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ABSTRACT

Most data analytical pipelines often encounter the problem of querying inconsistent data that

could violate pre-determined integrity constraints. Data cleaning is an extensively studied paradigm

that singles out a consistent repair of the inconsistent data. Consistent query answering (CQA) is

an alternative approach to data cleaning that asks for all tuples guaranteed to be returned by a

given query on all (and in most cases, exponentially many) repairs of the inconsistent data.

This dissertation investigates both practical and theoretical perspectives of CQA in the context

of relational queries and databases that can possibly violate (and only violate) the primary-key

constraints.

• From a practical standpoint, we identify a class of select-project-join (SPJ) queries for which

CQA can be solved via a first-order rewriting with linear time guarantees. This is implemented

in a system LinCQA, and we show that LinCQA often outperforms the existing CQA systems

on both synthetic and real-world workloads, and in some cases, by orders of magnitude.

• From a theoretical perspective, this dissertation provides a complexity classification of CQA

on representative classes of conjunctive queries with self-joins: path queries, rooted tree

queries, and beyond. The classification criterion is explicit and involves query homomor-

phisms. This advances the current complexity trichotomy result on self-join-free conjunctive

queries established in 2015.
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Chapter 1

Introduction

昨夜西風凋碧樹
獨上高樓
望盡天涯路

—晏殊《蝶戀花》

Data is the new oil. It is produced in an unprecedented high volume, processed by unparalleled

computational resources, and utilized by ubiquitous and occasionally critical applications. For

example, transportation providers often keep records of the ridership data generated from the

business, which can be analyzed to optimize their day-to-day operations such as scheduling and

staffing. In medical settings, machine learning models trained on a plethora of medical data are

used to assist the diagnosis and treatments.

Yet like oil, raw data is often unusable without an accompanying infrastructure to acquire, store,

maintain, process, and query it. Relentless efforts from the data management research community

have thus been spent on each aspect. The outcomes have been influential: we have developed elas-

tic storage systems [SKRC10], efficient transaction protocols [LS79, GWYY21], blazingly fast data

processing algorithms and tools [ZCF+10, KNR+11, RJG+21, PTH23], and expressive query lan-

guages [Cod70, KNP+22a, KNP+23]. While we celebrate these significant progress, it has become

apparent to the society that having these pipelines is not sufficient to make great applications: the

quality of the data itself also matters.

In reality, data is often, if not always, dirty. The dirtiness of the data can be characterized

as the violation of the predetermined integrity constraints: the conditions that we believe the

data should ideally satisfy. Integrity constraints can be violated for various reasons, including

collection of erroneous user input, system flaws when dealing with real-time data, or even careless

integration of data from heterogeneous sources, to name a few. These data inconsistencies are

the enemy of modern data applications, particularly in critical domains, as they directly impact
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the trustworthiness of data analytic results and the reliability of the prediction thereof. A natural

question thus arises: how can we manage dirty data effectively?

Data cleaning [RD00] is perhaps the most widely used approach to manage dirty (or inconsistent)

data in practice. It first repairs (or clean) the dirty data by modifying the inconsistent portions of

the data to improve its quality, and then the users may use the cleaned data (or repair) for their

specific tasks. There has been a long line of research on data cleaning. Several frameworks have

been proposed [GGM+21, ROA+21, GMPS13, AK09, GGZ03], using techniques such as knowledge

bases and machine learning [RCIR17, CIKW16, BKL13, HCG+18, EEI+13, LRB+21, BMNT15,

CIP13, TCZ+14, KWW+16]. Data cleaning has also been studied under different contexts [KL21,

CCX08, KIJ+15, BFG+07, PSC+15]. Indeed, data cleaning is involved in almost all preprocessing

steps in modern data processing tasks.

1.1 Motivations

While data cleaning has been widely adopted, its drawbacks still remain.

1. It is challenging to find the “best” repair. The process of data cleaning is often ad hoc and

arbitrary choices are frequently made regarding which data to keep in order to restore data

consistency. This comes at the price of losing important information since the number of

cleaned versions of the database can be exponential in the size of data. For example, it is

possible for two data cleaning methods to yield two different repairs, on which the query

answer may differ.

2. The data cleaning process is time-consuming and blocking the data analytics pipeline. There

have been efforts to accelerate the data cleaning process [RCIR17, CIP13, CMI+15, ROA+21],

but in most cases, users need to wait until the data is clean before it becomes available.

In light of these challenges, consistent query answering (CQA) has been proposed as an alter-

native approach to manage inconsistent data. Informally speaking, given a query to the dirty data,

CQA returns the tuples that are guaranteed to be returned by the query on all possible repairs of

the dirty data, called the certain answers. One can think of this definition in a procedural way: we

first find all possible repairs of the dirty data, and then execute the query on each possible repair,

and finally return the certain answers by computing the intersection of all query answers obtained.

CQA was initiated by the seminal work by Arenas, Bertossi, and Chomicki [ABC99]. After twenty

years, their contribution was acknowledged in a Gems of PODS session [Ber19]. An overview of

complexity classification results in CQA appeared recently in the Database Principles column of

SIGMOD Record [Wij19b].



3

One advantage of CQA is that it considers all possible repairs, instead of attempting to find

the “best” one. The certain answers are also trustworthy in the sense that they will be returned

regardless of which repair or data cleaning method we use, which is ideal for critical applications.

If solved efficiently, CQA would also eliminate the blocking time of data cleaning and speed up the

entire data analytic pipelines.

Despite its advantages, it remains to tackle the following challenges to materialize these promises:

• Classification: for which queries can CQA be solved efficiently? This problem is important

since by definition of CQA, the naive solution is to enumerate all possible repairs, and the

number of repairs can be exponential in the size of data, unfortunately. It is therefore crucial

to learn for which queries, enumerating the repairs can be avoided, or otherwise necessary

under standard complexity hypotheses.

• Algorithm: how can we solve CQA efficiently? For the CQA instances that we know can

be solved without enumerating the repairs, it is in our best interest to find algorithms that

solve it as efficient as possible.

• System: can CQA be integrated into existing systems? Once we identify an efficient algo-

rithm for CQA, it remains a challenge to implement the algorithm to existing data manage-

ment systems to realize its full potential. Ideally, the CQA component should be a separate

component that can be easily integrated across heterogeneous platforms.

This dissertation focuses on CQA in the context of join queries and relational databases that

could possibly violate the primary-key constraints. The primary-key constraint imposes that no

two distinct records in the database shall have the same primary-key value for the primary-key

attribute, e.g. SSN, or passport number. It is perhaps the most widely imposed integrity constraint

over relational systems.

We now elaborate the motivations for solving the aforementioned challenges from both system

and theoretical perspectives.

System Motivations. CQA could serve a strong system copilot for data analytic pipelines.

Upon receiving a query, the system can first examine whether the CQA problem for that query

can be efficiently solved using solutions from the Classification challenge. If it can be efficiently

solved, the CQA component would then invoke the efficient implementation of a CQA algorithm

from the Algorithm challenge. This entire component then constitutes a solution to the System

challenge, which could potentially benefit data analytics pipelines deployed on different platforms.
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Theoretical Motivations. Aside from its practical impacts, the theoretical interests of CQA

also abound. In database theory, CQA on primary keys for a given Boolean query q (i.e., a first-

order sentence) is often defined as the following decision problem CERTAINTY(q):

Problem: CERTAINTY(q)

Input: A database instance db.

Question: Does q evaluate to true on every repair of db?

The problem CERTAINTY(q) is always in the complexity class coNP by definition, since a

repair that violates q can be verified in PTIME.

One of the seven Millennium Prize Problems is the PTIME vs. NP problem. Ladner’s [Lad75]

theorem asserts that if PTIME⊊NP, then there are problems that areNP-intermediate: decisions

problems that are in NP, but not in PTIME nor NP-complete. We remark that Ladner’s theorem

also implies the existence of coNP-intermediate problems.

Many computational problems fall under the framework of Constraint Satisfaction Problems

(CSP), including the infamous vertex cover, k-coloring of a graph, and so on. In a celebrated result,

Bulatov and Zhuk [Bul17, Zhu20] independently showed that CSP problems enjoy a dichotomy

between PTIME and NP-complete, avoiding the NP-intermediate class. In the context of CQA,

it has been long conjectured that for every Boolean conjunctive queries (CQ) q (i.e., a query

expressible as a first-order sentence using ∃ and ∧), the complexity of CERTAINTY(q) exhibits a

PTIME/coNP-complete dichotomy, avoiding the coNP-intermediate landscape.

Conjecture 1.1. For each Boolean conjunctive query q, the problem CERTAINTY(q) is in PTIME

or coNP-complete.

An even stronger conjecture is that the dichotomy of Conjecture 1.1 extends to unions of

conjunctive queries. Fontaine [Fon15] showed that this stronger conjecture implies the dichotomy

theorem for conservative Constraint Satisfaction Problems (CSP) [Bul11]. Hence the complexity

classification of CQA deepens our understanding of the relationship between PTIME and NP,

and offers an alternative view of the conservative CSPs.

1.2 Current Progress

We now provide an overview of some notable progress in CQA.

From a theoretical perspective, Fuxman and Miller [FM07] identified Cforest, a class of Boolean

conjunctive queries q for which CERTAINTY(q) can be solved via an FO-rewriting: we can construct
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another query such that executing it directly on the inconsistent database will return the consistent

answers of the original query. This notion will be made precise in Chapter 2 later. Wijsen [Wij10]

then provided an explicit criterion for the FO-border of CERTAINTY(q) for the class of acyclic self-

join-free Boolean conjunctive queries. Later, Kolaitis and Pema [KP12] gave a PTIME/coNP-

complete dichotomy for CQA for every self-join-free Boolean conjunctive queries with two distinct

atoms. Koutris and Suciu [KS14] then provided a PTIME/coNP-complete dichotomy for CQA

for every self-join-free Boolean conjunctive queries with simple primary keys. Eventually, Koutris

and Wijsen [KW15, KW17] settled the complexity landscape of CQA over self-join-free conjunctive

queries into FO, L-hard and PTIME, and coNP-complete. Koutris and Wijsen [KW19, KW21]

subsequently showed that when CERTAINTY(q) is inPTIME, it can also be expressed in symmetric

stratified Datalog (which is in L). Theorem 1.1 summarizes the complexity classification for self-

join-free Boolean conjunctive queries.

Theorem 1.1 ([KW21]). For every self-join-free Boolean conjunctive query q, CERTAINTY(q) is

in FO, L-complete, or coNP-complete, and it is decidable which of the three cases applies.

From a systems standpoint, most CQA systems fall into two categories: (1) systems that can

compute the consistent answers to SPJ queries with arbitrary denial constraints but require solvers

for computationally hard problems, or (2) systems that output the FO-rewriting but only target a

specific class of queries that occurs frequently in practice. For (1), some notable examples include

EQUIP [KPT13], which relies on Integer Programming solvers, and CAvSAT [DK21b, DK19],

which requires SAT solvers). This is a natural approach since CQA is always in coNP, and thus

one may attempt to reduce the complement of CQA to more general ones that we have efficient

solvers for. For (2), Fuxman and Miller [FFM05] implemented ConQuer, which outputs the FO-

rewriting for every query in Cforest, the FO-rewritable class they identified in [FM07], as a single

SQL query. Conquesto [KJL+20] is the most recent system targeting FO-rewritable join queries

by producing the rewriting in non-recursive Datalog.

We identify several drawbacks with all systems above. Both EQUIP and CAvSAT rely on solvers

for NP-complete problems, which does not guarantee efficient termination, even if the input query

is FO-rewritable. Even though Cforest captures many join queries seen in practice, it excludes queries

that involve (i) joining with only part of a composite primary key, often appearing in snowflake

schemas, and (ii) joining two tables on both primary-key and non-primary-key attributes, which

commonly occur in settings such as entity matching and cross-comparison scenarios. Conquesto,

on the other hand, implements the generic FO-rewriting algorithm without strong performance

guarantees. Moreover, neither ConQuer nor Conquesto has theoretical guarantees on the running

time of their produced rewritings.



6

1.3 Contributions

From a system perspective, we show that if an α-acyclic self-join-free Boolean conjunctive query

q has a pair-pruning join tree (PPJT), then CERTAINTY(q) admits a FO-rewriting that can be

implemented to run in linear time in the size of the inconsistent database. Such rewritings can be

extended to queries with free-variables (or projection attributes), stated in Theorem 1.2.

Theorem 1.2 ([FKOW23]). Let q be a conjunctive query and db be a database instance of size

N . If q admits a free-connex pair-pruning join tree, then the set of consistent answers OUTc of q

on db can be computed in time O(N + |OUTc|).

Recall that Yannakakis’ algorithm [Yan81] can evaluate any free-connex α-acyclic Boolean con-

junctive query q in time O(N + |OUT|), where OUT is the set of query answers. Theorem 1.2

implies that in the context of CQA, if q has a free-connex pair-pruning join tree, then its consistent

answers can also be computed in the same running time, exhibiting no asymptotic overhead.

We then implemented a system LinCQA, that can output an FO-rewriting of every query in

our class as either a SQL query or a non-recursive Datalog program. We show that LinCQA often

outperforms existing CQA systems in real-world workloads, and sometimes by orders of magnitudes.

From a theoretical perspective, we push the complexity classification of CERTAINTY(q) be-

yond self-join-free conjunctive queries. We first provide in Theorem 1.3 a complete complexity

classification for the class of Boolean path queries of the form

∃x1 · · · ∃xk+1(R1(x1, x2) ∧R2(x2, x3) ∧ · · · ∧Rk(xk, xk+1)),

where it is possible that for some i ̸= j, Ri = Rj .

Theorem 1.3 ([KOW21]). For every Boolean path query q, CERTAINTY(q) is in FO, NL-

complete, PTIME-complete, or coNP-complete, and it is decidable in polynomial time in the

size of q which of the four cases applies.

Comparing Theorem 1.1 and Theorem 1.3, it is striking that there are path queries q for which

CERTAINTY(q) is NL-complete or PTIME-complete, whereas these complexity classes do not

occur for self-join-free queries (under standard complexity assumptions). Moreover, when self-joins

are prohibited from a path query q, CERTAINTY(q) is always in FO. So even for the restricted

class of path queries, allowing self-joins immediately results in a more varied complexity landscape.

We then extend our complexity classification for path queries to a wider class of Boolean con-

junctive queries that allow for arbitrary arities, which we call the rooted tree queries, to be defined

in Chapter 5.
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Cforest
FO

[FM07]

α-acyclic

FO, non-FO

[Wij10]

SJF two tables

PTIME, coNP-complete

[KP12]

SJF simple keys

PTIME, coNP-complete

[KS14]

ConQuer

Cforest via FO

[FFM05]

system

SJF

FO, PTIME\ FO, coNP-complete

[KW17]

SJF

FO, L-complete, coNP-complete

[KW21]

theory

Path Queries

FO, NL-complete, PTIME-complete, coNP-complete

[KOW21]

Rooted Trees (and Beyond)

FO, NL-hard ∩ PTIME, coNP-complete

[KOW23]

Conquesto

SJF via FO

[KJL+20]

LinCQA

PPJT via FO in O(N)

[FKOW23]

EQUIP

* via BIP

[KPT13]

CAvSAT

* via SAT

[DK19]

Figure 1.1: A summary of some existing work on CQA and the contributions of this dissertation,

highlighted in green. Results for the class of CQs that allow and prohibit self-joins are above and

below the horizontal dotted lines, respectively. The theoretical (algorithm and complexity) results

and the system results on CQA are to the left and right of the vertical line, respectively. The

dashed arrows from A to B indicate that the theoretical work A inspires the system work B.
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Theorem 1.4 ([KOW23]). For every rooted tree query q, the problem CERTAINTY(q) is in FO,

NL-hard ∩ LFPL, or coNP-complete, and it is decidable in polynomial time in the size of q which

of the three cases applies.

Figure 1.1 summarizes the contributions of this dissertation.

1.4 Related Work

In this section, we discuss some related work to this dissertation.

