine the elapsed time.

When running OpenWrt alone or Xinu as guest we do not
have direct access to the hardware clock. Instead, we rely
on the Linux kernel’s clock. From user space we use the
gettimeofday system call. Making a system call has con-
siderably more overhead than reading the count register, but
it is the only viable option we have. Executing the system
call from within Xinu as guest is equivalent to the hyper-
call mechanism discussed in section 7.1; for benchmarking
OpenWrt alone, the system call is no different from the con-
ventions of a normal user process. We have measured the
overhead of the system call to be about 2.318 nanoseconds.
To obtain timing information within our module, we use the

T T T T ;
_ 5000 | i
(8]
(]
Y
9 4000 i
[J]
x
3
S 3000 - i
=)
g
‘5 2000 | i
]
T 1000 |+ OpenWrt alone —o— |
|) IWith Xinu als guest %IH

1000 2000 3000 4000 5000
Sent (packets/sec)

Figure 5: Network throughput

same clock in the Linux kernel but directly read from the
clock structure instead of making a system call.

9.2 Processing and Memory Performance

Our first evaluation criteria focuses on the overall perfor-
mance of the virtual machine. The nqueens problem is used
as a processor intensive benchmark. The goal is to place
n queens on an n x n chess board such that no queen is
able to capture another queen using standard chess moves.
We use an iterative solution for boards of size 8 x 8, 10 x
10, and 12 x 12. An array summing algorithm is used as a
memory intensive benchmark. The algorithm allocates two
one-dimensional arrays of size n and fills them with inte-
ger values 0 to n-1. The algorithm then sums the values at
each index into a third array of size n. We use arrays with
between 10000 and 90000 elements. The benchmarks were
run on OpenWrt alone, Xinu alone, and Xinu as guest to
compare the performance of the three configurations. The
results of the benchmarks are shown in table 1.

9.3 Network Performance

One of the motivations of building a VMM was to isolate
new services from the core networking functionality of the
router. To meet this goal, the router needs to route packets
at almost the same speed as before. We measure the network
performance of the router by using two end-hosts to generate
and receive traffic. Each end host is equipped with a gigabit
Ethernet card and connected to one of the LAN ports on
the router. One host generates UDP packets, with a 1000
byte payload of zeroes, at a constant rate; the other end
host receives the packets and measures the rate of packets
per second. Packets are sent and received for 10 seconds.
Figure 5 shows the expected and measured packet rates for
OpenWrt alone and OpenWrt with Xinu as guest running
the nqueens benchmark.

As the figure shows, there is no measurable difference be-
tween the router running OpenWrt alone and running Open-
Wrt with Xinu as guest. OpenWrt receives and processes
network packets exclusively in kernel space, so routing func-
tionality is given precedence over user level processes. This
results in Xinu as guest receiving less processing time as the
network load increases. Also, it is possible a difference may
emerge with higher traffic loads, but the network hardware
of the end hosts are unable to send packets reliably at higher

Benchmark OpenWrt alone (ms) | Xinu alone (ms) | Xinu as guest (ms)
nqueens(8x8) 6.366 5.210 5.279
nqueens(10x10) 159.689 135.067 136.798
nqueens(12x12) 5227.73 4524.27 4584.21
arraysum(10000) 3.447 3.295 3.356
arraysum(20000) 7.257 6.918 7.048
arraysum(30000) 17.355 10.001 10.219
arraysum(40000) 21.993 14.091 14.380
arraysum(50000) 29.205 16.720 17.062
arraysum(60000) 34.317 19.891 20.276
arraysum(70000) 77.704 23.307 23.772
arraysum(80000) 88.802 28.447 28.965
arraysum(90000) 99.479 30.708 31.329

Table 1: Execution time for processing and memory intensive benchmarks

Benchmark | Xinu alone (ms) | Xinu as guest (ms)
Sleep(1000) 999.93 998.164
Sleep(2000) 1999.93 1995.72
Sleep(3000) 2999.93 2993.52
Sleep(4000) 3999.93 3991.37
Sleep(5000) 4999.93 4989.19

Table 2: Observed sleep time

rates.

