
Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

Xiating Ouyang

University of Wisconsin–Madison

PhD Defense, November 21, 2023

Committee: Uri Andrews, Jin-Yi Cai, Paris Koutris, Jignesh Patel, Jef Wijsen

Xiating Ouyang Consistent Query Answering PhD Defense 1 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

Xiating Ouyang Consistent Query Answering PhD Defense 2 / 71

JZ: want to go biking today at 6pm?

XO: . . . is that a good idea?

JZ: that’s not what I see . . .

Us: let’s play badminton instead . . .

Xiating Ouyang Consistent Query Answering PhD Defense 3 / 71

JZ: want to go biking today at 6pm?

XO: . . . is that a good idea?

JZ: that’s not what I see . . .

Us: let’s play badminton instead . . .

Xiating Ouyang Consistent Query Answering PhD Defense 3 / 71

JZ: want to go biking today at 6pm?

XO: . . . is that a good idea?

JZ: that’s not what I see . . .

Us: let’s play badminton instead . . .

Xiating Ouyang Consistent Query Answering PhD Defense 3 / 71

JZ: want to go biking today at 6pm?

XO: . . . is that a good idea?

JZ: that’s not what I see . . .

Us: let’s play badminton instead . . .

Xiating Ouyang Consistent Query Answering PhD Defense 3 / 71

JZ: want to go biking today at 6pm?

XO: . . . is that a good idea?

JZ: that’s not what I see . . .

Us: let’s play badminton instead . . .

Xiating Ouyang Consistent Query Answering PhD Defense 3 / 71

Alternatives from NLP, ML models . . .

Our focus: relational databases

Xiating Ouyang Consistent Query Answering PhD Defense 4 / 71

Alternatives from NLP, ML models . . .

Our focus: relational databases

Xiating Ouyang Consistent Query Answering PhD Defense 4 / 71

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

Inconsistent data: data that violates integrity constraints

Primary key (PK) constraint: ≤ 1 tuple for each PK value

Xiating Ouyang Consistent Query Answering PhD Defense 5 / 71

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

Inconsistent data: data that violates integrity constraints

Primary key (PK) constraint: ≤ 1 tuple for each PK value

Xiating Ouyang Consistent Query Answering PhD Defense 5 / 71

Primary key constraint (violated)

Metadata of stackoverflow.com as of 02/2021 from Stack Exchange Data Dump

551M rows, ∼400 GB

Table # of rows inconsistencyRatio blockSize # of Attributes

Users 14M 0% 1 14
Posts 53M 0% 1 20
PostHistory 141M 0.001% 4 9
Badges 40M 0.58% 941 4
Votes 213M 30.9% 1441 6

inconsistencyRatio = # facts violating PK constraint / # of rows

blockSize = max. # facts with the same PK

Xiating Ouyang Consistent Query Answering PhD Defense 6 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

Xiating Ouyang Consistent Query Answering PhD Defense 7 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND Badmin. = "Yes"

q(x) = ∃y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

q(db) = {Answers of q on db}
= {city | q[x→city] is true on db}
= {city | db |= q[x→city]}
= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 8 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND Badmin. = "Yes"

q(x) = ∃y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

q(db) = {Answers of q on db}
= {city | q[x→city] is true on db}
= {city | db |= q[x→city]}
= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 8 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND Badmin. = "Yes"

q(x) = ∃y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

q(db) = {Answers of q on db}
= {city | q[x→city] is true on db}
= {city | db |= q[x→city]}
= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 8 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND Badmin. = "Yes"

q(x) = ∃y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

q(db) = {Answers of q on db}
= {city | q[x→city] is true on db}
= {city | db |= q[x→city]}
= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 8 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND Badmin. = "Yes"

q(x) = ∃y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

q(db) = {Answers of q on db}
= {city | q[x→city] is true on db}
= {city | db |= q[x→city]}
= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 8 / 71

So that we are on the same page. . .

DB system DB theory Logic

Database Finite relations Finite structure w/o func.
SQL Query w/o Aggr. Query First-order formula
Sel.-Proj.-Join Query Conjunctive query (CQ) Formula in FO(∃,∧)

Xiating Ouyang Consistent Query Answering PhD Defense 9 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning

: 2 repairs

(can be exponential. . .)

q(rep) vs. q(rep′)

City Weather

Chicago Rainy/Sunny
Milwaukee Rainy/Sunny

Oconomowoc Rainy/Sunny
. . .

Xiating Ouyang Consistent Query Answering PhD Defense 10 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning

: 2 repairs

(can be exponential. . .)

q(rep) vs. q(rep′)

City Weather

Chicago Rainy/Sunny
Milwaukee Rainy/Sunny

Oconomowoc Rainy/Sunny
. . .

Xiating Ouyang Consistent Query Answering PhD Defense 10 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning

: 2 repairs

(can be exponential. . .)

q(rep)

vs. q(rep′)

City Weather

Chicago Rainy/Sunny
Milwaukee Rainy/Sunny

Oconomowoc Rainy/Sunny
. . .

Xiating Ouyang Consistent Query Answering PhD Defense 10 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning : 2 repairs

(can be exponential. . .)

q(rep) vs. q(rep′)

City Weather

Chicago Rainy/Sunny
Milwaukee Rainy/Sunny

Oconomowoc Rainy/Sunny
. . .

Xiating Ouyang Consistent Query Answering PhD Defense 10 / 71

Finding consistent answers
Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning : 2 repairs (can be exponential. . .)

q(rep) vs. q(rep′)

City Weather

Chicago Rainy/Sunny
Milwaukee Rainy/Sunny

Oconomowoc Rainy/Sunny
. . .

Xiating Ouyang Consistent Query Answering PhD Defense 10 / 71

Finding consistent answers

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning : 2 repairs (can be exponential. . .)

Which answers are guaranteed to be returned on all repairs of dirty data?

Consistent Answer of q over db =

⋂
rep is a repair of db

q(rep)

= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 11 / 71

Finding consistent answers

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning : 2 repairs (can be exponential. . .)

Which answers are guaranteed to be returned on all repairs of dirty data?

Consistent Answer of q over db =

⋂
rep is a repair of db

q(rep)

= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 11 / 71

Finding consistent answers

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning : 2 repairs (can be exponential. . .)

Which answers are guaranteed to be returned on all repairs of dirty data?

Consistent Answer of q over db =

⋂
rep is a repair of db

q(rep)

= {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 11 / 71

Finding consistent answers

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning : 2 repairs (can be exponential. . .)

Which answers are guaranteed to be returned on all repairs of dirty data?

Consistent Answer of q over db =

⋂
rep is a repair of db

q(rep) = {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 11 / 71

Finding consistent answers

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q(db) = {MSN, LA, Seattle} . . . on dirty data

Data cleaning : 2 repairs (can be exponential. . .)

Which answers are guaranteed to be returned on all repairs of dirty data?