Consistent query answering (CQA). Since its inception by Arenas, Bertossi, and Chomicki

[ABC99] in 1999, a long line of research has focused on obtaining the complexity classification of

CQA, which we have discussed in Section 1.2. The term CERTAINTY(q) was coined in [Wij10]

to refer to CQA for Boolean queries q on databases that violate primary keys, one per relation,

which are fixed by q’s schema. In particular, Fuxman’s dissertation [Fux07] is the first in the field

devoted to CQA. The trichotomy complexity classification of CERTAINTY(q) for the class of self-

join-free queries have been settled in Theorem 1.1. A few extensions beyond this trichotomy result

are known. The complexity of CERTAINTY(q) for self-join-free Boolean conjunctive queries with

negated atoms was studied in [KW18]. For self-join-free Boolean conjunctive queries with respect

to multiple keys, it remains decidable whether or not CERTAINTY(q) is in FO [KW20].

Little is known about CERTAINTY(q) beyond self-join-free conjunctive queries. Fontaine [Fon15]

showed that if we strengthen Conjecture 1.1 from conjunctive queries to unions of conjunctive

queries, then it implies Bulatov’s dichotomy theorem for conservative CSP [Bul11]. This relation-

ship between CQA and CSP was further explored in [LW15]. In [AKV15], the authors show the FO

boundary for CERTAINTY(q) for constant-free Boolean conjunctive queries q using a single binary

relation name with a singleton primary key.

The counting variant of the problem CERTAINTY(q), denoted ♯CERTAINTY(q), asks to count

the number of repairs that satisfy some Boolean query q. For self-join-free Boolean conjunctive

queries, ♯CERTAINTY(q) exhibits a dichotomy between FP and ♯PTIME-complete [MW13]. This

dichotomy has been shown to extend to queries with self-joins if primary keys are singletons [MW14],

and to functional dependencies [CLPS22a]. Calautti, Console, and Pieris present in [CCP19] a

complexity analysis of these counting problems under many-one logspace reductions and conducted

an experimental evaluation of randomized approximation schemes for approximating the percentage

of repairs that satisfy a given query [CCP21]. CQA is also studied under different notions of repairs

like operational repairs [CLP18, CLPS22b] and preferred repairs [SCM12, KLP20]. CQA has also

been studied for queries with aggregation, in both theory and practice [DK21a, KW23].
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In practice, there are other systems supporting CQA have often used efficient solvers for Dis-

junctive Logic Programming [GGZ03], Answer Set Programming (ASP) [MRT15, MB10], Binary

Integer Programming (BIP) [KPT13], and SAT solvers [DK19].

Certifiable robustness. The notion of certain answers also have traces in the machine learning

community, with the idea that given an inconsistent training dataset, an ML classifier may still

produce the same prediction to some given test point regardless of which consistent version (also

called a possible world) of the inconsistent training dataset it is trained on. Robust learning

algorithms have received much attention recently. Robustness of decision tree under adversarial

attack has been studied in [CZS+19, VV21] and interests in certifying robust training methods have

been observed [SWZ+21]. The notion of certain prediction has been reinvented in [KLW+20] to

connect the certifiable robustness of Nearest Neighbor Classifier to the downstream data cleaning

task. Most recently, efficient algorithms have been developed for certifying the robustness of k-

Nearest Neighbors [FK22], SVM, linear regression [ZCT23], and Naive Bayes Classifiers [BOFK23].

1.5 Organization

This dissertation is organized as follows.

• Chapter 2 introduces the background, definitions, and the problem statements.

• In Chapter 3, we formally define the notion of (free-connex) pair-pruning join trees and show

Theorem 1.2. We then describe the system LinCQA and provide experimental results over

real-world datasets.

• In Chapter 4, we prove Theorem 1.3, the tetrachotomy theorem for path queries. Here we

will introduce the notion of word rewinding and explain how it is useful in the complexity

classification.

• In Chapter 5, we show Theorem 1.4, the trichotomy classification for tree queries, and extend

it to other classes of CQs. The complexity classification would generalize the notion of word

rewinding into query homomorphisms. In particular, we present a PTIME algorithm to find

a frugal repair of the inconsistent database, such that all repairs satisfy q if and only if any

frugal repair satisfies q whenever CERTAINTY(q) is in PTIME.

• In Chapter 6, we discuss some future directions and provide some preliminary results.

• Chapter 7 concludes this dissertation.
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Chapter 2

Background

“All models are wrong, but some are useful.”

—George E. P. Box

In this chapter, we define the notations used in this dissertation. While we primarily adopt

the standard notations in databases, terminological correspondences to model theory will be added

where appropriate. We assume disjoint sets of variables and constants and basic familiarity with

first-order logic (FO) in Chapter 3 of [ABL+22] and Chapter 2.1 of [Lib04].

We use the example database Company shown in Figure 2.1 to illustrate our constructs incre-

mentally.

2.1 Databases and Queries

A database schema is a finite set of table names. Each table name is associated with a finite

sequence of attributes, and the length of that sequence is called the arity of that table.

A relational database instance (or database for short) db associates to each table name a finite

set of tuples that agree on the arity of the table, called a relation. A database instance can also

Employee

employee id office city wfh city

0011 Boston Boston

0011 Chicago New York

0011 Chicago Chicago

0022 New York New York

0022 Chicago Chicago

0034 Boston New York

Manager

office city manager id start year

Boston 0011 2020

Boston 0011 2021

Chicago 0022 2020

LA 0034 2020

LA 0037 2020

New York 0022 2020

Contact

office city contact id

Boston 0011

Boston 0022

Chicago 0022

LA 0034

LA 0037

New York 0022

Figure 2.1: An example database Company.
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be equivalently defined as a finite structure with no functions in (finite) model theory. We denote

adom(db) as the set of all constants that appear in db, also called the active domain of db.

Let x⃗ be a sequence of variables and constants. We write vars(x⃗) for the set of variables that

appear in x⃗. An atom with relation name R takes the form R(x⃗). If x⃗ does not contain any variable,

then R(x⃗) is also called a fact or a tuple. It is convenient to think of a database as a finite set

of facts. For two sequences of variables and constants x⃗ and y⃗, we denote x⃗ · y⃗ as the sequence

of variable and constants obtained by concatenating x⃗ and y⃗. An empty sequence is denoted by

⟨⟩. When it is clear from context, we often drop the brackets around sequences of length 1. For

example, we use x to denote both the variable x and the sequence ⟨x⟩.

Example 2.1. The Company database contains three (3) tables: Employee, Manager, and Con-

tact, each with arities 3, 2, and 2 respectively. All three tables have 6 facts, including facts

Employee(0011,Boston, Boston) and Contact(LA, 0037) to name a few.

For the Company database, we can have atoms Employee(x, y, y), Manager(u, v, 2020), and

Contact(LA, 2020). Facts Employee(0011,Chicago,New York) and Contact(LA, 2020) are in theCom-

pany database whereas the fact Contact(LA, 0042) is not.

A query is a first-order formula q(u⃗) where u⃗ is a sequence of variables and each predicate in q is

an atom. The sequence u⃗ is called the free variables of q. We denote vars(q) as the set of variables

that occur in q and consts(q) as the set of constants in q. A query q is Boolean if q is a first-order

sentence (i.e., u⃗ is empty), and a query q is full if u⃗ = vars(q). For a query q, let x⃗ = ⟨x1, . . . , xℓ⟩
be a sequence of distinct variables that occur in q and a⃗ = ⟨a1, . . . , aℓ⟩ be a sequence of constants,

then q[x⃗→a⃗] denotes the query obtained from q by replacing all free occurrences of xi with ai and

removing all variables xi from the sequence u⃗ for all 1 ≤ i ≤ ℓ.
A query is a conjunctive query (CQ) if it is a first-order formula in FO(∃,∧). Conjunctive

queries coincide with the select-project-join (SPJ) SQL queries in database terminology. We refer

to the classical Cow Book [RG03] for more details on the SQL syntax and semantics. Each CQ q

can be represented as a succinct rule of the following rule form (by omitting the quantifier ∃ and

replacing ∧ with comma):

q(u⃗) :- R1(x⃗1), R2(x⃗2), . . . , Rn(x⃗n), (2.1)

where each Ri(x⃗i) is an atom for 1 ≤ i ≤ n. The atom q(u⃗) is the head of the rule, and the set of

atoms {R1(x⃗1), R2(x⃗2), . . . , Rn(x⃗n)} is called the body of the rule, denoted by body(q).

We say that q has a self-join if some relation name occurs more than once in the body of q. A

CQ is self-join-free if it has no self-joins. If a self-join-free query q is understood, an atom R(x⃗) in q

can be unambiguously denoted by R. If the body of a CQ of the form (2.1) can be partitioned into
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two nonempty parts that have no variable in common, then we say that the query is disconnected ;

or otherwise it is connected.

Example 2.2. Consider the query over the Company database:

return the id’s of all employees who work in some office city with a manager who started

in year 2020.

It can be expressed by the following SPJ SQL query:

SELECT E.employee_id

FROM Employee E, Manager M

WHERE E.office_city=M.office_city

AND M.start_year=2020

and the following CQ:

q(x) :- Employee(x, y, z),Manager(y, w, 2020),

which essentially represents the following first-order formula

q(x) = ∃y, z, w : Employee(x, y, z) ∧Manager(y, w, 2020).

The following CQ q′ is a BCQ, since it merely asks whether the employee id 0011 satisfies the

conditions in q:

q′() :- Employee(0011, y, z),Manager(y, w, 2020).

It is easy to see that q′ is equivalent to q[x→0011].

It can be verified that the CQ q is connected. The CQ q is self-join-free since it does not contain

a relation name that occurs multiple times. The

Let p(u⃗) and q(v⃗) be two CQs. We write p ≤→ q if there exists a homomorphism from p to q,

i.e., a mapping h : vars(p) → vars(q) ∪ consts(q) that acts as identity when applied on constants,

such that h(u⃗) = v⃗ and for every atom R(x⃗) in p, R(h(x⃗)) is an atom of q. For u ∈ vars(p) and

v ∈ vars(q), we write p ≤u→v q if there exists a homomorphism h from p to q with h(u) = v. A CQ

q(u⃗) is minimal if every endomorphism of q is an automorphism.

Let db be a database instance and q(u⃗) a query. A tuple t⃗ is an answer to q on db if it has

the same length as u⃗ and db satisfies the first-order sentence q[u⃗→t⃗]. We denote q(db) as the set

of answers to q on db, or formally,

q(db) := {t⃗ | db |= q[u⃗→t⃗]}.
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We remark here that this dissertation assumes the set semantics: the answers to queries and the

databases are both sets of tuples.1 In particular, when q is Boolean, q(db) is either {⟨⟩} (interpreted
as true), or an ∅ (interpreted as false). Note that this construct coincides with the set-theoretic

definition of 0 := ∅ and 1 := {∅}.
As a special case, if q is a CQ, it can be verified that a tuple t⃗ is an answer to q on db if there

exists a homomorphism µ : vars(q) → adom(db) that acts as an identity on constants in q such

that µ(u⃗) = t⃗, and for any atom R(x⃗) in q, the fact R(µ(x⃗)) is in db.

The size of a database is defined to be the total number of facts in db, and the size of a query

is defined to be the sum of all predicate arities in the query.

Example 2.3. Consider the query q in Example 2.2 and the Company database. We have that

q(Company) = {0011, 0022, 0034}.

The tuple 0011 is an answer since the Company |= q[x→0011], where

q[x→0011] = ∃y, z, w : Employee(0011, y, z) ∧Manager(y, w, 2020),

witnessed by (among others), y = Boston, z = Boston, and w = 0011.

Alternatively, 0011 is an answer since for the following homomorphism h:

x 7→ 0011

y 7→ Boston

z 7→ Boston

w 7→ 0011

we have h(x) = 0011, Employee(h(x), h(y), h(z)) = Employee(0011,Boston,Boston) ∈ Company,

and Manager(h(y), h(w), h(2020)) = Employee(Boston,Boston, 2020) ∈ Company. Note that

while there are other homomorphisms witnessing that 0011 is a answer of q(Company), we only

list the tuple 0011 once in q(Company) since we focus on the set semantics. In bag semantics, the

multiplicity of 0011 in the bag q(Company) is equal to the number of such homomorphisms.

2.2 Integrity Constraints and Primary Keys

An integrity constraint Σ is a finite set of first-order sentences. A database db satisfies an

integrity constraint Σ if db |= Σ. In this case, we say that the database db is consistent with

respect to Σ, or otherwise inconsistent with respect to Σ.

1The commercial databases often adopt the bag semantics, in which the tuples in database and the query
answer are allowed to repeat.
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Let R be a relation name with n ≥ 1 attributes. A primary key for R is a subset of {1, 2, . . . , n}
of size k for 1 ≤ k ≤ n, essentially specifying a subset of attribute positions in R. Without loss

of generality, whenever R has a primary key of size k, we assume its primary key is {1, 2, . . . , k},
i.e. the first k attributes. We say that R is simple-key if k = 1.

For an atom R(u⃗) where the relation R has a primary key of size k, we often write R(x⃗, y⃗)

instead of R(u⃗) by underlining the primary-key positions, for sequences x⃗ and y⃗ such that the

length of x⃗ is k and u⃗ = x⃗ · y⃗.
The primary-key constraint of a relation R with arity n and primary key {1, 2, . . . , k} is the

first-order sentence

∀x⃗, y⃗, z⃗ : (R(x⃗, y⃗) ∧R(x⃗, z⃗)→ y⃗ = z⃗),

which semantically asserts that no two distinct facts in the relation R shall share the same primary

key attributes.

In this dissertation, we assume that that the set Σ of integrity constraints are restricted to

contain only primary-key constraints.

Let db be a database and Σ an integrity constraint. A subset of facts r of db is a repair of db

with respect to Σ if r is a maximal subset of db such that r |= Σ. It is easy to see that if db |= Σ,

then db itself is its one and only repair. However, if db ̸|= Σ, db could contain multiple repairs.

We denote repairs(db,Σ) as the set of all repairs of db with respect to Σ.

Let db be a database and Σ a primary-key constraint. Then db ̸|= Σ is tantamount to saying

that there exist two distinct facts in some relation of db that share the same primary key attributes.

A block of a relation is a maximal set of tuples that agree on all primary-key attributes. Whenever a

database db is understood, we denote R(c⃗, ∗) as the block in db containing all tuples with primary-

key value c⃗ in relation R. A repair of db can therefore be obtained by selecting exactly one tuple

from R(c⃗, ∗), for each relation name R in db and primary-key value c⃗ in R. It is easy to see that

all repairs of db have the same size, i.e., contains the same number of tuples.

Example 2.4. Consider the Company database. Suppose that the tables Employee, Manager,

and Contact, each with primary keys employee id, office city, and office city respectively. For

example, it is thus asserted that in the Employee table, no two facts shall share the same employee id,

or equivalently, the following first-order sentence shall hold:

∀x, y, z, y′, z′ : (Employee(x, y, z) ∧ Employee(x, y′, z′)→ y = y′ ∧ z = z′).

Note that Company does not satisfy the primary-key constraint, since there are two distinct tuples

Employee(0011,Boston,Boston) and Employee(0011,Chicago,New York) in Company that agree

on the primary-key attribute value 0011.
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The Company database contains (among others) nonempty blocks

Employee(0011, ∗) = {Employee(0011,Boston,Boston),

Employee(0011,Chicago,New York),

Employee(0011,Chicago,Chicago)},

Manager(Chicago, ∗) = {Manager(Chicago, 0022, 2020)},

and

Contact(LA, ∗) = {Contact(LA, 0034),Contact(LA, 0037)}.

A repair of Company is highlighted in gray.

2.3 Computational Complexity

For the sake of brevity, we introduce only the concepts in computational complexity used in

this dissertation and refer the unfamiliar readers to Chapter 2.3 of [Lib04] for more details.

Let L be a language over a finite set of alphabet. A decision problem P is a function P : L →
{0, 1}. Informally, the class L defines the class of valid inputs to the problem P , and for each valid

input x ∈ L, its output is either 0 (false) or 1 (true). An input x ∈ L is a “yes”-instance for P if

P (x) = 1, or otherwise a “no”-instance.

The class PTIME denotes the class of decision problems that can be solved by a deterministic

Turing machine in polynomial-time. The class NP denotes the class of decision problems that can

be solved by a non-deterministic Turing machine in polynomial-time, or equivalently, whose “yes”-

certificate can be verified in PTIME. A decision problem is in the class coNP if its complement

is in NP.