9.4 Timer Accuracy

Xinu relies on timer interrupts for maintaining the system
clock and making appropriate scheduling decisions for pro-
cesses. To ensure proper functioning of Xinu as guest, we
measure the accuracy of the timer using the sleep function.
The measurement code stores the value of the system clock,
sleeps for a specified number of seconds, and again retrieves
the value of the system clock to determine the elapsed time.
It is important to note that we rely on the system clock in
OpenWrt when measuring timer accuracy in Xinu as guest.
This separates the clock we are using as a baseline from the
clock whose accuracy we are attempting to measure. Table
2 lists the observed clock times on Xinu alone and Xinu as
guest.

Xinu as guest exhibits up to 11 milliseconds of clock skew,
while Xinu alone is consistently within a few microseconds
of the expected sleep time. Based on the results, it is ex-
pected that the clock skew in Xinu as guest will increase
as the sleep time increases. This clock skew has multiple
potential causes. The first is a queueing of timer interrupt
signals. If the VMM does not immediately process the clock
interrupt signals, multiple signals may be queued. When the
signals are eventually processed, the Xinu interrupt handler
is called multiple times in rapid succession, speeding up the
clock and causing a shorter sleep duration than expected.
Another possible cause is the latency between when an ac-
tual interrupt occurs and when Xinu as guest receives the
interrupt. We discuss this latency in section 9.6 below.

9.5 Privileged Instruction Handling

Instruction Execution Time (us)
mtcO vO, cO_cause 39.932
mfcO vO, cO_status 40.207
cache 0x8 0(v0) 38.884

Table 3: Execution time for privileged instruction
emulation

As discussed in section 5, the VMM uses a signal handler
to emulate privileged instructions. This design makes priv-
ileged instructions costly when compared to running Xinu
alone. Running Xinu alone, the processor only needs to
execute a single instruction; running Xinu as guest, the pro-
cessor needs to execute hundreds of instructions to dispatch
to the signal handler, emulate the instruction, and return
control to Xinu. We measure the overhead of emulating in-
structions by capturing the system time, executing a privi-
leged instruction in Xinu as guest, and capturing the system
time again to calculated an elapsed execution time. Table
3 lists the average time to execute a few different privileged
instructions.

The overhead of using a signal handler to emulate privileged
instructions is a significant amount. The normal execution
time for these privileged instructions is a few nanoseconds.
Based on the timing measurements, the signal handler is sev-
eral thousand times slower. However, the use of privileged
instructions is limited to a few functions within Xinu — pri-
marily functions related to startup, interrupt control, and
interrupt handling. The relative infrequency of privileged
instructions makes the overhead more tolerable.

9.6 Timer Interrupt Handling

A signal handler is also used for timer interrupts, in con-
junction with a secondary interrupt handler, as discussed in
section 6. For reasonable performance we need to: 1) spend
minimal time in the secondary interrupt handler, 2) have low
latency from interrupt occurrence to guest OS handling of
the interrupt, and 3) have interrupts delivered to the guest
at accurate intervals. The timer accuracy measurements al-
ready evaluate the third criteria.

To evaluate the time spent in the secondary timer interrupt

handler, we measure the time difference between when the
handler starts and when it completes. Averaging over the
middle 80% of 1000 interrupts, the secondary handler takes
14.823 ps, with a standard deviation of 2.378 us.

We measure the latency from timer interrupt occurrence to
guest OS handling by calculating the time deference between
when the secondary interrupt handler starts and when the
signal handler completes. Again averaging over the mid-
dle 80% of 1000 interrupts, the measured latency is 223.606
s, with a standard deviation of 1.083 us. OpenWrt config-
ures the hardware clock to fire a timer interrupt every 4 ms.
Using the measured latency as a measure of time spent han-
dling timer interrupts for the VM, about 5.59% of the total
available processing time is consumed by this task. Since the
measured latency does not include the execution time of the
normal timer interrupt handler in OpenWrt, this processing
time is largely overhead specific to running Xinu as guest.