Consistent Answer of q over db =
⋂

rep is a repair of db

q(rep) = {MSN, LA, Seattle}

Xiating Ouyang Consistent Query Answering PhD Defense 11 / 71

Finding consistent answers without enumeration

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q′: find all cities that are suitable for badminton at 6pm

for all possible weather for the same city

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND (for all weather with the same Forecast.city,

Badmin. = "Yes")

q′(x) = ∃y : Forecast(x , y) ∧ ∀y :
(
Forecast(x , y) → ∃z : Activity(y , z , "Yes")

)
Xiating Ouyang Consistent Query Answering PhD Defense 12 / 71

Finding consistent answers without enumeration

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q′: find all cities that are suitable for badminton at 6pm

for all possible weather for the same city

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND (for all weather with the same Forecast.city,

Badmin. = "Yes")

q′(x) = ∃y : Forecast(x , y) ∧ ∀y :
(
Forecast(x , y) → ∃z : Activity(y , z , "Yes")

)
Xiating Ouyang Consistent Query Answering PhD Defense 12 / 71

Finding consistent answers without enumeration

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q′: find all cities that are suitable for badminton at 6pm

for all possible weather for the same city

SELECT DISTINCT city

FROM Forecast, Activity

WHERE Forecast.weather = Activity.weather

AND (for all weather with the same Forecast.city,

Badmin. = "Yes")

q′(x) = ∃y : Forecast(x , y) ∧ ∀y :
(
Forecast(x , y) → ∃z : Activity(y , z , "Yes")

)
Xiating Ouyang Consistent Query Answering PhD Defense 12 / 71

Finding consistent answers without enumeration

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

q: find all cities that are suitable for badminton at 6pm

q′: find all cities that are suitable for badminton at 6pm

for all possible weather for the same city

Definition

q′ is a first-order (FO) rewriting of q if

q′(db) = Consistent Answer of q over db =
⋂

rep is a repair of db

q(rep)

Not all q has an FO-rewriting. . .

Xiating Ouyang Consistent Query Answering PhD Defense 13 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

For which queries can we find the consistent answers efficiently?

How efficient can we find the consistent answers?

Can we build a system finding the consistent answers?

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

For which queries can we find the consistent answers efficiently?

How efficient can we find the consistent answers?

Can we build a system finding the consistent answers?

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

For which queries can we find the consistent answers efficiently?

How efficient can we find the consistent answers?

Can we build a system finding the consistent answers?

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

For which queries can we find the consistent answers efficiently?

How efficient can we find the consistent answers?

Can we build a system finding the consistent answers?

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

System motivations

𝑞

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

System motivations

𝑞
Is the query q
FO-rewritable?

𝑞′

yes
no

Consis. answer
be computed in
PTIME?

yes

no

PTIME algorithm

enum. algorithm

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

System motivations

𝑞
Is the query q
FO-rewritable?

𝑞′

yes
no

Consis. answer
be computed in
PTIME?

yes

no

PTIME algorithm

enum. algorithm

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

System motivations

𝑞
Is the query q
FO-rewritable?

𝑞′

yes
no

Consis. answer
be computed in
PTIME?

yes

no

PTIME algorithm

enum. algorithm

Xiating Ouyang Consistent Query Answering PhD Defense 14 / 71

Theoretical motivations

Problem: CERTAINTY(q), for a fixed query q as an FO sentence (T/F)

Input: a database db (as finite relations)

Question: does rep |= q hold for every rep of db ?

Repair (rep): a maximal subset of db that satisfies the PK constraint

Proposition

For every fixed query q, CERTAINTY(q) is in coNP.

Proof: Guess a rep of db and check if rep |= q in P (even in AC0) since q is fixed.

Xiating Ouyang Consistent Query Answering PhD Defense 15 / 71

Theoretical motivations

Problem: CERTAINTY(q), for a fixed query q as an FO sentence (T/F)

Input: a database db (as finite relations)

Question: does rep |= q hold for every rep of db ?

Repair (rep): a maximal subset of db that satisfies the PK constraint

Proposition

For every fixed query q, CERTAINTY(q) is in coNP.

Proof: Guess a rep of db and check if rep |= q in P (even in AC0) since q is fixed.

Xiating Ouyang Consistent Query Answering PhD Defense 15 / 71

Theoretical motivations

coNP

Assuming P̸= NP. . .

P

coNP-c.coNP-intermediate

̸= ∅ [Ladner’75]

Possibly NP-intermediate: Graph Isomorphism, Factoring

Conjecture

For every union of BCQ q, CERTAINTY(q) is in P or coNP-complete.

unions of BCQ: q1 ∨ · · · ∨ qn for BCQs qi in FO(∃,∧)

Xiating Ouyang Consistent Query Answering PhD Defense 16 / 71

Theoretical motivations

coNP

Assuming P̸= NP. . .

P coNP-c.coNP-intermediate

̸= ∅ [Ladner’75]

Possibly NP-intermediate: Graph Isomorphism, Factoring

Conjecture

For every union of BCQ q, CERTAINTY(q) is in P or coNP-complete.

unions of BCQ: q1 ∨ · · · ∨ qn for BCQs qi in FO(∃,∧)

Xiating Ouyang Consistent Query Answering PhD Defense 16 / 71

Theoretical motivations

coNP

Assuming P̸= NP. . .

P coNP-c.coNP-intermediate

̸= ∅ [Ladner’75]

Possibly NP-intermediate: Graph Isomorphism, Factoring

Conjecture

For every union of BCQ q, CERTAINTY(q) is in P or coNP-complete.

unions of BCQ: q1 ∨ · · · ∨ qn for BCQs qi in FO(∃,∧)

Xiating Ouyang Consistent Query Answering PhD Defense 16 / 71

Theoretical motivations

coNP

Assuming P̸= NP. . .

P coNP-c.coNP-intermediate

̸= ∅ [Ladner’75]

Possibly NP-intermediate: Graph Isomorphism, Factoring

Conjecture

For every union of BCQ q, CERTAINTY(q) is in P or coNP-complete.

unions of BCQ: q1 ∨ · · · ∨ qn for BCQs qi in FO(∃,∧)

Xiating Ouyang Consistent Query Answering PhD Defense 16 / 71

Relationship with Constraint Satisfaction Problems (CSP)

Conjecture

For every union of BCQ q, CERTAINTY(q) is in P or coNP-complete.

Conservative CSP≤p CERTAINTY(q) [Fontaine’15]

CSP ≤p CQA for UCQs w.r.t. GAV constraints [Fontaine’15]

Conservative CSP is in P or NP-complete. [Bulatov’03]

CSP is in P or NP-complete. [Bulatov’17 & Zhuk’17]

Xiating Ouyang Consistent Query Answering PhD Defense 17 / 71

Relationship with Constraint Satisfaction Problems (CSP)

Conjecture

For every union of BCQ q, CERTAINTY(q) is in P or coNP-complete.