Example 2.5. Consider the decision problem SAT: Given a CNF formula φ, does φ has a satisfying

assignment? The complement of SAT is the UNSAT problem: Given a CNF formula φ, is φ not

satisfiable by all assignments?

We have that SAT is in NP, since a satisfying assignment (a “yes”-certificate to SAT) can be

verified in PTIME by evaluating the assignment directly in PTIME. UNSAT is the complement of

SAT since for every CNF formula φ, φ is a “yes”-instance for SAT if and only if φ is a “no”-instance

for UNSAT. This shows that UNSAT is in coNP.

We use NL to denote the class of decision problems that are decidable by a non-deterministic

Turing machine using logarithm space. The class L represents the class of decision problems decid-

able by a deterministic Turing machine using logarithm space. Immerman–Szelepcsényi theorem
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states that NL is closed under complement [Imm88, Sze88]. A decision problem P is in FO if there

exists a first-order sentence ψ of constant size such that x is a “yes”-instance for P if and only if

x |= ψ. The class FO coincides with the class AC0.

Let P be a problem that concerns a database db and a query q. The query complexity of the

problem P is the computational complexity of P in terms of the size of the query while treating

the size of the database as a constant; the data complexity of the problem P is the computational

complexity of P in terms of the size of the database while treating the size of the query as a

constant; and the combined complexity of the problem P is the computational complexity of P in

terms of both the query size and the database size.

A fundamental problem in database theory is the query evaluation problem (or model checking):

Problem: QueryEval

Input: a Boolean query q and a database db

Output: does db |= q hold?

If q is a BCQ, then QueryEval is NP-complete in both combined complexity and query com-

plexity via an easy reduction from 3-COLORABILITY [AHV95]. Counterintuitive as this result is,

commercial databases are in general efficient and effective since the queries often asked in our daily

lives do not involve a large number of tables and attributes. For any query q, QueryEval is in

FO (or AC0) in data complexity, since the size of the query q is considered a constant. A long line

of literature has been dedicated to efficient query processing algorithms [HW23, ZDK23, ZFOK23,

KNS17, WWS23, NPRR12] and its hardness [FKZ23].

2.4 Consistent Query Answering (CQA)

For every Boolean query q and integrity constraint Σ, the consistent query answering (CQA)

problem, denoted by CERTAINTY(q,Σ), is the following decision problem:

Problem: CERTAINTY(q,Σ)

Input: a database instance db

Output: does r |= q hold for every r ∈ repairs(db,Σ)?

If Σ is a primary-key constraint, we often drop Σ from the notation and simply use the notation

CERTAINTY(q), where every atom in q would be of the form R(x⃗, y⃗) to encode the primary key

constraint on relation R.



17

If q is non-Boolean, the problem CERTAINTY(q,Σ) essentially asks to compute the following set:⋂
r∈repairs(db,Σ)

q(r).

For the study of computational complexity, we often consider the decision version of CQA since it

is both a simplification of the problem, and that we may reduce the non-Boolean CQA problem to

the Boolean one, to be formally stated in Lemma 3.4 of Chapter 3.

In this dissertation, we study the data complexity of CERTAINTY(q), i.e., the size of the query

q is assumed to be a fixed constant. It is easy to see that CERTAINTY(q) is in coNP, since a

“no”-certificate (i.e., a repair r of db such that r ̸|= q) can be verified in PTIME.

The problem CERTAINTY(q) has a first-order rewriting if there is another query q′ such that

evaluating q′ on the input database db would return the answers of CERTAINTY(q). In other

words, executing q′ directly on the inconsistent database simulates computing the original query q

over all possible repairs.

Example 2.6. Recall that in Example 2.2, the query q returns {0011, 0022, 0034} on the incon-

sistent database Company. For CERTAINTY(q) however, the only output is 0022: for any repair

that contains the tuples Employee(0011, Boston, Boston) and Manager(Boston, 0011, 2021), neither

0011 nor 0034 would be returned by q; and in any repair, 0022 is returned by q with the following

crucial observation:

Regardless of which tuple in Employee(0022, ∗) the repair contains, both offices are

present in the Manager table and both managers in Chicago and New York offices started

in 2020.

Based on the observation, it is sufficient to solve CERTAINTY(q) by running the following single

SQL query, called an FO-rewriting of CERTAINTY(q).

SELECT E.employee_id FROM Employee E EXCEPT

SELECT E.employee_id FROM Employee E

WHERE E.office_city NOT IN (

SELECT M.office_city FROM Manager EXCEPT

SELECT M.office_city FROM Manager

WHERE M.start_year <> 2020)

2.5 Datalog

A Datalog program P is a finite set of rules of the form (2.1), with the extension that negated

atoms can be used in rule bodies. A rule can be interpreted as a logical implication: if the body
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is true, then so is the head of the rule. We assume that rules are always safe, meaning that every

variable occurring in the rule must also occur in a non-negated atom of the rule body. A relation

belongs to the intensional database (IDB) if it is defined by rules, i.e., if it appears as the head of

some rule; otherwise it belongs to the extensional database (EDB), i.e., it is a stored table.

Datalog naturally allows for recursion, by allowing the head predicate of some rule to appear

in the body of other rules (or even in its own body!). Given a Datalog program P , the dependency

graph of P is the directed graph in which the set of all rules in P forms the vertex set, and there

is an edge between two rules r1 and r2 if the head predicate of r1 appears in the body of r2. The

Datalog program is recursive if its dependency graph is acyclic, or otherwise non-recursive. A

Datalog program is linear if every rule contains at most one IDB in its body.

Example 2.7. The following Datalog program computes the transitive closure T of a directed

graph with an edge set E:

T (x, y) :- E(x, y). (2.2)

T (x, z) :- T (x, y), E(y, z). (2.3)

Here E(x, y) is an EDB and both T (x, y) and T (x, z) are IDBs. This program is recursive since

the predicate name T appears both in the head and the body of rule (2.3).

Datalog can be extended with stratified negation [AG94]. This means that the rules of a Datalog

program P can be partitioned into (P1, P2, . . . , Pn) such that the rule body of a rule in Pi uses only

IDB predicates defined by rules in some Pj with j < i. Here, it is understood that all rules with the

same head predicate belong in the same partition. Multiple Datalog engines have been developed

and analyzed [FZZ+19, FMK22, KNP+22b, Fan22, SYI+16].
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Chapter 3

LinCQA: Linear Time Rewritings for CQA

山重水複疑無路
柳暗花明又一村

—陸游《遊山西村》

Practical research on CQA systems have paralleled the advancements in the theoretical break-

throughs in CQA. In this Chapter, we present LinCQA, a CQA system that produces first-order

rewritings for CQA with linear running time guarantees.

Given the problem definition of CQA, the most straightforward systems would implement the

“brute-force” algorithm by inspecting all possible repairs as efficiently as possible. A notable system

is EQUIP [KPT13], which requires Integer Programming solvers to efficiently explore all possible

repairs. CAvSAT [DK21b, DK19] is a recent system that reduces CQA to SAT solvers, and has

extended capabilities to deal with queries with aggregations. The crux in both systems rely on

an efficient encoding of the integrity constraints into their respective solvers. Thanks to the vast

expressibility of both BIP and SAT solvers, EQUIP and CAvSAT have the potential to handle not

only primary key constraints, but in general any denial constraint. These systems are often built

on top of an existing database system housing the inconsistent data, reduce the CQA problem to a

solver instance, and emit the final consistent answers. While this allows for a wide usecase for these

systems, there are some drawbacks. First, even for queries joining two tables, the running time of

those systems could be prohibitive since the sizes of the solver instances are often proportional to

the sizes of the inconsistent database. More crucially, certain CQA instances could actually admit

first-order rewritings, and those systems would blindly reducing certain computationally easy CQA

instances to relatively expensive computational problems like BIP and SAT.

In light of those drawbacks, another line of research naturally focuses on producing efficient

first-order rewritings for the rewritable CQA instances. Compared to the systems using solvers

discussed above, these systems are often a light-weight SQL-to-SQL translator that can be added
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directly to the existing DBMS seamlessly. These systems are also often data-agnostic and easy

to maintain and optimize, since it is sufficient to produce the first-order rewritings based on only

the schema information and the query and one can easily verify and optimize the output query

for each individual use cases. The earliest such system is ConQuer developed by Fuxman and

Miller [FFM05], which can produce a first-order rewriting for every SQL query in their class Cforest.
Conquesto [KJL+20] targets every FO-rewritable SJF SPJ queries by producing the rewriting in

non-recursive Datalog. However, it is often challenging task to identify a wide-class of queries that

admit first-order rewritings and provide running time guarantees over the produced rewritings.

Contributions. To address the above observed issues, we make the following contributions:

Theory & Algorithms. We identify a subclass of acyclic Boolean join queries that captures a wide

range of queries commonly seen in practice for which we can produce FO-rewritings with a linear

running time guarantee (Section 3.2). This class subsumes all acyclic Boolean queries in Cforest.
For consistent databases, Yannakakis’ algorithm [BFMY83] evaluates acyclic Boolean join queries

in linear time in the size of the database. Our algorithm shows that even when inconsistency is

introduced with respect to primary key constraints, the consistent answers of many acyclic Boolean

join queries can still be computed in linear time, exhibiting no overhead to Yannakakis’ algorithm.

Our algorithm for the acyclic Boolean join queries can be extended to handle acyclic SPJ queries

with projections. Our technical treatment follows Yannakakis’ algorithm by considering a rooted

join tree with an additional annotation of the FO-rewritability property, called a pair-pruning join

tree (PPJT). Our algorithm follows the pair-pruning join tree to compute the consistent answers

and degenerates to Yannakakis’ algorithm if the database has no inconsistencies.

Implementation. We implement our algorithm in LinCQA (Linear Consistent Query Answering) 1, a

system prototype that produces an efficient and optimized rewriting in both SQL and non-recursive

Datalog with negation (Section 3.3).

Evaluation. We perform an extensive experimental evaluation comparing LinCQA to the other

state-of-the-art CQA systems. Our findings show that (i) a properly implemented rewriting can

significantly outperform a generic CQA system (e.g., CAvSAT); (ii) LinCQA achieves the best

overall performance throughout all our experiments under different inconsistency scenarios; and

(iii) the strong theoretical guarantees of LinCQA translate to a significant performance gap for

worst-case database instances. LinCQA often outperforms other CQA systems, in several cases by

orders of magnitude on both synthetic and real-world workloads. We also demonstrate that CQA

can be an effective approach even for real-world datasets of very large scale (∼400GB), which, to

the best of our knowledge, have not been tested before.

1https://github.com/xiatingouyang/LinCQA/

https://github.com/xiatingouyang/LinCQA/
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3.1 Background

In this section, we define some additional notations used in this chapter.

Acyclic queries and join trees. Let q be a CQ. A join tree of q is an undirected tree whose

nodes are the atoms of q such that for every two distinct atoms R and S, their common variables

occur in all atoms on the unique path between R and S in the tree. A CQ q is acyclic2 if it has a

join tree. If τ is a subtree of a join tree of a query q, we will denote by qτ the query whose atoms

are the nodes of τ . Whenever R is a node in an undirected tree τ , then (τ,R) denotes the rooted

tree obtained by choosing R as the root of the tree.

Example 3.1. The join tree of the query q in Example 2.2 has a single edge between the atoms

Employee(x, y, z) and Manager(y, w, 2020).

Attack graphs. Let q be an acyclic, self-join-free BCQ with join tree τ . We define K(q) as the
set of all functional dependencies of the form key(F )→ vars(F ) for every atom F in q.

K(q) := {key(F )→ vars(F ) | F ∈ q}.

Following [KW17], for every atom F ∈ q, we define F+,q as the set of all variables in q that

are functionally determined by key(F ) with respect to all functional dependencies of the form

key(G)→ vars(G) with G ∈ q \ {F}. Formally,

F+,q := {x ∈ vars(q) | K(q \ {F}) |= key(F )→ x}.

The attack graph of q is a directed graph whose vertices are the atoms of q. There is a directed

edge from F to G (F ̸= G) if there exists a sequence F0, F1, . . . , Fn of (not necessarily distinct)

atoms of q such that

• F0 = F and Fn = G; and

• for all i ∈ {0, . . . , n− 1}, vars(Fi) ∩ vars(Fi+1) ⊈ F+,q.

A directed edge from F to G in the attack graph of q is also called an attack from F to G. The

foregoing definitions extend to queries with free variables: it is sufficient and correct to treat free

variables as if they were constants. An atom without incoming edges in the attack graph is called

unattacked. The attack graph of q is used to determine the data complexity of CERTAINTY(q): the

attack graph of q is acyclic if and only if CERTAINTY(q) is in FO [Wij12, KW17].

2Throughout this section, whenever we say that a CQ is acyclic, we mean acyclicity as defined
in [BFMY83], a notion that today is also known as α-acyclicity, to distinguish it from other notions of
acyclicity.
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Example 3.2. For the query q(x) in Example 2.2, y is the only variable shared by atoms Employee

and Manager. The attack graph contains a directed edge from Employee to Manager because y /∈
Employee+,q. Conversely, Manager does not attack Employee since y ∈ Manager+,q. Since the attack

graph of q(x) is acyclic, it follows that CERTAINTY(q) is in FO, as witnessed by the FO-rewriting

in Example 2.6.

3.2 A Linear-Time Rewriting

Before presenting our linear-time rewriting for CERTAINTY(q), we first provide a motivating

example. Consider the following query on the Company database shown in Figure 2.1:

Is there an office whose contact person works for the office and, moreover, manages

the office since 2020?

This query can be expressed by the following CQ:

qex() :- Employee(x, y, z),Manager(y, x, 2020),Contact(y, x).

To the best of our knowledge, the most efficient running time for CERTAINTY(qex) guaranteed by

existing systems is quadratic in the input database size, denoted N . The problem CERTAINTY(qex)

admits an FO-rewriting by the classification theorem in [KOW21]. However, the non-recursive

Datalog rewriting of CERTAINTY(qex) produced by Conquesto contains Cartesian products between

two tables, which means that it runs in Ω(N2) time in the worst case. Also, since qex is not in Cforest,
ConQuer cannot produce an FO-rewriting. Both EQUIP and CAvSAT solve the problem through

Integer Programming or SAT solvers, which can take exponential time. One key observation is that

qex requires a primary-key to primary-key join and a non-key to non-key join at the same time. As

will become apparent in our technical treatment in Section 3.2.2, this property allows us to solve

CERTAINTY(qex) in O(N) time, while existing CQA systems will run in more than linear time.

The remainder of this section is organized as follows. In Section 3.2.1, we introduce the notion of

pair-pruning join tree (PPJT). In Section 3.2.2, we consider every Boolean query q having a PPJT

and present a novel linear-time non-recursive Datalog program for CERTAINTY(q) (Theorem 3.1).

Finally, we extend our result to all acyclic self-join-free CQs in Section 3.2.3 (Theorem 3.2) .

3.2.1 Pair-pruning Join Tree

Here we introduce the notion of a pair-pruning join tree (PPJT). We first assume that the query

q is connected, and then discuss how to handle disconnected queries at the end of the section.

Recall that an atom in a self-join-free query can be uniquely denoted by its relation name. For

example, we may use Employee as a shorthand for the atom Employee(x, y, z) in qex.
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Employee(x, y, z) Manager(y, x, 2020) Contact(y, x)

τ τM τC

Figure 3.1: A pair-pruning join tree (PPJT) of the query qex.

Definition 3.1 (PPJT). Let q be an acyclic self-join-free BCQ. Let τ be a join tree of q and R a

node in τ . The tree (τ,R) is a pair-pruning join tree (PPJT) of q if for any rooted subtree (τ ′, R′)

of (τ,R), the atom R′ is unattacked in qτ ′ .

Example 3.3. For the join tree τ in Figure 3.1, the rooted tree (τ,Employee) is a PPJT for qex.

The atom Employee(x, y, z) is unattacked in q. For the child subtree (τM ,Manager) of (τ,Employee),

the atom Manager(y, x, 2020) is also unattacked in the following subquery

qexτM () :- Manager(y, x, 2020),Contact(y, x).