9.7 Memory Usage

Processing time is not the only constrained resource in the
system. With only 16MB of RAM we are also concerned
about the memory usage of our VM. Running the free com-
mand in OpenWrt before launching the VM reports 13656
KB of available system memory with 8740 KB in use. This
implies the OpenWrt code is 2728 KB in size, including 4
KB of reserved space at the start of physical memory. The
compiled Xinu code we run in the VM is 140 KB in size.
The small size of the Xinu image provides greater flexibility
in the amount of memory we need to allocate to the VM.
We chose to allocate 1024 KB of memory to the VM: 4 KB
reserved memory, 140 KB for Xinu code, and 880 KB heap
space. Our vmm-launch process also allocates 4 KB of spe-
cial memory for storing the registers of our VCPU. Only
about 100 bytes of this memory space is used, but we can
only allocate memory in 4 KB page sizes. Even while run-
ning Xinu as guest, 3888 KB of system memory is still avail-
able for OpenWrt to use as necessary. If more services were
running in the guest OS, it may be advisable to increase its
memory allocation and utilize some of this available memory
in the host OS.

9.8 Code Modifications

The final evaluation criteria is the number of code modifi-
cations required to OpenWrt and Xinu to successfully run
Xinu as guest. Our initial goal was to implement full vir-
tualization with no modifications to Xinu. However, due to
time constraints, we opted for paravirtualization with some
modifications to the guest OS code.

The code modifications required to Xinu span 12 files, plus
the creation of a new device driver for virtualized I/0O. Ex-
cluding the device driver, we modified about 50 lines of
MIPS assembly and about 100 lines of C code. The new de-
vice driver is about 150 lines of C code. Our Xinu as guest
image is composed of about 11,100 lines of C code and about
500 lines of MIPS assembly in total. Our code changes af-
fect about 2% of the C code and 10% of the assembly code.
Further virtualization efforts will allow us to decrease these
percentages, with an eventual goal of no modifications.

The majority of code for virtualization resides within the
VMM module and vmm-launch process running in Open-

Wrt. The VMM module consists of about 300 lines of C
code. The vmm-launch process — which includes code to
prepare the virtual environment and custom signal handlers
for interrupts and privileged instructions — consists of about
425 lines of C code. We also made a single one line change
to the 2.6.30 Linux kernel in arch/mips/kernel/cevt-rdk.c
to allow the timer IRQ to be shared amongst multiple inter-
rupt handlers. As we move closer to full virtualization in the
future, the code size of the VMM module and vmm-launch
will certainly increase.

10. RELATED WORK

System-level virtualization has attracted the attention of
the operating system community since the 1970s. It pro-
vides many benefits for reliability [9] and cluster computing
[14]. Recent virtual machines monitors that have received
much attention include VMware ESX Server [13] and Xen
[4]. Both of these target the x86 architecture, but present
some ideas that are relevant across architectures. VMware
uses a technique called ballooning to help cope with over-
commitment of memory. Xen uses I/O rings to manage data
transfer between devices and guest operating systems.

Virtualization for the MIPS architecture is not as popular,
but a few VMMs exist. Disco [8] is the most notable. It
is designed to run commodity operating systems on a cc-
NUMA multiprocessor computer, for which no dedicated
operating system exists. A few “jail” based solutions also
exist for MIPS. Linux V-Server [2] and OpenVZ [3] modify
the Linux kernel to provide isolated execution environments,
but neither is considered to provide either full or paravirtu-
alization.

Virtualization on embedded systems is a relatively new area
of interest. The possibility and difficulties in building hy-
pervisors on mobile devices been discussed by [10] and [11].
The main problems in mobile devices described in the papers
are battery life and physical-position privacy. Our project
does not face either of these issues. MobiVMM [15] is an ac-
tual VMM implementation for mobile phones that addresses
some of the issues of battery life and embedded device re-
sources constraints.