Conservative CSP≤p CERTAINTY(q) [Fontaine’15]

CSP ≤p CQA for UCQs w.r.t. GAV constraints [Fontaine’15]

Conservative CSP is in P or NP-complete. [Bulatov’03]

CSP is in P or NP-complete. [Bulatov’17 & Zhuk’17]

Xiating Ouyang Consistent Query Answering PhD Defense 17 / 71

Our focus

Conjecture

For every union of BCQ q, CERTAINTY(q) is in P or coNP-complete.

Settled when q is self-join-free (SJF)! [Koutris & Wijsen, PODS’15, ICDT’19]

q(x) = ∃y , z : Forecast(x , y) ∧ Activity(y , z , "Yes") ✓

q′ = ∃y : Flight("Madison", y) ∧ Flight(y , "LA") ×

Xiating Ouyang Consistent Query Answering PhD Defense 18 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 19 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 20 / 71

It starts from Acyclic Queries. . .

Xiating Ouyang Consistent Query Answering PhD Defense 21 / 71

Acyclic query evaluation
SELECT DISTINCT 1

FROM Forecast, Activity

WHERE Forecast.weather

= Activity.weather

AND Activity.Badmin = "Yes"

q = ∃x , y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

Forecast(x , y) Activity(y , z , "Yes") Join Tree of q

Xiating Ouyang Consistent Query Answering PhD Defense 22 / 71

Acyclic query evaluation
SELECT DISTINCT 1

FROM Forecast, Activity

WHERE Forecast.weather

= Activity.weather

AND Activity.Badmin = "Yes"

q = ∃x , y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

Forecast(x , y) Activity(y , z , "Yes") Join Tree of q

Xiating Ouyang Consistent Query Answering PhD Defense 22 / 71

Acyclic query evaluation
SELECT DISTINCT 1

FROM Forecast, Activity

WHERE Forecast.weather

= Activity.weather

AND Activity.Badmin = "Yes"

q = ∃x , y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

Forecast(x , y) Activity(y , z , "Yes") Join Tree of q

Xiating Ouyang Consistent Query Answering PhD Defense 22 / 71

Yannakakis [VLDB’81]

Our result

The answer to every Boolean acyclic query can be computed in O(|db|).

consistent answer

∧
with a pair-pruning join tree (PPJT)

non-Boolean ≤P
T Boolean

Xiating Ouyang Consistent Query Answering PhD Defense 23 / 71

Yannakakis [VLDB’81] Our result

The answer to every Boolean acyclic query can be computed in O(|db|).

consistent answer

∧
with a pair-pruning join tree (PPJT)

non-Boolean ≤P
T Boolean

Xiating Ouyang Consistent Query Answering PhD Defense 23 / 71

Yannakakis [VLDB’81] Our result

The answer to every Boolean acyclic query can be computed in O(|db|).

consistent answer

∧
with a pair-pruning join tree (PPJT)

non-Boolean ≤P
T Boolean

Xiating Ouyang Consistent Query Answering PhD Defense 23 / 71

Xiating Ouyang Consistent Query Answering PhD Defense 24 / 71

Original query (prev. slide) + primary key info
LinCQA−−−−→ Query rewriting

Xiating Ouyang Consistent Query Answering PhD Defense 25 / 71

Original query (prev. slide) + primary key info
LinCQA−−−−→ Query rewriting

Xiating Ouyang Consistent Query Answering PhD Defense 25 / 71

PPJT is a wide class

+ ⊂ Selection, Projection, Join queries

+ star/snowflake schema (e.g. 14/21 TPC-H)

+ Every acyclic query in Cforest [Fuxman & Miller’05] has a PPJT

− no self-joins. . .

− no aggregation (yet) [Dixit & Kolaitis, 2022] [El Khalfioui & Wijsen, 2022]

Xiating Ouyang Consistent Query Answering PhD Defense 26 / 71

PPJT is a wide class

+ ⊂ Selection, Projection, Join queries

+ star/snowflake schema (e.g. 14/21 TPC-H)

+ Every acyclic query in Cforest [Fuxman & Miller’05] has a PPJT

− no self-joins. . .

− no aggregation (yet) [Dixit & Kolaitis, 2022] [El Khalfioui & Wijsen, 2022]

Xiating Ouyang Consistent Query Answering PhD Defense 26 / 71

From Join Tree to Pair-pruning Join Tree (PPJT)

Xiating Ouyang Consistent Query Answering PhD Defense 27 / 71

Pair-pruning join tree (PPJT)

A join tree rooted at some atom is a PPJT if

the root of every subtree is unattacked in the subtree

Forecast(x , y)

Activity(y , z , "Yes")

Xiating Ouyang Consistent Query Answering PhD Defense 28 / 71

Pair-pruning join tree (PPJT)

A join tree rooted at some atom is a PPJT if

the root of every subtree is unattacked in the subtree

Forecast(x , y)

Activity(y , z , "Yes")

Xiating Ouyang Consistent Query Answering PhD Defense 28 / 71

Pair-pruning join tree (PPJT)

A join tree rooted at some atom is a PPJT if

the root of every subtree is unattacked in the subtree

Forecast(x , y)

Activity(y , z , "Yes")

Xiating Ouyang Consistent Query Answering PhD Defense 28 / 71

Pair-pruning join tree (PPJT)

A join tree rooted at some atom is a PPJT if

the root of every subtree is unattacked in the subtree

Forecast(x , y)

Activity(y , z , "Yes")

Xiating Ouyang Consistent Query Answering PhD Defense 28 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

LinCQA: From PPJT to FO-rewriting

Remove a primary key if some tuple with this primary key is “bad”

Forecast(x , y)

Activity(y , z , "Yes")

Activityfkey (y) :- Activity(y, z,w),w ̸= "Yes"

×
×

×

Activityjoin(y) :- Activity(y, z,w),¬Activityfkey (y)

Childjoin(α⃗) :- Child(u⃗, v⃗),¬Childfkey (u⃗)

Forecastfkey (x) :- Forecast(x, y),¬Activityjoin(y)

∀Child : Rootfkey (⃗x) :- Root(⃗x, y⃗),¬Childjoin(α⃗)

Forecastjoin() :- Forecast(x, y),¬Forecastfkey (x)

✓

✓
✓

also expressible in SQL!
runs in O(N)

Xiating Ouyang Consistent Query Answering PhD Defense 29 / 71

From Boolean to non-Boolean

SELECT DISTINCT A1, A2 FROM T WHERE A3 = 42

Step 1 Evaluate directly

A1 A2

a b
x y
.

Step 2 Reduce to Boolean (using PPJT)

SELECT DISTINCT 1 FROM T WHERE A3 = 42 AND A1 = a AND A2 = b

if yes, then output (a, b), otherwise continue

SELECT DISTINCT 1 FROM T WHERE A3 = 42 AND A1 = x AND A2 = y

. . .