Finally, for the subtree (τC ,Contact), the atom Contact(y, x) is also unattacked in the corresponding

subquery qexτC () :- Contact(y, x). Hence (τ,Employee) is a PPJT of qex.

Which queries admit a PPJT? As we show next, having a PPJT is a sufficient condition for

the existence of an FO-rewriting.

Proposition 3.1. Let q be an acyclic self-join-free BCQ. If q has a PPJT, then CERTAINTY(q)

admits an FO-rewriting.

Proof. Suppose, for the sake of contradiction, that the attack graph is not acyclic. Then there

must be two atoms R,S such that R
q
⇝ S and S

q
⇝ R by Lemma 3.6 of [KW17]. Let (τ, T ) be the

PPJT for q, and let (τ ′, U) be the smallest subtree of (τ, T ) that contains both S and R (it may

be that U = R or U = S). The first observation is that in the subquery qτ ′ it also holds that R

attacks S and vice versa. Moreover, since (τ ′, U) is the smallest possible subtree, the unique path

that connects R and S must go through the root U . We now distinguish two cases:

• If U = R, then S attacks the root of the subtree q′, a contradiction to the PPJT definition.

• If U ̸= R, then the unique path from R to S goes through U . Since R must attack every

atom in that path by Lemma 4.9 of [Wij12], it must also attack U , a contradiction as well.

The proof is now complete by the classification theorem of [KOW21].

We note that not all acyclic self-join-free BCQs with an acyclic attack graph have a PPJT, as

demonstrated in the next example.
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Example 3.4. Let q() :- R(x,w, y), S(y, w, z), T (w, z). The attack graph of q is acyclic. The only

join tree τ of q is the path R − S − T . However, neither (τ,R) nor (τ, S) is a PPJT for q since R

and S are attacked in q; and (τ, T ) is not a PPJT since in its subtree (τ ′, S), S is attacked in the

subquery that contains R and S.

Fuxman and Miller [FM07] identified a large class of self-join-free CQs, called Cforest, that in-

cludes most queries with primary-key-foreign-key joins, path queries, and queries on a star schema,

such as found in SSB and TPC-H [OOCR09, PF00]. This class covers most of the SPJ queries seen

in practical settings. In view of this, the following proposition is of practical significance.

Proposition 3.2. Every acyclic BCQ in Cforest has a PPJT.

Proof. Let q be a query in Cforest and let G be the join graph of q as in Definition 6 of [FM07]. In

particular, (i) the vertices of G are the atoms of q, and (ii) there is an arc from R to S if R ̸= S and

there is some variable w ∈ vars(S) such that w ∈ vars(R)\key(R). By the definition of Cforest, G is a

directed forest with connected components τ1, τ2, . . . , τn, where the root atoms are R1, R2, . . . , Rn

respectively.

Claim 1: each τi is a join tree. Suppose for the sake of contradiction that τi is not a join tree.

Then there exists a variable w and two non-adjacent atoms R and S in τi such that w ∈ vars(R),

w ∈ vars(S), and for any atom Ti in the unique path R− T1 − · · · − Tk − S, we have w /∈ vars(Ti).

We must have w ∈ key(R) and w ∈ key(S), or otherwise there would be an arc between R and S,

a contradiction. From the property Cforest, it also holds that no atom in the tree receives arcs from

two different nodes. Hence, there is either an arc (T1, R) or (Tk, S). Without loss of generality,

assume there is an arc from T1 to R. Then, since all nonkey-to-key joins are full, w ∈ vars(T1), a

contradiction to our assumption.

Claim 2: the forest τ1∪· · ·∪τn can be extended to a join tree τ of q. To show this, we will

show that τ1 ∪ · · · ∪ τn corresponds to a partial join tree as constructed by the GYO ear-removal

algorithm. Indeed, suppose that atom T is a child of atom T ′ in τi. Then, T was an ear while

constructing τi for qτi , with T ′ as its witness. Recall that this means that if a variable x is not

exclusive in T , then x ∈ T ′. We will show that this is a valid ear removal step for q as well. Indeed,

consider an exclusive variable x in T for qτi that does not remain exclusive in q. Then, x occurs

in some other tree τj . We will now use the fact that, by Lemma 2 of [FM07], if τi and τj share a

variable x, then x can only appear in the root atoms Ri and Rj . This implies that x appears at

the root of τi, and hence at T ′ as well, a contradiction.
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We finally claim that (τ,R1) is a PPJT for q. By construction, τ is a join tree. Next, consider

any two adjacent atoms R and S in τ such that R is a parent of S in (τ,R1). Let p be any connected

subquery of q containing R and S. It suffices to show that S does not attack R in p. If R and S

are both root nodes of some τi and τj , we must have vars(R)∩ vars(S) ⊆ key(S) ⊆ S+,p, and thus S

does not attack R in p. If R and S are in the same join tree τi, since there is no arc from S to R, all

nonkeys of S are not present in R, and thus vars(R)∩ vars(S) = vars(R)∩ key(S) ⊆ key(S) ⊆ S+,p.

Hence, there is no attack from S to R as well.

Furthermore, it is easy to verify that, unlike Cforest, PPJT captures all FO-rewritable self-join-

free SPJ queries on two tables, a.k.a. binary joins. For example, the binary join q5 in Section 3.4.2

admits a PPJT but is not in Cforest.

How to find a PPJT. For any acyclic self-join-free BCQ q, we can check whether q admits a

PPJT via a brute-force search over all possible join trees and roots. If q involves n relations, then

there are at most nn−1 candidate rooted join trees for PPJT (nn−2 join trees and for each join tree,

n choices for the root). For the data complexity of CERTAINTY(q), this exhaustive search runs in

constant time since we assume n is a constant. In practice, the search cost is acceptable for most

join queries that do not involve too many tables.

Proposition 3.3 shows that the foregoing brute-force search for q can be optimized to run in

polynomial time when q has an acyclic attack graph and, when expressed as a rule, does not contain

two distinct body atoms R(x⃗, y⃗) and S(u⃗, w⃗) such that every variable occurring in x⃗ also occurs

in u⃗. Most queries we observe and used in our experiments fall under this category.

Proposition 3.3. Let q be an acyclic self-join-free BCQ whose attack graph is acyclic. If for all

two distinct atoms F,G ∈ q, neither of key(F ) or key(G) is included in the other, then q has a

PPJT that can be constructed in quadratic time in the number of atoms in q.

Proof. Let q be a self-join-free Boolean conjunctive query with an acyclic attack graph. Let τ be

a join tree for q (thus q is α-acyclic). Assume the following hypothesis:

Hypothesis of Disjoint Keys: for all atoms G,H ∈ q, G ̸= H, we have that key(G) and

key(H) are not comparable by set inclusion.

We show, by induction on |q|, that CERTAINTY(q) is in linear time. For the basis of the induction,

|q| = ∅, it is trivial that CERTAINTY(q) is in linear time. For the induction step, let |q| ≥ 1. Let

F be an unattacked atom of q. Let (τ, F ) be a join tree of q with root F . Let F1, . . . , Fn be the

children of F in (τ, F ) with subtrees τ1, τ2, . . . , τn.

Let i ∈ {1, . . . , n}. We claim that qτi has an acyclic attack graph. Assume for the sake of

contradiction that the attack graph of qτi has a cycle, and therefore has a cycle of size 2. Then
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there are G,H ∈ qτi such that G
qτi⇝ H

qτi⇝ G. From the Hypothesis of Disjoint Keys, it follows

G
q
⇝ H

q
⇝ G, contradicting the acyclicity of q’s attack graph.

We claim the following:

for every G ∈ qτi , vars(G) ∩ vars(F ) ⊆ key(G). (3.1)

This claim follows from the Hypothesis of Disjoint Keys and the assumption that F is unattacked

in q’s attack graph.

It suffices to show that there is an atom F ′
i ∈ qτi (possibly F ′

i = Fi) such that

1. F ′
i is unattacked in the attack graph of qτi ; and

2. vars(qτi) ∩ vars(F ) ⊆ key(F ′
i ).

We distinguish two cases:

Case that Fi is unattacked in the attack graph of qτi. Then we can pick F ′
i := Fi.

Case that Fi is attacked in the attack graph of qτi. We can assume an atom G such that

G
qτi⇝ Fi. Since G

q

̸⇝ F , by the Hypothesis of Disjoint Keys, it must be that vars(Fi) ∩
vars(F ) ⊆ key(G). Then from vars(qτi)∩vars(F ) ⊆ vars(Fi), it follows vars(qτi)∩vars(F ) ⊆
key(G). If G is unattacked in the attack graph of qτii, then we can pick F ′

i := G. Otherwise we

repeat the same reasoning (with G playing the role previously played by Fi). This repetition

cannot go on forever since the attack graph of qτi is acyclic.

This concludes the proof.

Main Result. We previously showed that the existence of a PPJT implies an FO-rewriting that

computes the consistent answers. Our main result shows that it also leads to an efficient algorithm

that runs in linear time.

Theorem 3.1. Let q be an acyclic self-join-free BCQ that admits a PPJT, and db be a database

instance of size N . Then, there exists an algorithm for CERTAINTY(q) that runs in time O(N).

It is worth contrasting our result with Yannakakis’ algorithm, which computes the result of

any acyclic BCQ also in linear time O(N) [Yan81]. Hence, the existence of a PPJT implies that

computing CERTAINTY(q) will have the same asymptotic complexity.

Disconnected CQs. Every disconnected BCQ q can be written as q = q1, q2, . . . , qn where

vars(qi) ∩ vars(qj) = ∅ for 1 ≤ i < j ≤ n and each qi is connected. If each qi has a PPJT, then

CERTAINTY(q) can be solved by checking whether the input database is a “yes”-instance for each

CERTAINTY(qi), by the following Lemma.
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Lemma 3.1. Let q = q1∪q2∪· · ·∪qk be a Boolean conjunctive query such that for all 1 ≤ i < j ≤ k,
vars(qi) ∩ vars(qj) = ∅. Then, the following are equivalent for every database instance db:

1. db is a “yes”-instance for CERTAINTY(q); and

2. for each 1 ≤ i ≤ k, db is a “yes”-instance for CERTAINTY(qi).

Proof. We give the proof for k = 2. The generalization to larger k is straightforward.

1 =⇒ 2 Assume that (1) holds true. Then each repair r of db satisfies q, and therefore satisfies

both q1 and q2. Therefore, db is a “yes”-instance for both CERTAINTY(q1) and CERTAINTY(q2).

2 =⇒ 1 Assume that (2) holds true. Let r be any repair of db. Then there are valuations µ

from vars(q1) to adom(db), and θ from vars(q2) to adom(db) such that µ(q1) ⊆ r and θ(q2) ⊆ r.

Since vars(q1) ∩ vars(q2) = ∅ by construction, we can define a valuation σ as follows, for every

variable z ∈ vars(q1) ∪ vars(q2):

σ(z) =

µ(z) if z ∈ vars(q1)

θ(z) if z ∈ vars(q2)

From σ(q) = σ(q1) ∪ σ(q2) = µ(q1) ∪ θ(q2) ⊆ r, it follows that r satisfies q. Therefore, db is a

“yes”-instance for CERTAINTY(q).

3.2.2 The Rewriting Rules

We now show how to produce an efficient rewriting in Datalog and prove Theorem 3.1. In

Section 3.3, we will discuss how to translate the Datalog program to SQL. Let q be an acyclic

self-join-free BCQ with a PPJT (τ,R) and db an instance for the problem CERTAINTY(q): does

the query q evaluate to true on every repair of db?

Let us first revisit Yannakakis’ algorithm for evaluating q on a database db in linear time.

Given a rooted join tree (τ,R) of q, Yannakakis’ algorithm visits all nodes in a bottom-up fashion.

For every internal node S of (τ,R), it keeps the tuples in table S that join with every child of

S in (τ,R), where each such child has been visited recursively. In the end, the algorithm returns

whether the root table R is empty or not. Equivalently, Yannakakis’ algorithm evaluates q on db

by removing tuples from each table that cannot contribute to an answer in db at each recursive

step.

Our algorithm for CQA proceeds like Yannakakis’ algorithm in a bottom-up fashion. At each

step, we remove tuples from each table that cannot contribute to an answer to q in at least one

repair of db. Informally, if a tuple cannot contribute to an answer in at least one repair of db

containing it, then it cannot contribute to a consistent answer to q on db. Specifically, given a
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PPJT (τ,R) of q, to compute all tuples of each internal node S of (τ,R) that may contribute to a

consistent answer, we need to “prune” the blocks of S in which there is some tuple that violates

either the local selection condition on table S, or the joining condition with some child table of S in

(τ,R). The term “pair-pruning” is motivated by the latter process, where we consider only one pair

of tables at a time. This idea is formalized in Algorithm 1, where the procedures Self-Pruning

and Pair-Pruning prune, respectively, the blocks that violate the local selection condition and

the joining condition.

To ease the exposition of the rewriting, we now present both procedures in Datalog syntax. We

will use two predicates for every atom S in the tree (let T be the unique parent of S in τ):

• the predicate Sfkey has arity equal to |key(S)| and collects the primary-key values of the

S-table that cannot contribute to a consistent answer for q 3; and

• the predicate Sjoin has arity equal to |vars(S) ∩ vars(T )| and collects the values for these

variables in the S-table that may contribute to a consistent answer.

Algorithm 1: PPJT-Rewriting(τ,R)

Input: PPJT (τ,R) of q

Output: a Datalog program P deciding CERTAINTY(q)

1 P := ∅
2 P := P ∪ Self-Pruning(R)

3 foreach child node S of R in τ do

4 P := P ∪PPJT-Rewriting(τ, S)

5 P := P ∪Pair-Pruning(R,S)

6 P := P ∪Exit-Rule(R)

7 return P

Figure 3.2 depicts how each step generates the rewriting rules for qex. We now describe how

each step is implemented in detail.

Self-Pruning(R): Let R(x1, . . . xk, xk+1, . . . , xn), where xi can be a variable or a constant. The

first rule finds the primary-key values of the R-table that can be pruned because some tuple with

that primary-key violates the local selection conditions imposed on R.

3The f in fkey is for “false key”.
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R4: Employeejoin() :- Employee(x, y, z),¬Employeefkey(x).

R3: Employeefkey(x) :- Employee(x, y, z),¬Managerjoin(y, x).

Employee

employee id office city wfh city

0011 Boston Boston

0011 Chicago New York

0011 Chicago Chicago

0022 New York New York

0022 Chicago Chicago

0034 Boston New York

Employeejoin
True

Employeefkey
0011

0034

R4: Managerjoin(y, x) :- Manager(y, x, 2020),¬Managerfkey(y).

R3: Managerfkey(y) :- Manager(y, x, 2020),¬Contactjoin(y, x).

R2: Managerfkey(y) :- Manager(y, x, 2020),Manager(y, z1, 2020), z1 ̸= x.

R1: Managerfkey(z1) :- Manager(z1, z2, z3), z3 ̸= 2020.

Manager

office city manager id start year

Boston 0011 2020

Boston 0011 2021

Chicago 0022 2020

LA 0034 2020

LA 0037 2020

New York 0022 2020

Managerjoin
Chicago 0022

New York 0022

Managerfkey
Boston

LA

R4: Contactjoin(y, x) :- Contact(y, x),¬Contactfkey(y).

R2: Contactfkey(y) :- Contact(y, x), Contact(y, z1), z1 ̸= x.

Contact

office city contact id

Boston 0011

Boston 0022

Chicago 0022

LA 0034

LA 0037

New York 0022

Contactjoin
Chicago 0022

New York 0022

Contactfkey
Boston

LA

Figure 3.2: The non-recursive Datalog program for evaluating CERTAINTY(qex) together with an

example execution on the Company database in Figure 2.1. The faded-out rows denote blocks

that are removed since they do not contribute to any consistent answer. The arrows denote which

rules remove which blocks (some blocks can be removed by multiple rules).
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Rule 3.1. If xi = c for some constant c, we add the rule

Rfkey(z1, . . . , zk) :- R(z1, . . . , zn), zi ̸= c.

If for some variable xi there exists j < i with xi = xj , we add the rule

Rfkey(z1, . . . , zk) :- R(z1, . . . , zn), zi ̸= zj .

Here, z1, . . . , zn are fresh distinct variables.