11. CONCLUSION & FUTURE WORK

We have built a virtual machine monitor to run Embed-
ded Xinu as a guest OS within OpenWrt. The system uses
paravirtualization, with some modifications made to Xinu.
The VMM is composed of a Linux kernel module and a user-
level process. Sufficient support is provided to allow Xinu to
startup, handle timer interrupts, provide I/O, and execute
processes in the Xinu shell. The virtual machine perfor-
mance for processor and memory intensive tasks is similar
to the execution time when running OpenWrt or Xinu alone.
Network throughput is preserved and the virtual machine’s
clock is relatively accurate. The VMM is currently suitable
for wide spread use.

There are two possible directions for future work. One is
to decrease the modifications required to Xinu and work to-
wards full virtualization. Achieving this goal requires han-
dling of multiple signal handlers simultaneously. In addi-
tion, the VCPU needs to be adapted to provide a virtualized
UART device that will work with the normal UART device

driver in Xinu. The second direction for future work is pro-
viding support for more components of the Xinu operating
system. We disabled networking and memory protection due
to time constraints, but a full VMM should support both of
these. Network virtualization will require the use of NAT
within the host OS to differentiate between traffic destined
for OpenWrt and traffic directed to Xinu. Memory protec-
tion will require virtualization of the hardware TLB. These
improvements will allow Xinu as guest to provide more ser-
vices and fully satisfy the motivations for the project.

12. REFERENCES
[1] DD-WRT. http://www.dd-wrt.com.

2] Linux-vserver. http://linux-vserver.org.

3] OpenVZ. http://wiki.openvz.org.

4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164-177. ACM, 2003.

[5] D. Brylow. Embedded xinu project wiki.
http://xinu.mscs.mu.edu.

[
[
[

[6] D. Brylow. An experimental laboratory environment
for teaching embedded hardware systems. In WCAFE
’07: Proceedings of the 2007 workshop on Computer
architecture education, pages 44-51, New York, NY,
USA, 2007. ACM.

[7] D. Brylow. An experimental laboratory environment
for teaching embedded operating systems. SIGCSE
Bull., 40(1):192-196, 2008.

[8] E. Bugnion, S. Devine, and M. Rosenblum. Disco:
running commodity operating systems on scalable
multiprocessors. In SOSP ’97: Proceedings of the
sizteenth ACM symposium on Operating systems
principles, pages 143—-156, New York, NY, USA, 1997.
ACM.

[9] P. M. Chen and B. D. Noble. When virtual is better
than real. In HOTOS ’01: Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems, page
133, Washington, DC, USA, 2001. IEEE Computer
Society.

[10] L. P. Cox and P. M. Chen. Pocket hypervisors:
Opportunities and challenges. In HOTMOBILE ’07:
Proceedings of the Fighth IEEE Workshop on Mobile
Computing Systems and Applications, pages 4650,
Washington, DC, USA, 2007. IEEE Computer Society.

[11] G. Heiser. The role of virtualization in embedded
systems. In ITES ’08: Proceedings of the 1st workshop
on Isolation and integration in embedded systems,
pages 11-16, New York, NY, USA, 2008. ACM.

[12] Linksys. WRT54GL wireless-G broadband router.
http://wuw.linksys.com.

[13] C. A. Waldspurger. Memory resource management in
vmware esx server. SIGOPS Oper. Syst. Rev.,
36(SI):181-194, 2002.

[14] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and gray-box strategies for virtual
machine migration. In NSDI, 2007.

[15] S. Yoo, Y. Liu, C.-H. Hong, C. Yoo, and Y. Zhang.
Mobivmm: a virtual machine monitor for mobile
phones. In MobiVirt 08: Proceedings of the First

Workshop on Virtualization in Mobile Computing,
pages 1-5, New York, NY, USA, 2008. ACM.