LinCQA−−−−→ a single SQL/Datalog query

Xiating Ouyang Consistent Query Answering PhD Defense 30 / 71

Acyclic q PPJT Yannakakis [VLDB’81]

Boolean q O(N) O(N)
non-Boolean q O(N · |OUTinconsistent|) O(N · |OUT|)
free-connex q O(N + |OUTconsistent|) O(N + |OUT|)

Consistent answers of common join queries can be computed with no
asymptotic overhead

Xiating Ouyang Consistent Query Answering PhD Defense 31 / 71

Acyclic q PPJT Yannakakis [VLDB’81]

Boolean q O(N) O(N)
non-Boolean q O(N · |OUTinconsistent|) O(N · |OUT|)
free-connex q O(N + |OUTconsistent|) O(N + |OUT|)

Consistent answers of common join queries can be computed with no
asymptotic overhead

Xiating Ouyang Consistent Query Answering PhD Defense 31 / 71

Experiments

Xiating Ouyang Consistent Query Answering PhD Defense 32 / 71

Setup & Baselines

System Target class Interm. output Backend

CAvSAT * SAT formula SQL Server & MaxHS
Conquer Cforest SQL SQL Server

Improved Conquesto SJF FO SQL SQL Server
LinCQA PPJT SQL SQL Server

Xiating Ouyang Consistent Query Answering PhD Defense 33 / 71

Stackoverflow data

Metadata of stackoverflow.com as of 02/2021 from Stack Exchange Data Dump

551M rows, 400 GB

Table # of rows inconsistencyRatio blockSize # of Attributes

Users 14M 0% 1 14
Posts 53M 0% 1 20
PostHistory 141M 0.001% 4 9
Badges 40M 0.58% 941 4
Votes 213M 30.9% 1441 6

Xiating Ouyang Consistent Query Answering PhD Defense 34 / 71

Stackoverflow results

Q1 : Posts ▷◁ Votes Q2 : Users ▷◁ Badges Q3 : Users ▷◁ Posts

Q4 : Users ▷◁ Posts ▷◁ Comments

Q5 : Posts ▷◁ PostHistory ▷◁ Votes ▷◁ Comments

Original Query LinCQA Conquer FastFO CAvSAT

Q1 Q2 Q3 Q4 Q5

100

101

102

103

N/
A

Ti
m

e
Ou

t

N/
A

poss. 27578 145 38320 3925 1250
cons. 27578 145 38320 3925 1245

Xiating Ouyang Consistent Query Answering PhD Defense 35 / 71

Stackoverflow results

Q1 : Posts ▷◁ Votes Q2 : Users ▷◁ Badges Q3 : Users ▷◁ Posts

Q4 : Users ▷◁ Posts ▷◁ Comments

Q5 : Posts ▷◁ PostHistory ▷◁ Votes ▷◁ Comments

Original Query LinCQA Conquer FastFO CAvSAT

Q1 Q2 Q3 Q4 Q5

100

101

102

103

N/
A

Ti
m

e
Ou

t

N/
A

poss. 27578 145 38320 3925 1250
cons. 27578 145 38320 3925 1245

Xiating Ouyang Consistent Query Answering PhD Defense 35 / 71

Concluding remarks

Acyclic q LinCQA [FKOW’23] Yannakakis [VLDB’81]

Boolean q O(N) O(N)
non-Boolean q O(N · |OUTinconsistent|) O(N · |OUT|)
free-connex q O(N + |OUTconsistent|) O(N + |OUT|)

Original Query LinCQA Conquer FastFO CAvSAT

Q1 Q2 Q3 Q4 Q5

100

101

102

103

N/
A

Ti
m

e
Ou

t

N/
A

poss. 27578 145 38320 3925 1250
cons. 27578 145 38320 3925 1245

Xiating Ouyang Consistent Query Answering PhD Defense 36 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 37 / 71

Why are self-joins complicated?

Xiating Ouyang Consistent Query Answering PhD Defense 38 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

Forecast(MSN, Rainy) could only satisfy the predicate Forecast(x , y)

Xiating Ouyang Consistent Query Answering PhD Defense 39 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : Forecast(x , y) ∧ Activity(y , z , "Yes")

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

Forecast

City Weather

* MSN Rainy
* MSN Sunny
LA Sunny

Seattle Rainy

Activity

Weather Biking Badmin.

Rainy No Yes
Sunny Yes Yes

−37 deg. No No

Forecast(MSN, Rainy) could only satisfy the predicate Forecast(x , y)

Xiating Ouyang Consistent Query Answering PhD Defense 39 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

R A1 A2

0 1
1 2
1 3
2 3

X B1 B2

3 4

0 1

2

3 4
R

R

R

R

X

R(1, 2) can satisfy either R(x , y) or R(y , z) now

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 40 / 71

Problem: CERTAINTY(q), where

q = ∃x , y , z : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

Input: a database db (as a finite set of relations)

Question: does rep |= q hold for every rep of db ?

The key is to exploit this “rewinding” behavior

Proposition
The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(RRX); and

2. ∃c such that in all repairs, there exists a path of RR · R∗ · X starting at c.

rep1

0 1

2

3 4
R R

R

X

RRX RRX RRX

rep2

0 1

2

3 4
R

R R

X

RRX RRX

RRX RRX RRX

Xiating Ouyang Consistent Query Answering PhD Defense 41 / 71

c

d

R R R R R R R R R

R R R R
R R RR

R

X

“Reachability”, “NL-complete” How to find the regular expression?

Xiating Ouyang Consistent Query Answering PhD Defense 42 / 71

c

d

R R R R R R R R R

R R R R
R R RR

R

X

“Reachability”, “NL-complete” How to find the regular expression?

Xiating Ouyang Consistent Query Answering PhD Defense 42 / 71

From path query to NFA

ε R
R

RR
R

RRX
X

ε

NFA(RRX) accepts RRR∗X

Xiating Ouyang Consistent Query Answering PhD Defense 43 / 71

From path query to NFA

ε R
R

RR
R

RRX
X

ε

NFA(RRX) accepts RRR∗X

Xiating Ouyang Consistent Query Answering PhD Defense 43 / 71

From path query to NFA

ε R
R

RR
R

RRX
X

ε

NFA(RRX) accepts RRR∗X

Xiating Ouyang Consistent Query Answering PhD Defense 43 / 71

From path query to NFA

ε R
R

RR
R

RRX
X

ε

NFA(RRX) accepts RRR∗X

Xiating Ouyang Consistent Query Answering PhD Defense 43 / 71

From path query to NFA

ε R
R

RR
R

RRX
X

ε

NFA(RRX) accepts RRR∗X

Xiating Ouyang Consistent Query Answering PhD Defense 43 / 71

From path query to NFA

ε R
R

RR
R

RRX
X

ε

NFA(RRX) accepts RRR∗X

Xiating Ouyang Consistent Query Answering PhD Defense 43 / 71

From path query to NFA

ε R
R

RR
R

RRX
X

ε

NFA(RRX) accepts RRR∗X

Xiating Ouyang Consistent Query Answering PhD Defense 43 / 71

From path query to NFA (cont.)