The second rule finds the primary-key values of the R-table that can be pruned because R joins

with its parent T in the tree. The underlying intuition is that if some R-block of the input database

contains two tuples that disagree on a non-key position that is used in an equality-join with T , then

for every given T -tuple t, we can pick an R-tuple in that block that does not join with t. Therefore,

that R-block cannot contribute to a consistent answer.

Rule 3.2. For each variable xi with i > k (so in a non-key position) such that xi ∈ vars(T ), we

produce a rule

Rfkey(x1, . . . , xk) :- R(x1, . . . , xk, xk+1, . . . , xn),

R(x1, . . . , xk, zk+1, . . . , zk), zi ̸= xi.

where zk+1, . . . , zn are fresh variables.

Example 3.5. The self-pruning phase on(τM ,Manager) produces one rule using Rule 3.1. When

executed on the Company database, the key Boston is added toManagerfkey, since the tuple (Boston,

0011, 2021) has start year ̸= 2020. The self-pruning phase on the PPJT (τC ,Contact) produces one

rule using Rule 3.2 (here x is the non-key join variable). Hence, the keys Boston and LA will be

added to Contactfkey.

Pair-Pruning(R,S): Suppose that q contains the atoms R(x⃗, y⃗) and S(u⃗, v⃗), where the S-atom

is a child of the R-atom in the PPJT. Let w⃗ be a sequence of distinct variables containing all (and

only) variables in vars(R) ∩ vars(S). The third rule prunes all R-blocks containing some tuple that

cannot join with any S-tuple to contribute to a consistent answer.

Rule 3.3. Add the rule

Rfkey(x⃗) :- R(x⃗, y⃗),¬Sjoin(w⃗),

where the rules for Sjoin will be defined in Rule 3.4.
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The rule is safe because every variable in w⃗ occurs in R(x⃗, y⃗).

Example 3.6. Figure 3.2 shows the two pair-pruning rules generated (in general, there will be

one pair-pruning rule for each parent-child edge in the PPJT). In both cases, the join variables are

{y, x}. For the table Employee, the rule prunes the two blocks with keys 0011, 0034 and adds them

to Employeefkey.

Exit-Rule(R): Suppose that q contains R(x⃗, y⃗). If R is an internal node, let w⃗ be a sequence of

distinct variables containing all (and only) the join variables of R and its parent node in τ . If R

is the root node, let w⃗ be the empty vector. The exit rule removes the pruned blocks of R and

projects on the variables in w⃗. If R is an internal node, the resulting tuples in the projection could

contribute to a consistent answer, and will be later used for pair pruning; if R is the root, the

projection returns the final result.

Rule 3.4. If Rfkey exists in the head of a rule, we produce the rule

Rjoin(w⃗) :- R(x⃗, y⃗),¬Rfkey(x⃗).

Otherwise, we produce the rule

Rjoin(w⃗) :- R(x⃗, y⃗).

Example 3.7. Figure 3.2 shows the three exit rules for qex—one rule for each node in the PPJT.

The boolean predicate Employeejoin determines whether True is the consistent answer to the query.

Runtime Analysis. It is easy to see that Rule 1, 3, and 4 can be evaluated in linear time.

We now argue how to evaluate Rule 2 in linear time as well. Indeed, instead of performing the

self-join on the key, it suffices to create a hash table using the primary key as the hash key (which

can be constructed in linear time). Then, for every value of the key, we can easily check whether

all tuples in the block have the same value at the i-th attribute.

Proof of Theorem 3.1 We now provide the proof of Theorem 3.1.

Definition 3.2. Let db be a database instance for CERTAINTY(q) and R(x⃗, y⃗) an atom in q. We

define the good keys of R with respect to query q and db, denoted by Rgkey(q,db), as follows:

Rgkey(q,db) := {c⃗ | db is a “yes”-instance for CERTAINTY(qx⃗→c⃗)}.
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Let q be a self-join-free acyclic BCQ with a PPJT (τ,R). Lemma 3.2 implies that in order to

solve CERTAINTY(q), it suffices to check whether Rgkey(q,db) ̸= ∅.

Lemma 3.2. Let q be a self-join-free acyclic BCQ with a PPJT (τ,R). Let db be a database

instance for CERTAINTY(q). Then the following statements are equivalent:

1. db is a “yes”-instance for CERTAINTY(q); and

2. Rgkey(q,db) ̸= ∅.

Proof. By Lemma 4.4 in [KW17], we have that db is a “yes”-instance for CERTAINTY(q) if and

only if there exists a sequence of constant c⃗ such that db is a “yes”-instance for CERTAINTY(q[x⃗→c⃗]),

and the latter is equivalent to Rgkey(q,db) ̸= ∅ by Definition 3.2.

Example 3.8. The atom Employee(x, y, z) is unattacked in qex. Observe that for employee id =

0022, no matter whether we choose the tuple Employee(0022, New York, New York) or the tuple

Employee(0022, Chicago, Chicago) in a repair, the chosen tuple will join with some corresponding

tuple in the Manager and Contact table. The query qex[x→0022] will then return True for all repairs

of database Company, and 0022 ∈ Employeegkey(q
ex,Company) ̸= ∅. The Company database is

then concluded to be a “yes”-instance for CERTAINTY(qex) by Lemma 3.2.

We remark that the converse direction also holds: if Company is known to be a “yes”-

instance for CERTAINTY(qex), then by Lemma 3.2, the set Employeegkey(q
ex,Company) must also

be nonempty.

Lemma 3.3. Let R(x⃗, y⃗) be an atom in an acyclic self-join-free BCQ q with a PPJT (τ,R). Let

db be an instance for CERTAINTY(q). For every sequence c⃗ of constants, of the same length as x⃗,

the following are equivalent:

1. c⃗ ∈ Rgkey(q,db); and

2. the block R(c⃗, ∗) of db is non-empty and for every fact R(c⃗, d⃗) in db, the following hold:

(a) {R(c⃗, d)} satisfies the BCQ () :- R(x⃗, y⃗); and

(b) for every child subtree (τS , S) of (τ,R), there exists s⃗ ∈ Sgkey(qτS ,db) such that (i) all

facts S(s⃗, t⃗) agree on the joining variables in vars(R) ∩ vars(S) and (ii) for every fact

S(s⃗, t⃗) in db, the pair {R(c⃗, d⃗), S(s⃗, t⃗)} satisfies the BCQ () :- R(x⃗, y⃗), S(u⃗, v⃗), where

S(u⃗, v⃗) is the S-atom of q.

Proof. We consider two directions.
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2 =⇒ 1 Here we must have Sgkey(qS ,db) ̸= ∅ for all child node S of R in τ . Let r be any repair

of db and let R(c⃗, d⃗) ∈ r. Since 2 holds, for every child node S of R, there exists a fact

S(s⃗, d⃗) ∈ r with s⃗ ∈ Sgkey(qS ,db) and a valuation µS such that R(µS(x⃗), µS(y⃗)) = R(c⃗, d⃗)

and S(µS(u⃗), µS(v⃗)) = S(s⃗, t⃗). Since r is a repair of db and s⃗ ∈ Sgkey(qS ,db), there exists

a valuation ξS such that ξS(qS) ⊆ r with ξS(u⃗) = s⃗ = µS(u⃗). Note that all µS agree on the

valuation of vars(x⃗)∪vars(y⃗), let µ be the valuation such that R(µ(x⃗), µ(y⃗)) = R(µ(x⃗S), µ(y⃗S))

for all child node S of R.

Next we show that for all qS and any variable z ∈ vars(R)∩ vars(qS), µ(z) = ξS(z). Since r is

consistent, we must have S(µS(u⃗), µS(v⃗)) = S(ξS(u⃗S), ξS(v⃗S)) ∈ r. Since T is a join tree, we

must have z ∈ vars(R) ∩ vars(S), and it follows that ξS(z) = µS(z) = µ(z), as desired.

Then, the following valuation

µ(z) =


µ(z) z ∈ vars(R)

ξi(z) z ∈ vars(qS) \ vars(R)
d z = d is constant

is well-defined and satisfies that µ(qx⃗→c⃗) ⊆ r, as desired.

1 =⇒ 2 By contraposition. Assume that 2 does not hold, and we show that there exists a repair

r of db that does not satisfy q[x⃗→c⃗].

If 2a does not hold, then there exists some fact f = R(c⃗, d⃗) that does not satisfy R(x⃗, y⃗), and

any repair containing the fact f does not satisfy q[x⃗→c⃗]. Next we assume that 2a holds but 2b

does not.

If Sgkey(qS ,db) = ∅ for some child node S of R in τ , then by monotonicity of conjunctive

queries and Lemma 3.2, db is a “no”-instance for CERTAINTY(qS), CERTAINTY(q) and thus

CERTAINTY(q[x⃗→c⃗]). In what follows we assume that Sgkey(qS ,db) ̸= ∅ for all child node S

of R.

Since 2b does not hold, there exist a fact R(c⃗, d⃗) and some child node S of R in τ and query

qS such that for any block S(s⃗, ∗) with s⃗ ∈ Sgkey(qS ,db), there exists a fact S(s⃗, t⃗) that does

not join with R(c⃗, d⃗).

Let db′ = db \ R \ {S(s⃗, ∗) | s⃗ ∈ Sgkey(qS ,db)}. We show that db′ is a “no”-instance for

CERTAINTY(qS). Indeed, suppose otherwise that db
′ is a “yes”-instance for CERTAINTY(qS),

then there exists some s⃗ such that db′ is a “yes”-instance for CERTAINTY(qS,[u⃗→s⃗]). Note

that by construction, s⃗ /∈ Sgkey(qS ,db). Since db′ ⊆ db, we have db is a “yes”-instance for

CERTAINTY(qS,[u⃗→s⃗]), implying that s⃗ ∈ Sgkey(qS ,db), a contradiction.

Consider the following repair r of db that contains
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• R(c⃗, d⃗) and an arbitrary fact from all blocks R(⃗b, ∗) with b⃗ ̸= c⃗;

• for each s⃗ ∈ Sgkey(qS ,db), any fact S(s⃗, t⃗) that does not join with R(c⃗, d⃗); and

• any falsifying repair r′ of db′ for CERTAINTY(qS).

We show that r does not satisfy q[x⃗→c⃗]. Suppose for contradiction that there exists a valuation

µ with µ(q[x⃗→c⃗]) ⊆ r and R(µ(x⃗), µ(y⃗)) = R(c⃗, d⃗) ∈ r. Let S(s⃗∗, t⃗∗) = S(µ(u⃗), µ(v⃗)), then

we must have s⃗∗ /∈ Sgkey(qS ,db), since otherwise we would have S(s⃗∗, t⃗∗) joining with R(c⃗, d⃗)

where we have s⃗∗ ∈ Sgkey(qS ,db), a contradiction to the construction of r. Since s⃗∗ /∈
Sgkey(qS ,db), we would then have µ(qS) ⊆ r′, a contradiction to that r′ is a falsifying repair

of db′ for CERTAINTY(qS). Finally, if 2b holds, then all facts S(s⃗, t⃗) must agree on w⃗ since

they all join with the same fact R(c⃗, d⃗).

The proof is now complete.

Proof of Theorem 3.1. It suffices to present rewriting rules to compute each Rgkey(q,db) for each

atom R in q by Lemma 3.3 , and show that these rewriting rules are equivalent to those presented

in Section 3.2.2, which are shown to run in linear time. We denote Rgk as the Datalog predicate for

Rgkey(q,db). It is easy to see that Rule 1 computes all blocks of R violating item 2a of Lemma 3.3.

To compute the blocks of R violating item 2b, we denote Rgki as the predicate for the subset

of Rgk that satisfies condition (i) of item 2b. For each child S(u⃗, v⃗) of R in a PPJT, let w⃗ be a

sequence of all variables in vars(R) ∩ vars(S). The following rules find all blocks in R that violate

condition (ii) of item 2b.

Sjoin(w⃗) :- S(u⃗, v⃗), Sgki(u⃗). (3.2)

Rfkey(x⃗) :- R(x⃗, y⃗)¬Sjoin(w⃗). (3.3)

We then compute the predicate Rgk denoting Rgkey(q,db) with

Rgk(x⃗) :- R(x, y⃗),¬Rfkey(x⃗). (3.4)

If R has a parent, then we may compute all blocks in R violating condition (i) of item 2b using the

following rules for every variable at the i-th position of y⃗,

Rgk¬(x⃗) :- R(x⃗, y⃗), R(x⃗, y⃗′), yi ̸= y′i. (3.5)

Rgki(x⃗) :- Rgk(x⃗),¬Rgk¬(x⃗). (3.6)

Now we explain why Rules (3.2) through (3.6) are equivalent to Rule 3.2, 3.3, 3.4. First, the

head Rgk¬ of Rule (3.5) can be safely renamed to Rfkey and yield Rule 3.2. Rule (3.3) is equivalent
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to Rule 3.3. Finally, Rules (3.2), (3.4) and (3.6) can be merged to Rule 3.4 since to compute

each Sjoin, we only need S(u⃗, v⃗) and Sfkey. Note that the Rule (3.2) for the atom R will have 0 arity

if R is the root of the PPJT.

3.2.3 Extension to Non-Boolean Queries

Let q(u⃗) be an acyclic self-join-free CQ with free variables u⃗, and db be a database instance.

If c⃗ is a sequence of constants of the same length as u⃗, we say that c⃗ is a consistent answer to q on

db if c⃗ ∈ q(r) for every repair r of db. Furthermore, we say that c⃗ is a possible answer to q on db

if c⃗ ∈ q(db). It can be easily seen that for CQs every consistent answer is a possible answer.

Lemma 3.4 reduces computing the consistent answers of non-Boolean queries to that of Boolean

queries.

Lemma 3.4. Let q be a CQ with free variables u⃗, and let c⃗ be a sequence of constants of the same

length as u⃗. Let db be an database instance. Then c⃗ is a consistent answer to q on db if and only

if db is a “yes”-instance for CERTAINTY(q[u⃗→c⃗]).

Proof. Consider both directions. First we assume that c⃗ is a consistent answer of q on db. Let r be

any repair of db. Then there exists a valuation µ with µ(q) ⊆ r with µ(u⃗) = c⃗, and hence µ(q[u⃗→c⃗]) =

µ(q) ⊆ r. That is, q[u⃗→c⃗](r) is true. Hence db is a “yes”-instance for CERTAINTY(q[u⃗→c⃗]). For

the other direction, we assume that db is “yes”-instance for CERTAINTY(q[u⃗→c⃗]). Let r be any

repair of db. Then there is a valuation µ with µ(q[u⃗→c⃗]) ⊆ r. Let θ be the valuation with θ(u⃗) = c⃗.

Consider the valuation

µ+(z) =

θ(z) z ∈ vars(u⃗)

µ(z) otherwise,

and we have µ+(q) = µ(q[u⃗→c⃗]) ⊆ r with µ+(u⃗) = θ(u⃗) = c⃗, as desired.

If q has free variables u⃗ = (u1, u2, . . . , un), we say that q admits a PPJT if the Boolean query

q[u⃗→c⃗] admits a PPJT, where c⃗ = (c1, c2, . . . , cn) is a sequence of distinct constants.

We can now state our main result for non-Boolean CQs.

Theorem 3.2. Let q be an acyclic self-join-free Conjunctive Query that admits a PPJT, and db

be a database instance of size N . Let OUTp be the set of possible answers to q on db, and OUTc

the set of consistent answers to q on db. Then:

1. the set of consistent answers can be computed in time O(N · |OUTp|); and
2. moreover, if q is full, the set of consistent answers can be computed in time O(N + |OUTc|).
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Theorem 3.2 exhibit a resemblance with Yannakakis’ algorithm, which has a running time of

O(N · |OUT|) for acyclic CQs, and a running time of O(N + |OUT|) for full acyclic CQs.

