
LINCQA: FASTER CONSISTENT QUERY ANSWERING WITH LINEAR TIME GUARANTEES

Zhiwei Fan†, Paraschos Koutris†, Xiating Ouyang†, Jef Wijsen‡ (alphabetical authorship)

†University of Wisconsin – Madison, ‡University of Mons

LINCQA: FASTER CONSISTENT QUERY ANSWERING WITH LINEAR TIME GUARANTEES

Zhiwei Fan†, Paraschos Koutris†, Xiating Ouyang†, Jef Wijsen‡ (alphabetical authorship)

†University of Wisconsin – Madison, ‡University of Mons

Consistent Query Answering (CQA)

While data cleaning is widely adopted to repair the inconsistent/dirty data, find-
ing the “right repair” remains a challenge. Alternatively, the idea of CQA is to
compute the answers that are guaranteed to be returned in all repairs.

𝑄() = {A, B, C, D, E, G, U, W} …?

𝑄() = {A, B} 𝑄() = {A, C} 𝑄() = {A, B, C}

C𝑄𝐴_𝑄() = {A}

Fig. 1: An example of CQA. The middle layer shows the different sets of answers returned for each possible

repair, and the bottom layer explains that the answer “A” is returned in all repairs.

CQAQ(db
!) :=

⋂
db✓ is a repair of db!

Q(db✓).

We study inconsistent databases that could violate the primary key constraint:
every primary key could correspond to multiple distinct tuples in the database.

Problem: CQA(Q), where Q is a SPJ query

Input: a database db that violates the primary key constraint

Output: the answers guaranteed to be returned by Q on all repairs of db

Course
course_id faculty_id
CS 703 2
CS 703 5

MATH 770 3
MATH 770 7

CS 787 8
CS 787 9

Faculty
faculty_id name area

2 Adam DB
2 Alice ML
5 Bob PL
9 Cathy DB
9 Carrol DB

Executing the following blue SQL query on the database returns the inconsis-
tent answers CS 703 and CS 787. The rewritten query Q′ by adding the red
segments would find the consistent answers (i.e., CS 703) that are returned in
every repair of the database.

SELECT DISTINCT Course.c_id

FROM Course, Faculty

WHERE Course.f_id = Faculty.f_id

AND (all f_id’s for the same c_id

appear in Faculty)

Fig. 2: An example of first-order (FO) rewriting Q′.

Q′(db!) =
⋂

db✓ is a repair of db!

Q(db✓) = CQAQ(db
!).

Not all queries admit a first-order rewriting! And the classification on the
rewritability remains an open problem.

Acyclic Queries in Linear Time

Evaluating an acyclic query is a well-studied problem by using hash joins on the
join tree. For example, the Boolean blue SQL query is acyclic:

q():-Course(x, y),Faculty(y, z, w).

Queries with projection can be reduced to Boolean queries =⇒

Pair-pruning Join Tree (PPJT)

We consider acyclic self-join-free SPJ queries (each table name occurs once).

Definition: A join tree rooted at some atom is a PPJT if

the root of every subtree is unattacked in the subtree.

For example, q has a PPJT:

• Queries on star/snowflake schema (e.g. TPC-H, TPC-DS)

• Two tables

• acyclic queries in Cforest [Fuxman and Miller, SIGMOD’05]

Proposition: If a Boolean query q have a pair-pruning join tree (PPJT), then
CQA(q) has a first-order rewriting that runs in linear time.

LinCQA and the Rewriting

LinCQA is a query rewriter that takes as input a SQL query, output its first-
order rewriting.

python3 lincqa.py -i <input.sql/dlog> -o <output.sql/dlog>

Using PPJT, the consistent answers can be computed in a bottom-up fashion.

q():-Course(x, y),Faculty(y, z, “DB”).

For queries with projection:

SELECT DISTINCT A1, A2 FROM T WHERE A3 = 42

we use PPJT to check for each potential answer (a, b) . . . in one program:

SELECT DISTINCT 1 FROM T WHERE A3 = 42 AND A1 = a AND A2 = b

if yes, then (a, b) is a consistent answer.

Experiments

We used a 400GB StackOverflow dataset (among others) on SQL Server.

Table # of rows inconsistencyRatio blockSize # of Attributes
Users 14M 0% 1 14
Posts 53M 0% 1 20
PostHistory 141M 0.001% 4 9
Badges 40M 0.58% 941 4
Votes 213M 30.9% 1441 6

Original Query LinCQA Conquer FastFO

Q1 Q2 Q3 Q4 Q5

100

101

102

103

N/
A

Ti
m

e
Ou

t

N/
A

|Q(db!)| 27578 145 38320 3925 1250
|CQAQ(db!)| 27578 145 38320 3925 1245

Acyclic q LinCQA [SIGMOD’23] Yannakakis [VLDB’81]
Boolean q O(|db|) O(|db|)
Projection q O(|db| · |OUTinconsistent|) O(|db| · |OUT|)
full q (SELECT *) O(|db| + |OUTconsistent|) O(|db| + |OUT|)

Consistent answers can be computed with no asymptotic overhead