ε R RX RXR RXRR RXRRR
R X R R R

ε

ε

ε

ε

ε

ε

NFA(RXRRR)

Xiating Ouyang Consistent Query Answering PhD Defense 44 / 71

Path queries

q = ∃x0, x1, . . . , xn : R1(x0, x1) ∧ R2(x1, x2) ∧ · · · ∧ Rn(xn−1, xn)

= R1R2 . . .Rn

it can be that Ri = Rj for i ̸= j

free variables & constants are easy extensions

Xiating Ouyang Consistent Query Answering PhD Defense 45 / 71

Complexity classification for CERTAINTY(q)

coNP-complete
q4 = RXRX RYRY RXRXRYRXRYRY ∈ NFA(q4)

C2: q is a factor of every word in NFA(q)

q3 = RX RYRY

C1.5: Whenever q = uRvRw , q is a factor of uRvRvRw ; and whenever q = uRv1Rv2Rw

for consecutive occurrences of R, v1 = v2 or Rw is a prefix of Rv1.

NL-hard
q2 = RX RY RXRX RY ∈ NFA(q2)

C1: q is a prefix of every word in NFA(q)

FO-rewritable
q1 = RXRX RXRX (RX)∗ = NFA(q1)

Xiating Ouyang Consistent Query Answering PhD Defense 46 / 71

Complexity classification for CERTAINTY(q)

coNP-complete
q4 = RXRX RYRY RXRXRYRXRYRY ∈ NFA(q4)

C2: q is a factor of every word in NFA(q)

P

q3 = RX RYRY

C1.5: Whenever q = uRvRw , q is a factor of uRvRvRw ; and whenever q = uRv1Rv2Rw

for consecutive occurrences of R, v1 = v2 or Rw is a prefix of Rv1.

NL-hard
q2 = RX RY RXRX RY ∈ NFA(q2)

C1: q is a prefix of every word in NFA(q)

FO-rewritable
q1 = RXRX RXRX (RX)∗ = NFA(q1)

Xiating Ouyang Consistent Query Answering PhD Defense 46 / 71

Complexity classification for CERTAINTY(q)

coNP-complete
q4 = RXRX RYRY RXRXRYRXRYRY ∈ NFA(q4)

C2: q is a factor of every word in NFA(q)

P
q3 = RX RYRY

C1.5: Whenever q = uRvRw , q is a factor of uRvRvRw ; and whenever q = uRv1Rv2Rw

for consecutive occurrences of R, v1 = v2 or Rw is a prefix of Rv1.

NL-hard
q2 = RX RY RXRX RY ∈ NFA(q2)

C1: q is a prefix of every word in NFA(q)

FO-rewritable
q1 = RXRX RXRX (RX)∗ = NFA(q1)

Xiating Ouyang Consistent Query Answering PhD Defense 46 / 71

Complexity classification for CERTAINTY(q)

coNP-complete
q4 = RXRX RYRY RXRXRYRXRYRY ∈ NFA(q4)

C2: q is a factor of every word in NFA(q)

P-complete
q3 = RX RYRY

C1.5: Whenever q = uRvRw , q is a factor of uRvRvRw ; and whenever q = uRv1Rv2Rw

for consecutive occurrences of R, v1 = v2 or Rw is a prefix of Rv1.

NL-complete
q2 = RX RY RXRX RY ∈ NFA(q2)

C1: q is a prefix of every word in NFA(q)

FO-rewritable
q1 = RXRX RXRX (RX)∗ = NFA(q1)

Xiating Ouyang Consistent Query Answering PhD Defense 46 / 71

C1, C1.5 and C2 are decidable

C1 : q is a prefix of every word in NFA(q)

⇐⇒ Whenever q = u · Rv · Rw , q is a prefix of u · Rv · Rv · Rw .

C2 : q is a factor of every word in NFA(q)

⇐⇒ Whenever q = u · Rv · Rw , q is a factor of u · Rv · Rv · Rw .

Xiating Ouyang Consistent Query Answering PhD Defense 47 / 71

Proposition
Let q be a path query satisfying C2. The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. ∃c such that in all repairs, there exists a path accepted by NFA(q) starting in c.

C2: q is a factor of every word in NFA(q)

c

rep

NFA(q)

q

When q satisfies C1, C1.5, and C2, item 2 can be checked in FO, NL, and P respectively

Xiating Ouyang Consistent Query Answering PhD Defense 48 / 71

Proposition
Let q be a path query satisfying C2. The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. ∃c such that in all repairs, there exists a path accepted by NFA(q) starting in c.

C2: q is a factor of every word in NFA(q)

c

rep

NFA(q)

q

When q satisfies C1, C1.5, and C2, item 2 can be checked in FO, NL, and P respectively

Xiating Ouyang Consistent Query Answering PhD Defense 48 / 71

Proposition
Let q be a path query satisfying C2. The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. ∃c such that in all repairs, there exists a path accepted by NFA(q) starting in c.

C2: q is a factor of every word in NFA(q)

c

rep

NFA(q)

q

When q satisfies C1, C1.5, and C2, item 2 can be checked in FO, NL, and P respectively

Xiating Ouyang Consistent Query Answering PhD Defense 48 / 71

Proposition
Let q be a path query satisfying C2. The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. ∃c such that in all repairs, there exists a path accepted by NFA(q) starting in c.

C2: q is a factor of every word in NFA(q)

c

rep

NFA(q)

q

When q satisfies C1, C1.5, and C2, item 2 can be checked in FO, NL, and P respectively

Xiating Ouyang Consistent Query Answering PhD Defense 48 / 71

Proposition
Let q be a path query satisfying C2. The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. ∃c such that in all repairs, there exists a path accepted by NFA(q) starting in c.

C2: q is a factor of every word in NFA(q)

c

rep

NFA(q)

q

When q satisfies C1, C1.5, and C2, item 2 can be checked in FO, NL, and P respectively

Xiating Ouyang Consistent Query Answering PhD Defense 48 / 71

Proposition
Let q be a path query satisfying C2. The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. ∃c such that in all repairs, there exists a path accepted by NFA(q) starting in c.

C2: q is a factor of every word in NFA(q)

c

rep

NFA(q)

q

When q satisfies C1, C1.5, and C2, item 2 can be checked in FO, NL, and P respectively

Xiating Ouyang Consistent Query Answering PhD Defense 48 / 71

Proposition
Let q be a path query satisfying C2. The following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. ∃c such that in all repairs, there exists a path accepted by NFA(q) starting in c.