Proof. Our algorithm first evaluates q on db to yield a set S of size |OUTp| in time O(N · |OUTp|).
Here the set S must contain all the consistent answers of q on db. By Lemma 3.4, we then return

all answers c⃗ ∈ S such that db is a “yes”-instance for CERTAINTY(q[u⃗→c⃗]), which runs in O(N) by

Theorem 3.1. This approach gives an algorithm with running time O(N · |OUTp|).
If q is full, there is an algorithm that computes the set of consistent answers even faster. The

algorithm proceeds by (i) removing all blocks with at least two tuples from db to yield dbc and

(ii) evaluating q on dbc. It suffices to show that every consistent answer to q on db is an answer

to q on dbc. Assume that c⃗ is a consistent answer to q on db. Consider q[u⃗→c⃗], a disconnected

CQ where u⃗ is a sequence of all variables in q. Its FO-rewriting effectively contains Rule 1 for

each atom in q[u⃗→c⃗], which is equivalent to step (i), and then checks whether dbc satisfies q[u⃗→c⃗]

by Lemma B.1 of [KOW21]. By Lemma 3.4, db is a “yes”-instance for CERTAINTY(q[u⃗→c⃗]), and

thus the FO-rewriting concludes that dbc satisfies q[u⃗→c⃗], i.e. c⃗ is an answer to q on dbc. In our

algorithm, step (i) runs in O(N) and since q is full, step (ii) runs in time O(N + |OUTc|).

In particular, we show that the consistent answers of certain non-Boolean queries can be com-

puted in time O(N + |OUTc|), borrowing ideas from the free-connex acyclic queries [BDG07].

Proposition 3.4. Let q(u⃗) be an acyclic self-join-free Conjunctive Query that admits a connected

PPJT (τ,R), and db be a database instance of size N . If vars(u⃗) ⊆ vars(R), then the consistent

answers to q on db can be computed in time O(N).

Proof. Consider the FO-rewriting of q[u⃗→c⃗], for an arbitrary sequence of distinct constants c⃗ =

(c1, c2, · · · , cn) of the same length of u⃗ = (u1, u2, . . . , un). Let S be any arbitrary atom in q and let

qS(v⃗) be the subquery rooted at S, where v⃗ contains all free-variables in u⃗ that occur in qS . We

must have that vars(v⃗) ⊆ vars(S), since vars(v⃗) ⊆ vars(u⃗) ⊆ vars(R). Therefore, it suffices to replace

each ci with ui (a variable) in the FO-rewriting of q[u⃗→c⃗], and replace the head of the final return

rule Rjoin(·) (an empty head) with Rjoin(u⃗). Hence the rewriting still runs in linear time, and the

size of the consistent answer is of size at most the size of R.

We may thus generalize the notion of PPJT of BCQs to free-connex PPJT of CQs by considering

the free variables.

Definition 3.3. Let q(u⃗) be a connected acyclic self-join-free Conjunctive Query. Suppose that

q[u⃗→c⃗] has n connected components q
(1)
[u⃗1→c⃗1]

, · · · , q(n)[u⃗n→c⃗n]
. If every BCQ q

(i)
[u⃗i→c⃗i]

has a PPJT (τi, Ri)

with vars(Ri) ⊆ vars(u⃗), then q(u⃗) has a free-connex pair-pruning join tree (τ, F ), where
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1. F (u⃗) is a fresh atom; and

2. every rooted tree (τi, Ri) is a child of F in τ .

Corollary 3.1. Let q(u⃗) be a connected acyclic self-join-free Conjunctive Query with a free-connex

pair-pruning join tree. Then the consistent answers to q on db can be computed in time O(N +

|OUTc|), where OUTc is the set of consistent answers of q in db.

Proof. By Proposition 3.4, the set of consistent answers Ai of each q(i)(u⃗i) can be computed in

time O(N) and |Ai| = O(N). By Lemma 4.22 and 3.4, c⃗ is a consistent answer of q(u⃗) in db if

and only if every c⃗i is a consistent answer of q(i)(u⃗i) in db. Hence OUTc can be computed as the

full-join among all Ai, which runs in time O(N + OUTc) by the Yannakakis’ algorithm.

The proof of Theorem 1.2 follows immediately from Theorem 3.2 and Corollary 3.1.

Rewriting for non-Boolean Queries. Let c⃗ = (c1, c2, . . . , cn) be a sequence of fresh, dis-

tinct constants. If q[u⃗→c⃗] has a PPJT, the Datalog rewriting for CERTAINTY(q) can be obtained

as follows:

1. Produce the program P for CERTAINTY(q[u⃗→c⃗]) using the rewriting algorithm for Boolean

queries (Subsection 3.2.2).

2. Replace each occurrence of the constant ci in P with the free variable ui.

3. Add the rule: ground(u⃗) :- body(q).

4. For a relation T , let u⃗T be a sequence of all free variables that occur in the subtree rooted

at T . Then, append u⃗T to every occurrence of Tjoin and Tfkey.

5. For any rule of P that has a free variable ui that is unsafe, add the atom ground(u⃗) to the

rule.

Example 3.9. Consider the non-Boolean query

qnex(w) :- Employee(x, y, z),Manager(y, x, w),Contact(y, x).

Note that the constant 2020 in qex is replaced by the free variable w in qnex. Hence, the program P

for CERTAINTY(qnex[w→c]) is the same as Figure 3.2, with the only difference that 2020 is replaced

by the constant c. The ground rule produced is:

ground(w) :- Employee(x, y, z),Manager(y, x, w),Contact(y, x).

Figure 3.3a shows how Yannakakis’ algorithm evaluates qnex.

To see how the rules of P would change for the non-Boolean case, consider the self-pruning rule

for Contact. This rule would remain as is, because it contains no free variable and the predicate



38

Employeejoin(w) :- Employee(x, y, z),Managerjoin(y, x, w).

Managerjoin(y, x, w) :- Manager(y, x, w), Contactjoin(y, x).

Contactjoin(y, x) :- Contact(y, x).

(a) Yannakakis’ Algorithm

ground(w) :- Employee(x, y, z),Manager(y, x, w), Contact(y, x).

R4: Employeejoin(w) :- Employee(x, y, z),¬Employeefkey(x,w), ground(w).

R3: Employeefkey(x,w) :- Employee(x, y, z),¬Managerjoin(y, x, w), ground(w).

R4: Managerjoin(y, x, w) :- Manager(y, x, w),¬Managerfkey(y), ground(w).

R3: Managerfkey(y, w) :- Manager(y, x, w),¬Contactjoin(y, x), ground(w).

R2: Managerfkey(y, w) :- Manager(y, x, w),Manager(y, z1, w), z1 ̸= x.

R1: Managerfkey(z1, w) :- Manager(z1, z2, z3), z3 ̸= w, ground(w).

R4: Contactjoin(y, x) :- Contact(y, x),¬Contactfkey(y).

R2: Contactfkey(y) :- Contact(y, x), Contact(y, z1), z1 ̸= x.

(b) PPJT extended to non-Boolean queries

Figure 3.3: The non-recursive Datalog program for qnex and CERTAINTY(qnex).

Contactfkey remains unchanged. In contrast, consider the first self-pruning rule for Manager, which

in P would be:

Managerfkey(y1) :- Manager(y1, y2, y3), y3 ̸= w.

Here, w is unsafe, so we need to add the atom ground(w). Additionally, w is now a free variable

in the subtree rooted at Manager, so the predicate Managerfkey(y1) becomes Managerfkey(y1, w). The

transformed rule will be:

Managerfkey(y1, w) :- Manager(y1, y2, y3), y3 ̸= w, ground(w).

The full rewriting for qnex can be seen in Figure 3.3b.

The above rewriting process may introduce Cartesian products in the rules. In the next section,

we will see how we can tweak the rules in order to avoid this inefficiency.

3.3 Implementation

In this section, we first present LinCQA, a system that produces the consistent FO-rewriting of

a query q in both Datalog and SQL formats if q has a PPJT. Having a rewriting in both formats

allows us to use both Datalog and SQL engines as a backend. We then briefly discuss how we

address the flaws of Conquer and Conquesto that impair their actual runtime performance.
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3.3.1 LinCQA: Rewriting in Datalog/SQL

Our implementation takes as input a self-join-free CQ q written in either Datalog or SQL.

LinCQA first checks whether or not the query q admits a PPJT; if q admits a PPJT, LinCQA

produces a consistent FO-rewriting of q in Datalog or SQL.

3.3.1.1 Datalog rewriting

LinCQA implements all rules introduced in Subsection 3.2.2, with one modification to the ground

rule atom. Let the input query be

q(u⃗) :- R1(x⃗1, y⃗1), R2(x⃗2, y⃗2), . . . , Rk(x⃗k, y⃗k).

In Subsection 3.2.3, the head of the ground rule is ground(u⃗). In the implementation, we replace

that rule with

ground∗(x⃗1, x⃗2, . . . , x⃗k, u⃗) :- body(q).

The rule keeps the key variables of all atoms. For each unsafe rule with head Ri,label where label ∈
{fkey, join}, let v⃗ be the key in the occurrence of Ri in the body of the rule (if the unsafe rule is

produced by Rule 3.2, both occurrences of Ri share the same key). Then, we add to the rule body

the atom

ground∗(z⃗1, . . . , z⃗i−1, v⃗, z⃗i+1, . . . , z⃗k, u⃗)

where each z⃗i is a sequence of fresh variables of the same length as x⃗i.

The rationale is that appending ground(u⃗) to all unsafe rules could potentially introduce a

Cartesian product between ground(u⃗) and some existing atom R(v⃗, w⃗) in the rule. The Cartesian

product has size O(N · |OUTp|) and would take Ω(N · |OUTp|) time to compute, often resulting in

inefficient evaluations or even out-of-memory errors. On the other hand, adding ground∗ guarantees

a join with an existing atom in the rule. Hence the revised rules would take O(N + |ground∗|) time

to compute. Note that the size of ground∗ can be as large as Nk · |OUTp| in the worst case; but as

we observe in the experiments, the size of ground∗ is small in practice.

3.3.1.2 SQL rewriting

We now describe how to translate the Datalog rules in Subsection 3.2.2 to SQL queries. Given

a query q, we first denote the following:

1. KeyAttri(R): the primary key attributes of relation R;

2. JoinAttri(R,T): the attributes of R that join with T;
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3. Comp(R): the conjunction of comparison predicates imposed entirely on R, excluding all join

predicates (e.g., R.A = 42 and R.A = R.B); and

4. NegComp(R): the negation of Comp(R) (e.g., R.A ̸= 42 or R.A ̸= R.B).

Translation of Rule 3.1. We translate Rule 3.1 of Subsection 3.2.2 into the following SQL

query computing the keys of R.

SELECT KeyAttri(R) FROM R WHERE NegComp(R)

Translation of Rule 3.2. We first produce the projection on all key attributes and the joining

attributes of R with its parent T (if it exists), and then compute all blocks containing at least

two facts that disagree on the joining attributes. This can be effectively implemented in SQL with

GROUP BY and HAVING.

SELECT KeyAttri(R)

FROM (SELECT DISTINCT KeyAttri(R), JoinAttri(R,T) FROM R) t

GROUP BY KeyAttri(R)

HAVING COUNT(*) > 1

Translation of Rule 3.3. For Rule 3.3 in the pair-pruning phase, we need to compute all

blocks of R containing some fact that does not join with some fact in Sjoin for some child node S

of R. This can be achieved through a left outer join between R and each of its child nodes S1join,

S2join, . . . , S
k
join, which are readily computed in the recursive steps. For each 1 ≤ i ≤ k, let the

attributes of Si be Bi
1, B

i
2, . . . , B

i
mi

, joining with attributes Aαi
1
, Aαi

2
, . . . , Aαi

mi
in R respectively.

We produce the following rule:

SELECT KeyAttri(R) FROM R

LEFT OUTER JOIN S1join ON

R.Aα1
1
= S1join.B

1
1 AND ... AND R.Aα1

m1
= S1join.B

1
m1

...

LEFT OUTER JOIN Skjoin ON

R.Aαk
1
= Skjoin.B

k
1 AND ... AND R.Aαk

mk
= Skjoin.B

k
mk

WHERE S1join.B
1
1 IS NULL OR ... S1join.B

1
m1

IS NULL OR

S2join.B
2
1 IS NULL OR ... S2join.B

2
m2

IS NULL OR

...

Skjoin.B
k
1 IS NULL OR ... Skjoin.B

k
mk

IS NULL

The inconsistent blocks represented by the keys found by the above three queries are combined

using UNION ALL (e.g., Rfkey in Rule 3.1, 3.2, 3.3).
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Translation of Rule 3.4. Finally, we translate Rule 3.4 computing the values on join attributes

between good blocks in R and its unique parent T if it exists. Let A1, A2, . . . , Ak be the key attributes

of R.

SELECT JoinAttri(R,T) FROM R WHERE NOT EXISTS (

SELECT *

FROM Rfkey

WHERE R.A1 = Rfkey.A1 AND ... AND R.Ak = Rfkey.Ak)

If R is the root relation of the PPJT, we replace JoinAttri(R,T) with DISTINCT 1 (i.e. a Boolean

query). Otherwise, the results returned from the above query are stored as Rjoin and the recursive

process continues as described in Algorithm 1.

Extension to non-Boolean queries. Let q be a non-Boolean query. We use ProjAttri(q) to

denote a sequence of attributes of q to be projected and let CompPredicate(q) be the comparison

expression in the WHERE clause of q. We first produce the SQL query that computes the facts of

ground∗.

SELECT KeyAttri(R1), . . ., KeyAttri(Rk), ProjAttri(q)

FROM R1, R2, . . ., Rk

WHERE CompPredicate(q)

We then modify each SQL statement as follows. Consider a SQL statement whose corresponding

Datalog rule is unsafe and let T (v⃗, w⃗) be an atom in the rule body. Let u⃗T be a sequence of free

variables in qτT and let FreeAttri(T ) be a sequence of attributes in qτT to be projected (i.e.,

corresponding to the variables in u⃗T ). Since, as previously mentioned, Tjoin(v⃗) and Tfkey(v⃗) are

replaced with Tjoin(v⃗, u⃗T ) and Tfkey(v⃗, u⃗T ) respectively, we first append FreeAttri(T ) to the SELECT

clause and then add a JOIN between table T and ground on all attributes in KeyAttri(T ). Finally,

for a rule that has some negated IDB containing a free variable corresponding to some attribute in

ground (i.e., ground.A),

• if the rule is produced byRule 3.3, in each LEFT OUTER JOIN with Si
join we add the expression

ground.A = Sijoin.B connected by the AND operator, where B is an attribute to be projected

in Sijoin. In the WHERE clause we also add an expression ground.A IS NULL, connected by the

OR operator; and

• if the rule is produced by Rule 3.4, in the WHERE clause of the subquery we add an expression

ground.A = Rfkey.A.
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3.3.2 Improvements upon existing CQA systems

Conquer Fuxman and Miller [FM07] identified Cforest, a class of CQs whose consistent answers can

be computed via an FO-rewriting. However, their accompanying system can only handle queries

in Cforest whose join graph is a tree, unable to handle the query in Cforest whose join graph is not

connected [FFM05]. Since we were unable to find the original ConQuer implementation, we re-

implemented ConQuer and added an efficient implementation of the method RewriteConsistent

in Figure 2 of [FM07], enabling us to produce the consistent SQL rewriting for every query in Cforest.

Conquesto Conquesto [KJL+20] produces a non-recursive Datalog program that implements

the algorithm in [KW17], targeting all FO-rewritable self-join-free CQs. However, it suffers from

repeated computation and unnecessary cartesian products. For example, the Conquesto rewriting

for the CQ q(z) :- R1(x, y, z), R2(y, v, w) is shown as follows, where Rule (3.7) and (3.9) share the

common predicate R2(y, v, w) in their bodies, resulting in re-computation, and Rule (3.11) involves

a Cartesian product.

SrR2
(y) :- R2(y, v, w). (3.7)

YesR2
(y) :- SrR2

(y),R2(y, v, w). (3.8)

SrR1
(z) :- R1(x, y, z),R2(y, v, w). (3.9)

GfR1
(v2, x, y, z) :- SrR1

(z),R1(x, y, v2),YesR2
(y), v2 = z. (3.10)

BbR1
(x, z) :- SrR1

(z),R1(x, y, v2),¬GfR1
(v2, x, y, z). (3.11)

YesR1
(z) :- SrR1

(z),R1(x, y, z),¬BbR1
(x, z). (3.12)

We thus implement FastFO to address the aforementioned issues, incorporating our ideas in

Subsection 3.3.1.1. Instead of re-computing the local safe ranges such as SrR1
(y) and SrR2

(z), we

compute a global safe range Sr(x, y, z), which includes all key variables from all atoms and the free

variables. This removes all undesired Cartesian products and the recomputations of the local safe

ranges at once. The FastFO rewriting for q is presented below.