C2: q is a factor of every word in NFA(q)

c

rep

NFA(q)

q

When q satisfies C1, C1.5, and C2, item 2 can be checked in FO, NL, and P respectively

Xiating Ouyang Consistent Query Answering PhD Defense 48 / 71

Hardness

Lemma
For a path query q, via

if q violates C1, then CERTAINTY(q) is NL-hard; Reachability

if q violates C1.5, then CERTAINTY(q) is P-hard; Monotone Circuit Value

if q violates C2, then CERTAINTY(q) is coNP-hard. Unsatisfiability

Xiating Ouyang Consistent Query Answering PhD Defense 49 / 71

P-hardness

q = RXRYRY violates C1.5

C

∧
∨

∨

x1 = 1

x2 = 0

x3 = 0

db

g ′ ∧

∨

∨

RX

RX

RX

RYRY

RYRY

RYRY

c1
c2

x1

x2

R

X

Y

RXRY

RY
RY

RYRY

c1
c2

x3

R

X

Y

RXRY

RY
RY

The output of C is 0 iff db contains a falsifying repair

Xiating Ouyang Consistent Query Answering PhD Defense 50 / 71

Complexity classification for Path Queries

coNP-complete q4 = RXRX RYRY RXRXRYRXRYRY ∈ NFA(q4)

C2: q is a factor of every word in NFA(q)

P-complete q3 = RX RYRY

C1.5: Whenever q = uRvRw , q is a factor of uRvRvRw ; and whenever q = uRv1Rv2Rw

for consecutive occurrences of R, v1 = v2 or Rw is a prefix of Rv1.

NL-complete q2 = RX RY RXRX RY ∈ NFA(q2)

C1: q is a prefix of every word in NFA(q)

FO-rewritable q1 = RXRX RXRX (RX)∗ = NFA(q1)

Xiating Ouyang Consistent Query Answering PhD Defense 51 / 71

Cforest
FO

[FM, ICDT’05]

α-acyclic
FO, non-FO

[Wijsen, PODS’10]

SJF two tables
P, coNP-complete

[KP, IPL’12]

SJF simple keys
P, coNP-complete

[KS, ICDT’14]

theory

ConQuer
Cforest via FO

[FM, SIGMOD’05]

system

SJF
FO, P\ FO, coNP-complete

[KW, PODS’15]

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF paths
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

Conquesto
SJF via FO

[AJLSW, CIKM’20]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

EQUIP
* via BIP

[KPT, VLDB’13]

CAvSAT
* via SAT

[DK, SAT’19, ICDE’21]

Xiating Ouyang Consistent Query Answering PhD Defense 52 / 71

q = ∃x , y , z ,w : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

q :- R(x , y),R(y , z),X (z ,w)

R

R

X

⊥

x

y

z

w

x y z wR R X

no idea yet. . .

Xiating Ouyang Consistent Query Answering PhD Defense 53 / 71

q = ∃x , y , z ,w : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

q :- R(x , y),R(y , z),X (z ,w)

R

R

X

⊥

x

y

z

w

x y z wR R X

no idea yet. . .

Xiating Ouyang Consistent Query Answering PhD Defense 53 / 71

q = ∃x , y , z ,w : R(x , y) ∧ R(y , z) ∧ X (z ,w) = RRX

q :- R(x , y),R(y , z),X (z ,w)

R

R

X

⊥

x

y

z

w

x y z wR R X

no idea yet. . .

Xiating Ouyang Consistent Query Answering PhD Defense 53 / 71

C

R

A B

R

B A

q1

x

y

u1 v1

z

u2 v2

variable mapping

C

R

A B

R

A B

q2

q1 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),B(u2),A(v2).

q2 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),A(u2),B(v2).

Xiating Ouyang Consistent Query Answering PhD Defense 54 / 71

C

R

A B

R

B A

q1

x

y

u1 v1

z

u2 v2

variable mapping

C

R

A B

R

A B

q2

q1 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),B(u2),A(v2).

q2 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),A(u2),B(v2).

Xiating Ouyang Consistent Query Answering PhD Defense 54 / 71

C

R

A B

R

B A

q1

x

y

u1 v1

z

u2 v2

variable mapping

C

R

A B

R

A B

q2

q1 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),B(u2),A(v2).

q2 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),A(u2),B(v2).

Xiating Ouyang Consistent Query Answering PhD Defense 54 / 71

C

R

A B

R

B A

q1

x

y

u1 v1

z

u2 v2

variable mapping

C

R

A B

R

A B

q2

q1 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),B(u2),A(v2).

q2 :- C (x , y , z),R(y , u1, v1),A(u1),B(v1),R(z , u2, v2),A(u2),B(v2).

Xiating Ouyang Consistent Query Answering PhD Defense 54 / 71

What about rewinding?

q = R

replace︷︸︸︷
RX =⇒ R

with a “previous” word︷ ︸︸ ︷
RRX

C

R

A B

R

B A

q

x

y

u1 v1

z

u2 v2

variable mapping

?

qR:z↬y

Xiating Ouyang Consistent Query Answering PhD Defense 55 / 71

What about rewinding?

q = R

replace︷︸︸︷
RX =⇒ R

with a “previous” word︷ ︸︸ ︷
RRX

C

R

A B

R

B A

q

x

y

u1 v1

z

u2 v2

variable mapping

C

R

A B

R

B A

qR:z↬y

Xiating Ouyang Consistent Query Answering PhD Defense 55 / 71

What about rewinding?

q = R

replace︷︸︸︷
RX =⇒ R

with a “previous” word︷ ︸︸ ︷
RRX

C

R

A B

R

B A

q

x

y

u1 v1

z

u2 v2

variable mapping

C

R

A B

R

B A

qR:z↬y

Xiating Ouyang Consistent Query Answering PhD Defense 55 / 71

What about rewinding?

q = R

replace︷︸︸︷
RX =⇒ R

with a “previous” word︷ ︸︸ ︷
RRX

C

R

A B

R

B A

q

x

y

u1 v1

z

u2 v2

variable mapping

C

R

A B

R

A B

qR:z↬y

Xiating Ouyang Consistent Query Answering PhD Defense 55 / 71

A

R

R

U ⊥

X

V

R

Y

⊥

Z

W ⊥

q

x0

x1

x3

x7 x8

x4

x9

x2

x5

x10

x6

x11 x12

var. mapping

A

R

R

U ⊥

X

V

R

R

U ⊥

X

V

qR:x2↬x1

A

R

Y

⊥

Z

W ⊥

R

Y

⊥

Z

W ⊥

qR:x1↬x2

A

R

R

R

U ⊥

X

V

X

V

R

Y

⊥

Z

W ⊥

qR:x3↬x1

Xiating Ouyang Consistent Query Answering PhD Defense 56 / 71

Classification on rooted trees

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

C

R⟨x⟩

A B

R⟨y⟩

A B

q1

C

R

A B

R

A B

q1
R:y↬x = q1

R:x↬y

q1 satisfies C♣
2

Xiating Ouyang Consistent Query Answering PhD Defense 57 / 71

Classification on rooted trees

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

C

R⟨x⟩

A B

R⟨y⟩

A B

q1

C

R

A B

R

A B

q1
R:y↬x = q1

R:x↬y

q1 satisfies C♣
2

Xiating Ouyang Consistent Query Answering PhD Defense 57 / 71

Classification on rooted trees

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

C

R⟨x⟩

A B

R⟨y⟩

B A

q2

C

R

A B

R

A B

q2
R:y↬x

q2 violates C♣
2

Xiating Ouyang Consistent Query Answering PhD Defense 58 / 71

Classification on rooted trees

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

C

R⟨x⟩

A B

R⟨y⟩

A B

q1 satisfies C♣
2

C

R⟨x⟩

A B

R⟨y⟩

B A

q2 violates C♣
2

Theorem

If q satisfies C♣
2 , then CERTAINTY(q) is in P, or otherwise coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 59 / 71