Sr(x, y, z) :- R1(x, y, z),R2(y, v, w). (3.13)

YesR2
(y) :- Sr(x, y, z),R2(y, v, w). (3.14)

GfR1
(v2, x, y, z) :- Sr(x, , z),R1(x, y, v2),YesR2

(y), v2 = z. (3.15)

BbR1
(x, z) :- Sr(x, , z),R1(x, y, v2),¬GfR1

(v2, x, y, z). (3.16)

YesR1
(z) :- Sr(x, y, z),R1(x, y, z),¬BbR1

(x, z). (3.17)

For evaluation, the rules computing each intermediate relation (i.e. all rules except for the one

computing YesR1
(z)) are then translated to a SQL subquery via a WITH clause.
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3.4 Experiments

Our experimental evaluation addresses the following questions:

1. How do first-order rewriting techniques perform compared to generic state-of-the-art CQA

systems (e.g., CAvSAT)?

2. How does LinCQA perform compared to other existing CQA techniques?

3. How do different CQA techniques behave on inconsistent databases with different properties

(e.g., varying inconsistent block sizes, inconsistency)?

4. Are there instances where we can observe the worst-case guarantee of LinCQA that other

CQA techniques lack?

To answer these questions, we perform experiments using synthetic benchmarks used in prior

works and a large real-world dataset of 400GB. We compare LinCQA against several state-of-the-art

CQA systems with improvements. To the best of our knowledge, this is the most comprehensive

performance evaluation of existing CQA techniques, and we are the first ones to evaluate different

CQA techniques on a real-world dataset of this large scale.

3.4.1 Experimental Setup

We next briefly describe the setup of our experiments.

System configuration. All of our experiments are conducted on a bare-metal server in Cloud-

lab [Clo18], a large cloud infrastructure. The server runs Ubuntu 18.04.1 LTS and has two Intel

Xeon E5-2660 v3 2.60 GHz (Haswell EP) processors. Each processor has 10 cores, and 20 hyper-

threading hardware threads. The server has a SATA SSD with 440GB space being available, 160GB

memory and each NUMA node is directly attached to 80GB of memory. We run Microsoft SQL

Server 2019 Developer Edition (64-bit) on Linux as the relational backend for all CQA systems.

For CAvSAT, MaxHS v3.2.1 [DB11] is used as the solver for the output WPMaxSAT instances.

Other CQA systems. We compare the performance of LinCQA with several state-of-the-art

CQA methods.

ConQuer: a CQA system that outputs a SQL rewriting for queries that are in Cforest [FFM05].

FastFO: our own implementation of the general method that can handle any query for which CQA

is FO-rewritable.
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CAvSAT: a recent SAT-based system. It reduces the complement of CQA with arbitrary denial

constraints to a SAT problem, which is solved with an efficient SAT solver [DK19].

For LinCQA, ConQuer and FastFO, we only report execution time of FO-rewritings, since the

rewritings themselves can be produced within 1ms for all our queries. We report the performance

of each FO-rewriting using the best query plan. The preprocessing time required by CAvSAT prior

to computing the consistent answers is not reported. For each rewriting and database shown in the

experimental results, we run the evaluation five times (unless timed out), discard the first run and

report the average time of the last four runs.

3.4.2 Databases and Queries

3.4.2.1 Synthetic workload

We consider the synthetic workload used in previous works [KPT13, DK19, Dix21]. Specifically,

we take the seven queries that are consistent first-order rewritable in [DK19, KPT13, Dix21].

These queries feature joins between primary-key attributes and foreign-key attributes, as well as

projections on non-key attributes:

q1(z) :- R1(x, y, z),R3(y, v, w).

q2(z, w) :- R1(x, y, z),R2(y, v, w).

q3(z) :- R1(x, y, z),R2(y, v, w),R7(v, u, d).

q4(z, d) :- R1(x, y, z),R2(y, v, w),R7(v, u, d).

q5(z) :- R1(x, y, z),R8(y, v, w).

q6(z) :- R1(x, y, z),R6(t, y, w),R9(x, y, d).

q7(z) :- R3(x, y, z),R4(y, x, w),R10(x, y, d).

The synthetic instances are generated in two phases. In the first phase, we generate the consistent

instance, while in the second phase we inject inconsistency. We use the following parameters for

data generation: (i) rSize: the number of tuples per relation, (ii) inRatio: the ratio of the number of

tuples that violate primary key constraints (i.e., number of tuples that are in inconsistent blocks)

to the total number of tuples of the database, and (iii) bSize: the number of inconsistent tuples in

each inconsistent block.

Consistent data generation. Each relation in the consistent database has the same number

of tuples, so that injecting inconsistency with specified bSize and inRatio makes the total number

of tuples in the relation equal to rSize. The data generation is query-specific: for each of the seven
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queries, the data is generated in a way to ensure the output size of the original query on the

consistent database is reasonably large. To achieve this purpose, when generating the database

instance for one of the seven queries, we ensure that for any two relations that join on some

attributes, the number of matching tuples in each relation is approximately 25%; for the third

attribute in each ternary relation that does not participate in a join but is sometimes present in

the final projection, the values are chosen uniformly from the range [1, rSize/10].

Inconsistency injection. In each relation, we first select a number of primary keys (or number

of inconsistent blocks inBlockNum) from the generated consistent instance. Then, for each selected

primary key, the inconsistency is injected by inserting the same number of additional tuples (bSize−
1) into each block. The parameter inBlockNum is calculated by the given rSize, inRatio and bSize:

inBlockNum = (inRatio · rSize)/bSize. We remark that there are alternative inconsistency injection

methods available [AGM+15, AJKO08].

3.4.2.2 TPC-H benchmark.

We also altered the 22 queries from the original TPC-H benchmark [PF00] by removing ag-

gregation, nested subqueries and selection predicates other than constant constraints, yielding 14

simplified conjunctive queries, namely queries q′1, q
′
2, q

′
3, q

′
4, q

′
6, q

′
10, q

′
11, q

′
12, q

′
14, q

′
16, q

′
17, q

′
18, q

′
20,

q′21. All of the 14 queries are in Cforest and hence each query has a PPJT, meaning that they can

be handled by both ConQuer and LinCQA.

We generate the inconsistent instances by injecting inconsistency into the TPC-H databases of

scale factor (SF) 1 and 10 in the same way as described for the synthetic data. The only difference

is that for a given consistent database instance, instead of fixing rSize for the inconsistent database,

we determine the number of inconsistent tuples to be injected based on the size of the consistent

database instance, the specified inRatio and bSize.

3.4.2.3 Stackoverflow Dataset.

We obtained the stackoverflow.com metadata as of 02/2021 from the Stack Exchange Data

Dump, with 551,271,294 rows taking up 400GB.4 5 The database tables used are summarized in

Table 3.2. We remark that the Id attributes in PostHistory, Comments, Badges, and Votes are

surrogate keys and therefore not imposed as natural primary keys; instead, we properly choose

composite keys as primary keys (or quasi-keys).

4https://archive.org/details/stackexchange
5https://sedeschema.github.io/

stackoverflow.com
https://archive.org/details/stackexchange
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Table 3.1: StackOverflow queries

Q1 SELECT DISTINCT P.id, P.title FROM Posts P, Votes V WHERE P.Id =

V.PostId AND P.OwnerUserId = V.UserId AND BountyAmount > 100

Q2 SELECT DISTINCT U.Id, U.DisplayName FROM Users U, Badges B WHERE U.Id =

B.UserId AND B.name = "Illuminator"

Q3 SELECT DISTINCT U.DisplayName FROM Users U, Posts P WHERE U.Id =

P.OwnerUserId AND P.Tags LIKE "<c++>"

Q4 SELECT DISTINCT U.Id, U.DisplayName FROM Users U, Posts P, Comments C

WHERE C.UserId = U.Id AND C.PostId = P.Id AND P.Tags LIKE "%SQL%" AND

C.Score > 5

Q5 SELECT DISTINCT P.Id, P.Title FROM Posts P, PostHistory PH, Votes

V, Comments C WHERE P.id = V.PostId AND P.id = PH.PostId AND P.id

= C.PostId AND P.Tags LIKE "%SQL%" AND V.BountyAmount > 100 AND

PH.PostHistoryTypeId = 2 AND C.score = 0
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Table 3.2: A summary of the Stackoverflow Dataset.

Table # of rows inRatio max. bSize Attributes

Users 14,839,627 0% 1 Id, AboutMe, Age, CreationDate, Display-

Name, DownVotes, EmailHash, LastAccess-

Date, Location, Reputation, UpVotes, Views,

WebsiteUrl, AccountId

Posts 53,086,328 0% 1 Id, AcceptedAnswerId, AnswerCount, Body,

ClosedDate, CommentCount, Community-

OwnedDate, CreationDate, FavoriteCount,

LastActivityDate, LastEditDate, LastE-

ditorDisplayName, LastEditorUserId,

OwnerUserId, ParentId, PostTypeId, Score,

Tags, Title, ViewCount

PostLinks 7,499,403 0% 1 Id, CreationDate, PostId, RelatedPostId,

LinkTypeId

PostHistory 141,277,451 0.001% 4 Id, PostHistoryTypeId, PostId, Revi-

sionGUID, CreationDate, UserId, UserDis-

playName, Comment, Text

Comments 80,673,644 0.0012% 7 Id, CreationDate, PostId, Score, Text,

UserId

Badges 40,338,942 0.58% 941 Id, Name, UserId, Date

Votes 213,555,899 30.9% 1441 Id, PostId, UserId, BountyAmount, Vote-

TypeId, CreationDate
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Table 3.1 shows the five queries used in our CQA evaluation, where the number of tables joined

together increases from 2 in Q1 to 4 in Q5.

3.4.3 Experimental Results

In this section, we report the evaluation of LinCQA and the other CQA systems on synthetic

workloads and the StackOverflow dataset. Table 3.3 summarizes the number of consistent and

possible answers for each query in the selected datasets.

Fixed inconsistency with varying relation sizes. To compare LinCQA with other CQA sys-

tems, we evaluate all systems using both the synthetic workload and the altered TPC-H benchmark

with fixed inconsistency (inRatio = 10%, bSize = 2) as in previous works [KPT13, DK19, Dix21].

We vary the size of each relation (rSize ∈ {500K, 1M, 5M}) in the synthetic data (Figure 3.4) and we

evaluate on TPC-H database instances of scale factors 1 and 10 (Figure 3.5). Both figures include

the time for running the original query on the inconsistent database (which returns the possible

answers).

In the synthetic dataset, all three systems based on FO-rewriting techniques outperform CAvSAT,

often by an order of magnitude. This observation shows that if CERTAINTY(q) is FO-rewritable,

a properly implemented rewriting is more efficient than the generic algorithm in practice, refuting

some observations in [DK19, KPT13]. Compared to ConQuer, LinCQA performs better or com-

parably on q1 through q4. LinCQA is also more efficient than ConQuer for q1, q2, and q3. As the

database size increases, the relative performance gap between LinCQA and ConQuer reduces for

q4. ConQuer cannot produce the SQL rewritings for queries q5, q6, and q7 since they are not in

Cforest. In summary, LinCQA is more efficient and at worst competitive to ConQuer on relatively

small databases with less than 5M tuples, and is applicable to a wider class of acyclic queries.

In the TPC-H benchmark, the CQA systems are much closer in terms of performance. In this

experiment, we observe that LinCQA almost always produces the fastest rewriting, and even when

it is not, its performance is comparable to the other baselines. It is also worth noting that for

most queries in the TPC-H benchmark, the overhead over running the SQL query directly is much

smaller when compared to the synthetic benchmark. Note that CAvSAT times out after one hour

for queries q′10 and q′18 for both scale 1 and 10, while the systems based on FO-rewriting techniques

terminate. We also remark that for Boolean queries, CAvSAT will terminate at an early stage

without processing the inconsistent part of the database using SAT solvers if the consistent part

of the database already satisfies the query (e.g., q′6, q
′
14, q

′
17 in TPC-H). Overall, both LinCQA

and ConQuer perform better than FastFO, since they both are better at exploiting the structure

of the join tree. We also note that ConQuer and LinCQA exhibit comparable performances on
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Table 3.3: The number of consistent and possible answers for each query in selected datasets.

Synthetic (rSize = 5M, inRatio = 10%, bSize = 2)

q1 q2 q3 q4 q5 q6 q7

# cons. 311573 463459 290012 408230 311434 277287 277135

# poss. 571047 572244 534011 534953 574615 504907 474203

TPC-H (SF = 10)

q′1 q′2 q′3 q′4 q′6 q′10 q′11

# cons. 4 28591 0 5 1 901514 289361

# poss. 4 35206 0 5 1 1089754 318015

q′12 q′14 q′16 q′17 q′18 q′20 q′21

# cons. 7 1 187489 1 13465732 3844 3776

# poss. 7 1 187495 1 16617583 4054 4010

StackOverflow

Q1 Q2 Q3 Q4 Q5

# cons. 27578 145 38320 3925 1245

# poss. 27578 145 38320 3925 1250
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most queries in TPC-H. When computing consistent answers for a given query, we observed that

the actual runtime performance heavily depends on the query plan chosen by the query optimizer

besides the SQL rewriting given. In view of this observation, rather than comparing different CQA

systems on the basis of relatively small performance differences between individual queries, we focus

on the overall performance of different CQA systems.

(a) rSize = 500K

(b) rSize = 1M

(c) rSize = 5M

Figure 3.4: Performance comparison of different CQA systems on a synthetic workload with

varying relation sizes.

Fixed relation size with varying inconsistency. We perform experiments to observe how

different CQA systems react when the inconsistency of the instance changes. Using synthetic data,

we first fix rSize = 1M, bSize = 2 and run all CQA systems on databases instances of varying

inconsistency ratio from inRatio = 10% to inRatio = 100%. The results are depicted in Figure 3.7.

We observe that the running time of CAvSAT increases when the inconsistency ratio of the database

instance becomes larger. This happens because the SAT formula grows with larger inconsistency,
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and hence the SAT solver becomes slower. In contrast, the running time of all FO-rewriting

techniques is relatively stable across database instances of different inconsistency ratios. More

interestingly, the running time of LinCQA decreases when the inconsistency ratio becomes larger.

This behavior occurs because of the early pruning on the relations at lower levels of the PPJT,

which shrinks the size of the candidate space being considered at higher levels of the PPJT and

thus reduces the overall computation time. The overall performance trends of different systems are

similar for all queries and thus we present only figures of q1, q3, q5, q7 here due to the space limit.

In our next experiment, we fix the database instance size with rSize = 1M and inconsistency

ratio with inRatio = 10%, running all CQA systems on databases of varying inconsistent block size

bSize from 2 to 10. We show the results in Figure 3.8. We observe that the performance of all

CQA systems is not very sensitive to the change of inconsistent block sizes. We observe that the

performance of all CQA systems is not very sensitive to the change of inconsistent block sizes and

thus we omit the results here due to the space limit.

Figure 3.8 summarizes the performance of all seven synthetic queries on varying block sizes.

StackOverflow Dataset. We use a 400GB StackOverflow dataset to evaluate the performance of

different systems on large-scale real-world datasets. Another motivation to use such a large dataset

is that LinCQA and ConQuer exhibit comparable performance on the medium-sized synthetic and

TPC-H datasets. CAvSAT is excluded since it requires extra storage for preprocessing which is

beyond the limit of the available disk space. Since Q1 and Q5 are not in Cforest, ConQuer cannot

handle them and their execution times are marked as “N/A”. Query executions that do not finish

within one hour are marked as “Time Out”. We observe that on all five queries, LinCQA significantly

outperforms other competitors. In particular, when the database size is very large, LinCQA is much

more scalable than ConQuer due to its more efficient strategy. We intentionally select queries with

small possible answer sizes for ease of experiments and presentation. Some queries with possible

answer size up to 1M would require hours to be executed and it is prohibitive to measure the

performances of our baseline systems. For queries that ConQuer (Q4) and FastFO (Q3, Q5) take

long to compute, LinCQA manages to finish execution quickly thanks to its efficient self-pruning

and pair-pruning steps.