Classification on rooted trees

C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a root homomorphism from q to either

qR:x↬y or qR:y↬x

C

R

A B

R

A B

q1 satisfies C♣
1

R⟨x⟩

R⟨y⟩

A ⊥

A

q3 satisfies C♣
1

R

R

R

A ⊥

A

A

q3
R:y↬x

Xiating Ouyang Consistent Query Answering PhD Defense 60 / 71

Classification on rooted trees

C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a root homomorphism from q to either

qR:x↬y or qR:y↬x

C

R

A B

R

A B

q1 satisfies C♣
1

R⟨x⟩

R⟨y⟩

A B

A

q4 : ¬C♣
1 ,C

♣
2

R

R

R

A B

A

A

q4
R:y↬x

Theorem

If q satisfies C♣
1 , then CERTAINTY(q) is in FO, or otherwise NL-hard.

Xiating Ouyang Consistent Query Answering PhD Defense 61 / 71

Rooted trees generalize paths

coNP-complete

P
C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

homomorphism from q to either qR:x↬y or qR:y↬x

C2: q = u Rv Rw is a factor of u Rv Rv Rw

NL-hard

FO-rewritable C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

root homomorphism from q to either qR:x↬y or qR:y↬x

C1: q = u Rv Rw is a prefix of u Rv Rv Rw

Xiating Ouyang Consistent Query Answering PhD Defense 62 / 71

Rooted trees generalize paths

coNP-complete

P
C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

homomorphism from q to either qR:x↬y or qR:y↬x

C2: q = u Rv Rw is a factor of u Rv Rv Rw

NL-hard

FO-rewritable C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

root homomorphism from q to either qR:x↬y or qR:y↬x

C1: q = u Rv Rw is a prefix of u Rv Rv Rw

Xiating Ouyang Consistent Query Answering PhD Defense 62 / 71

Rooted trees generalize paths

coNP-complete

P
C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

homomorphism from q to either qR:x↬y or qR:y↬x

C2: q = u Rv Rw is a factor of u Rv Rv Rw

NL-hard

FO-rewritable C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

root homomorphism from q to either qR:x↬y or qR:y↬x

C1: q = u Rv Rw is a prefix of u Rv Rv Rw

Xiating Ouyang Consistent Query Answering PhD Defense 62 / 71

Rooted trees generalize paths

coNP-complete

P
C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

homomorphism from q to either qR:x↬y or qR:y↬x

C2: q = u Rv Rw is a factor of u Rv Rv Rw

NL-hard

FO-rewritable C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

root homomorphism from q to either qR:x↬y or qR:y↬x

C1: q = u Rv Rw is a prefix of u Rv Rv Rw

Xiating Ouyang Consistent Query Answering PhD Defense 62 / 71

Rooted trees generalize paths

coNP-complete

P
C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

homomorphism from q to either qR:x↬y or qR:y↬x

C2: q = u Rv Rw is a factor of u Rv Rv Rw

NL-hard

FO-rewritable C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

root homomorphism from q to either qR:x↬y or qR:y↬x

C1: q = u Rv Rw is a prefix of u Rv Rv Rw

Xiating Ouyang Consistent Query Answering PhD Defense 62 / 71

Good rooted trees are just “paths”

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Definition: R⟨x⟩ ⪯q R⟨y⟩ if
R⟨x⟩ is an ancestor of R⟨y⟩ in q; or

there is a homomorphism from q to qR:y↬x

Proposition: If q satisfies C♣
2 , for every predicate name R, the relation ⪯q is a total

preorder on all R-atoms.

R⟨x⟩ ⪯q

R⟨y⟩

R⟨z⟩

. . . ⪯q R⟨u⟩

Xiating Ouyang Consistent Query Answering PhD Defense 63 / 71

Good rooted trees are just “paths”

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Definition: R⟨x⟩ ⪯q R⟨y⟩ if
R⟨x⟩ is an ancestor of R⟨y⟩ in q; or

there is a homomorphism from q to qR:y↬x

Proposition: If q satisfies C♣
2 , for every predicate name R, the relation ⪯q is a total

preorder on all R-atoms.

R⟨x⟩ ⪯q

R⟨y⟩

R⟨z⟩

. . . ⪯q R⟨u⟩

Xiating Ouyang Consistent Query Answering PhD Defense 63 / 71

For good trees, checking one repair is all you need

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Problem: CERTAINTY(q), for a rooted tree query q

Input: a database db

Question: does rep |= q hold for every rep of db ?

rep1 |= q? rep2 |= q? rep3 |= q? . . . rep2n |= q?

rep∗

Proposition: If q satisfies C♣
2 , there exists some rep∗ of db that depends on q such that

rep∗ |= q

⇐⇒ rep |= q for every rep of db.

Moreover, one such rep∗ can be found in P.

Xiating Ouyang Consistent Query Answering PhD Defense 64 / 71

For good trees, checking one repair is all you need

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Problem: CERTAINTY(q), for a rooted tree query q

Input: a database db

Question: does rep |= q hold for every rep of db ?

rep1 |= q? rep2 |= q? rep3 |= q? . . . rep2n |= q?

rep∗

Proposition: If q satisfies C♣
2 , there exists some rep∗ of db that depends on q such that

rep∗ |= q

⇐⇒ rep |= q for every rep of db.

Moreover, one such rep∗ can be found in P.

Xiating Ouyang Consistent Query Answering PhD Defense 64 / 71

For good trees, checking one repair is all you need

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Problem: CERTAINTY(q), for a rooted tree query q

Input: a database db

Question: does rep |= q hold for every rep of db ?

rep1 |= q? rep2 |= q? rep3 |= q? . . . rep2n |= q?rep∗

Proposition: If q satisfies C♣
2 , there exists some rep∗ of db that depends on q

such that

rep∗ |= q

⇐⇒ rep |= q for every rep of db.

Moreover, one such rep∗ can be found in P.

Xiating Ouyang Consistent Query Answering PhD Defense 64 / 71

For good trees, checking one repair is all you need

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Problem: CERTAINTY(q), for a rooted tree query q

Input: a database db

Question: does rep |= q hold for every rep of db ?

rep1 |= q? rep2 |= q? rep3 |= q? . . . rep2n |= q?rep∗

Proposition: If q satisfies C♣
2 , there exists some rep∗ of db that depends on q such that

rep∗ |= q

⇐⇒ rep |= q for every rep of db.

Moreover, one such rep∗ can be found in P.

Xiating Ouyang Consistent Query Answering PhD Defense 64 / 71

For good trees, checking one repair is all you need

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Problem: CERTAINTY(q), for a rooted tree query q

Input: a database db

Question: does rep |= q hold for every rep of db ?

rep1 |= q? rep2 |= q? rep3 |= q? . . . rep2n |= q?rep∗

Proposition: If q satisfies C♣
2 , there exists some rep∗ of db that depends on q such that

rep∗ |= q ⇐⇒ rep |= q for every rep of db.

Moreover, one such rep∗ can be found in P.

Xiating Ouyang Consistent Query Answering PhD Defense 64 / 71

For good trees, checking one repair is all you need

C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a homomorphism from q to either

qR:x↬y or qR:y↬x

Problem: CERTAINTY(q), for a rooted tree query q

Input: a database db

Question: does rep |= q hold for every rep of db ?

rep1 |= q? rep2 |= q? rep3 |= q? . . . rep2n |= q?rep∗

Proposition: If q satisfies C♣
2 , there exists some rep∗ of db that depends on q such that

rep∗ |= q ⇐⇒ rep |= q for every rep of db.

Moreover, one such rep∗ can be found in P.

Xiating Ouyang Consistent Query Answering PhD Defense 64 / 71

Initialization Step: for every c ∈ adom(db) and leaf variable or constant u in q
add ⟨c, u⟩ to B if u = c is a constant,

or the label of variable u in q is either ⊥,
or L with L(c) ∈ db.

Iterative Rule: for every c ∈ adom(db) and atom R(y , y1, y2, . . . , yn) in q
add ⟨c, y⟩ to B if the following formula holds:

∃d⃗ : R(c, d⃗) ∈ db ∧ ∀d⃗ :
(
R(c, d⃗) ∈ db → fact(R(c, d⃗), y)

)
,

where

fact(R(c, d⃗), y) =

 ∧
1≤i≤n

⟨di , yi ⟩ ∈ B


︸ ︷︷ ︸

forward production

∨

 ∨
R[x]<qR[y]

fact(R(c, d⃗), x)


︸ ︷︷ ︸

backward production

and d⃗ = ⟨d1, d2, . . . , dn⟩.

Xiating Ouyang Consistent Query Answering PhD Defense 65 / 71

Classification for rooted trees

coNP-complete

P C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

homomorphism from q to either qR:x↬y or qR:y↬x

C2: q = u Rv Rw is a factor of u Rv Rv Rw

NL-hard

FO-rewritable C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

root homomorphism from q to either qR:x↬y or qR:y↬x

C1: q = u Rv Rw is a prefix of u Rv Rv Rw

Can be extended to “(Berge-acyclic) Graph queries” . . .

Xiating Ouyang Consistent Query Answering PhD Defense 66 / 71

Classification for rooted trees

coNP-complete

P C♣
2 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

homomorphism from q to either qR:x↬y or qR:y↬x

C2: q = u Rv Rw is a factor of u Rv Rv Rw

NL-hard

FO-rewritable C♣
1 : for every R⟨x⟩ and R⟨y⟩ in q, there is a

root homomorphism from q to either qR:x↬y or qR:y↬x

C1: q = u Rv Rw is a prefix of u Rv Rv Rw

Can be extended to “(Berge-acyclic) Graph queries” . . .

Xiating Ouyang Consistent Query Answering PhD Defense 66 / 71

Concluding remarks

Xiating Ouyang Consistent Query Answering PhD Defense 67 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 68 / 71

Xiating Ouyang Consistent Query Answering PhD Defense 69 / 71

Thank YOU!

Uri Andrews, Jin-Yi Cai, Paris Koutris, Jignesh Patel, Jef Wijsen

Yixin Cao, Rocky K. C. Chang, AnHai Doan, Steve Foote, Wei-Chiao Hsu, Alekh
Jindal, Phokion Kolaitis, Ren Mao, Jeff Naughton, Hung Ngo, Lowell Rausch,
Abhishek Roy, Ning Tan, Angela Thorp, Kristen Tinetti, Bin Xu, Fan (Amy) Yang

Song Bian, Ting Cai, Bing An Chang, Xufeng Cai, Elvis Chang, Jiang Chang,
Kaiyang Chen, Maggie Chen, Yiding Chen, Nick Corrado, Shaleen Deep, Austen
Z. Fan, Yuhang Fan, Zhiwei Fan, Kevin Gaffney, Yue Gao, Evangelia Gergatsouli,
Jinshan Gu, Xinyu Guan, Yang Guo, Ankur Goswami, Yilin He, Hengjing Huang,
Shunyi Huang, Aarati Kakaraparthy, Yuping Ke, Fengan Li, Justin LiXie, Holdson
Liang, Eric Lin, Derek Ma, Jeremy McMahan, Simiao Ren, Yue Shi, Kartik
Sreenivasan, Xiaoxi Sun, Yuxin Sun, Remy Wang, Xiang Wang, Jingcheng Xu, Jie
You, Peng Yu, Zhe Zeng, Jifan Zhang, Ling Zhang, Hangdong Zhao, Xingjian
Zhen, Yi Zhou

Yufei Gao, Feng-Ying Ma, Hong Ouyang, Zhong-Zhan Ouyang, Yujia Peng,
Weisheng Wang, Hao Wu, Bin Xia, Yifan Xia

Xiating Ouyang Consistent Query Answering PhD Defense 70 / 71

Finding Consistent Answers from Inconsistent Data:
Systems, Algorithms, and Complexity

SJF
FO, L-complete, coNP-complete

[KW, ICDT’19]

SJF path
FO, NL-complete, P-complete, coNP-complete

[KOW, PODS’21]

SJF rooted trees (and beyond)
FO, P\ FO, coNP-complete

[KOW, PODS’24]

LinCQA
PPJT via FO in O(N)

[FKOW, SIGMOD’23]

graph query
. . .FO, P\ FO, coNP-complete?

LinCQA+

. . . SJF acyclic FO in O(N)?

SJF + ¬
FO, non-FO

[KW, PODS’18]

SJF + multiple keys
FO, non-FO

[KW, PODS’20]

SJF + PK & (unary)FK
FO, non-FO

[HW, PODS’22]

SJF + (intgrty. const.)
. . .FO, non-FO?

kNN + missing values
[Karlas̆ et al., VLDB’21]

kNN + FD
P, coNP-complete

[FK, ICDT’22]

Bayes + missing
(BOFK, submitted)

ML + dirty data
. . . ?

Conjecture: For every (union of) BCQ q, CERTAINTY(q) is in P or coNP-complete.

Xiating Ouyang Consistent Query Answering PhD Defense 71 / 71