To see the performance change of different systems when executing in small available memory,

we run the experiments on a SQL server with maximum allowed memory of 120GB, 90GB, 60GB,

30GB, and 10GB respectively. Figure 3.9 shows that, despite the memory reduction, LinCQA is

still the best performer on all five queries given different amounts of available memory. No obvious

performance regression is observed on Q1 and Q2 when reducing memory since both queries access

only two tables.
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Summary. Our experiments show that both LinCQA and ConQuer outperform FastFO and

CAvSAT, systems that produce generic FO-rewritings and reduce to SAT respectively. Despite

LinCQA and ConQuer showing a similar performance on most queries in our experiments, we observe

that LinCQA is (1) applicable to a wider class of acyclic queries than ConQuer and (2) more scalable

than ConQuer when the database size increases significantly.

3.4.4 Worst-Case Study

To demonstrate the robustness and efficiency of LinCQA as a result of its theoretical guarantees,

we generate synthetic worst-case inconsistent database instances for the 2-path query Q2−path and

the 3-path query Q3−path:

Q2−path(x) :- R(x, y), S(y, z).

Q3−path(x) :- R(x, y), S(y, z),T(z, w).

We compare the performance of LinCQA with ConQuer and FastFO on both queries. CAvSAT

does not finish its execution on any instance within one hour, due to the long time it requires to

solve the SAT formula. Thus, we do not report the time of CAvSAT.

We define a generic binary relation D(x, y,N) as

D(x, y,N) = ([x]× [y]) ∪ {(u, u) | xy + 1 ≤ u ≤ N, u ∈ Z+},

where x, y,N ∈ Z+, [n] = {1, 2, . . . , n}, and [a] × [b] denotes the Cartesian product between [a]

and [b]. To generate the input instances for Q2−path, we generate relations R = D(a, b,N) and

S = D(b, c,N) with integer parameters a, b, c and N . For Q3−path, we additionally generate the

relation T = D(c, d,N). Intuitively, for R, [a] × [b] is the set of inconsistent tuples and {(u, u) |
ab + 1 ≤ u ≤ N, u ∈ Z+} is the set of consistent tuples. The values of a and b control both the

number of inconsistent tuples (i.e., ab) and the size of inconsistent blocks (i.e., b). We note that

[a]× [b] and {(u, u) | ab+ 1 ≤ u ≤ N, u ∈ Z+} are disjoint.

Fixed database inconsistency with varying size. We perform experiments to see how robust

different CQA systems are when running queries on an instance of increasing size. For Q2−path, we

fix b = c = 800, and for each k = 0, 1, . . . , 8, we construct a database instance with a = 120+ 460k

and N = (1 + k/2) · 106. By construction, each database instance has inconsistent block size

bSize = b = c = 800 in both relations R and S, and inRatio = (ab+ bc)/2N = 36.8%, with varying

relation size rSize = N ranging from 1M to 5M. Similarly for Q3−path, we fix b = c = d = 120, and

for each k = 0, 1, . . . , 8, we construct a database instance with a = 120+180k andN = (1+k/2)·106.
Here the constructed database instances have inRatio = (ab + bc + cd)/3N = 1.44%. As shown
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in Figures 3.10a and 3.10b, the performance of LinCQA is much less sensitive to the changes of

the relation sizes when compared to other CQA systems. We omit reporting the running time of

FastFO for Q3−path on relatively larger database instances in Figure 3.10b for better contrast with

ConQuer and LinCQA.

Fixed database sizes with varying inconsistency. Next, we experiment on instances of

varying inconsistency ratio inRatio in which the joining mainly happens between inconsistent blocks

of different relations. For Q2−path, we fix b = c = 800 and N = 106, and generate database instances

for each a = 100, 190, 280, . . . , 1000. All generated database instances have inconsistent block size

bSize = b = c = 800 for both relations R and S, and the size of each relation rSize = N = 106

by construction. The inconsistency ratio inRatio varies from 36% to 72%. For Q3−path, we fix b =

c = d = 120 and N = 106 and generate database instances with a = 200, 800, 1400, . . . , 8000. The

inconsistency ratio of the generated database instances varies from 1.76% to 32.96%. Figures 3.10c

and 3.10d show that LinCQA is the only system whose performance is agnostic to the change of the

inconsistency ratio. The running time of FastFO and Conquer increases when the input database

inconsistency increases. Similar to the experiments varying relation sizes, the running times of

FastFO for Q3−path are omitted on relatively larger database instances in Figure 3.10d for better

contrast with ConQuer and LinCQA.

3.5 Open Problems

We remark that CERTAINTY(q) remains solvable in linear time for certain acyclic self-join-free

CQ that is FO-rewritable but does not have a PPJT. It uses techniques from efficient query result

enumeration algorithms [DHK21, DHK20].

Proposition 3.5. Let q() :- R(c, x), S(c, y), T (x, y) where c is a constant. Then there exists a

linear-time algorithm for CERTAINTY(q).

Proof. Let db be an instance for CERTAINTY(q). We define X = {a | R(c, a) ∈ db} and Y =

{b | S(c, b) ∈ db}. It is easy to see that db is a “yes”-instance for CERTAINTY(q) if and only if

X × Y ⊆ T , where × denotes the Cartesian product.

Next, consider the following algorithm that computes X × Y in linear time, exploiting that T

is also part of the input to CERTAINTY(q).

1 Compute X = {a | R(c, a) ∈ db} and Y = {b | S(c, b) ∈ db}

2 if |X| · |Y | > |T | then

3 return false
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4 return whether X × Y ⊆ T

Line 1 and 2 run in time O(|R|+ |S|+ |T |). If the algorithm terminates at line 3, then the algorithm

runs in linear time, or otherwise we must have |R| · |S| ≤ |T |, and the algorithm thus runs in time

O(|R|+ |S|+ |T |+ |R| · |S|) = O(|R|+ |S|+ |T |).
Note that q does not have a PPJT: in q1() :- R(c, x), T (x, y), R attacks T , and in the query

q2() :- S(c, y), T (x, y), S attacks T .

3.6 Conclusion

In this chapter, we introduce the notion of a pair-pruning join tree (PPJT) and show that if

a BCQ has a PPJT, then CERTAINTY(q) is in FO and solvable in linear time in the size of the

inconsistent database. We implement this idea in a system called LinCQA that produces a SQL

query to compute the consistent answers of q. Our experiments show that LinCQA produces efficient

rewritings, is scalable, and robust on worst case instances.

An interesting open question is whether CQA is in linear time for all acyclic self-join-free SPJ

queries with an acyclic attack graph, including those that do not admit a PPJT. It would also be

interesting to study the notion of PPJT for non-acyclic SPJ queries.



55

(a) SF = 1

(b) SF = 10

Figure 3.5: Performance comparison of different CQA systems on the TPC-H benchmark with

varying scale factor (SF).

Figure 3.6: Runtime Comparison on StackOverflow
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Figure 3.7: Performance of different systems on inconsistent databases with varying inconsistency

ratio
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Figure 3.8: Performance of different systems on inconsistent database of varying block size
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Figure 3.9: Performance of StackOverflow queries with varying amount of available memory
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Chapter 4

A Tetrachotomy for CQA on Path Queries with
Self-joins

衣帶漸寬終不悔
為伊消得人憔悴

—柳永《蝶戀花》

We discussed in Chapter 3 how to produce an effective linear-time rewriting for CQA based

on the existing trichotomy of CQA on self-join-free Boolean conjunctive queries (BCQs), stated

in Theorem 1.1 [KW21]. It is thus worthwhile to continue our investigation on the complexity

classification of CQA beyond the class of self-join-free BCQs, motivated by the following two

questions:

• Why is it so hard to obtain a classification once the queries allow self-joins?

• Where do the existing techniques fall short when we allow self-joins?

In this chapter, we make the first attempt to obtain the complexity classification of CERTAINTY(q)

for path queries with self-joins.

Recall that in computational complexity studies, consistent query answering is commonly de-

fined as the data complexity of the following decision problem, for a fixed Boolean query q:

Problem: CERTAINTY(q)

Input: A database instance db.

Question: Does q evaluate to true on every repair of db?

For every first-order query q, the problem CERTAINTY(q) is obviously in coNP. However,

despite significant research efforts (see Section 1.4), a fine-grained complexity classification is still

largely open.
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R 1 2

a a

a b

b a

b b

S 1 2

a a

a b

b a

b b

Figure 4.1: An inconsistent database instance db.

It has been conjectured that for each Boolean conjunctive query q, the problem CERTAINTY(q)

is either in PTIME or coNP-complete. On the other hand, for the smaller class of self-join-free

Boolean conjunctive queries, the complexity exhibits a trichotomy between FO, L-complete, and

coNP-complete, stated in Theorem 1.1 [KW21].

Abandoning the restriction of self-join-freeness turns out to be a major challenge. The difficulty

of self-joins is caused by the obvious observation that a single database fact can be used to satisfy

more than one atom of a conjunctive query, as illustrated by Example 4.1. Self-joins happen

to significantly change the complexity landscape laid down in Theorem 1.1; this is illustrated by

Example 4.2. Self-join-freeness is a simplifying assumption that is also used outside CQA (e.g.,

[FGIM15, BKS17, FGIM20]).

Example 4.1. Take the self-join q1 = ∃x∃y(R(x, y) ∧ R(y, x)) and its self-join-free counterpart

q2 = ∃x∃y(R(x, y) ∧ S(y, x)). Consider the inconsistent database instance db in Figure 5.5. We

have that db is a “no”-instance of CERTAINTY(q2), because q2 is not satisfied by the repair {R(a, a),
R(b, b), S(a, b), S(b, a)}. However, db is a “yes”-instance of CERTAINTY(q1). This is because every

repair that contains R(a, a) or R(b, b) will satisfy q1, while a repair that contains neither of these

facts must contain R(a, b) and R(b, a), which together also satisfy q1.

Example 4.2. Take the self-join q1 = ∃x∃y∃z(R(x, z) ∧ R(y, z)) and its self-join-free counterpart

q2 = ∃x∃y∃z(R(x, z)∧S(y, z)). CERTAINTY(q2) is known to be coNP-complete, whereas it is easily

verified that CERTAINTY(q1) is in FO, by observing that a database instance is a “yes”-instance

of CERTAINTY(q1) if and only if it satisfies ∃x∃y(R(x, y)).

This chapter makes a contribution to the complexity classification of CERTAINTY(q) for con-

junctive queries, possibly with self-joins, of the form

∃x1 · · · ∃xk+1(R1(x1, x2) ∧R2(x2, x3) ∧ · · · ∧Rk(xk, xk+1)),



61

which we call path queries. Formally, a path query is a Boolean conjunctive query without constants

of the following form:

q = {R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)},

where x1, x2,. . . , xk+1 are distinct variables, and R1, R2,. . . , Rk are (not necessarily distinct)

relation names. It will often be convenient to denote this query as a word R1R2 · · ·Rk over the

alphabet of relation names. This “word” representation is obviously lossless up to a variable renam-

ing. Importantly, path queries may have self-joins, i.e., a relation name may occur multiple times.

Path queries containing constants will be discussed in Section 4.6. The treatment of constants

is significant, because it allows moving from Boolean to non-Boolean queries, by using that free

variables behave like constants.

As will become apparent in our technical treatment, the classification of path queries is already

very challenging, even though it is only a first step towards Conjecture 1.1, which is currently

beyond reach. If all Ris are distinct (i.e., if there are no self-joins), then CERTAINTY(q) is known

to be in FO for path queries q. However, when self-joins are allowed, the complexity landscape of

CERTAINTY(q) for path queries exhibits a tetrachotomy, as stated by the following main result,

previously stated in Theorem 1.3.

Theorem 4.1 (Tetrachotomy Theorem). For each Boolean path query q, CERTAINTY(q) is in FO,

NL-complete, PTIME-complete, or coNP-complete, and it is decidable in polynomial time in the

size of q which of the four cases applies.

Let us provide some intuitions behind Theorem 1.3 and 4.1 by means of examples. Path queries

use only binary relation names. A database instance db with binary facts can be viewed as a

directed edge-colored graph: a fact R(a, b) is a directed edge from a to b with color R. A repair of

db is obtained by choosing, for each vertex, precisely one outgoing edge among all outgoing edges

of the same color. We will use the shorthand q = RR to denote the path query

q = ∃x∃y∃z(R(x, y) ∧R(y, z)).

In general, path queries can be represented by words over the alphabet of relation names.

Throughout this section, relation names are in uppercase letters, while lowercase letters u, v, w

stand for (possibly empty) words. An important operation on words is dubbed rewinding : if a word

has a factor of the form RvR, then rewinding refers to the operation that replaces this factor with

RvRvR. That is, rewinding the factor RvR in the word uRvRw yields the longer word uRvRvRw.

For short, we also say that uRvRw rewinds to the word u·Rv ·Rv ·Rw, where we used concatenation
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(·) and underlining for clarity. For example, TWITTER rewinds to TWI ·TWI ·TTER, but also
to TWIT ·TWIT ·TER and to TWI ·T ·T ·TER.

Let q1 = RR. It is easily verified that a database instance is a “yes”-instance of CERTAINTY(q1)

if and only if it satisfies the following first-order formula:

φ = ∃x(∃yR(x, y) ∧ ∀y(R(x, y)→ ∃zR(y, z))).

Informally, every repair contains an R-path of length 2 if and only if there exists some vertex x

such that every repair contains a path of length 2 starting in x.

Let q2 = RRX, and consider the database instance in Figure 4.2. Since the only conflicting

facts are R(1, 2) and R(1, 3), this database instance has two repairs. Both repairs satisfy RRX,

but unlike the previous example, there is no vertex x such that every repair has a path colored

RRX that starts in x. Indeed, in one repair, such path starts in 0; in the other repair it starts

in 1. For reasons that will become apparent in our theoretical development, it is significant that

both repairs have paths that start in 0 and are colored by a word in the regular language defined

by RR (R)∗X. This is exactly the language that contains RRX and is closed under the rewinding

operation. In general, it can be verified with some effort that a database instance is a “yes”-instance

of CERTAINTY(q2) if and only if it contains some vertex x such that every repair has a path that

starts in x and is colored by a word in the regular language defined by RR (R)∗X. The latter

condition can be tested in PTIME (and even in NL).

0 1

2

3 4R

R

R

R

X

Figure 4.2: An example database instance db for q2 = RRX.

The situation is still different for q3 = ARRX, for which it will be shown that CERTAINTY(q3)

is coNP-complete. Unlike our previous example, repeated rewinding of ARRX into words of the

language ARR (R)∗X is not helpful. For example, in the database instance of Figure 4.3, every

repair has a path that starts in 0 and is colored with a word in the language defined by ARR (R)∗X.

However, the repair that contains R(a, c) does not satisfy q3. Unlike Figure 4.2, the “bifurcation”

in Figure 4.3 can be used as a gadget for showing coNP-completeness in Section 5.6.

Organization. Section 5.1 introduces the preliminaries. In Section 4.1, the statement of

Theorem 4.2 gives the syntactic conditions for deciding the complexity of CERTAINTY(q) for path

queries q. To prove this theorem, we view the rewinding operator from the perspectives of regular

expressions and automata, which are presented in Sections 4.2 and 4.3 respectively. Sections 5.5
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Figure 4.3: An example database instance db for q3 = ARRX.

and 5.6 present, respectively, complexity upper bounds and lower bounds of our classification. In

Section 4.6, we extend our classification result to path queries with constants. Section 7 concludes

this chapter.

4.1 The Complexity Classification

We define syntactic conditions C1, C2, and C3 for path queries q. Let R be any relation name in

q, and let u, v, and w be (possibly empty) words over the alphabet of relation names of q.

C1: Whenever q = uRvRw, q is a prefix of uRvRvRw.

C2: Whenever q = uRvRw, q is a factor of uRvRvRw; and whenever q = uRv1Rv2Rw for consec-

utive occurrences of R, v1 = v2 or Rw is a prefix of Rv1.

C3: Whenever q = uRvRw, q is a factor of uRvRvRw.

It is instructive to think of these conditions in terms of the rewinding operator introduced earlier:

C1 is tantamount to saying that q is a prefix of every word to which q rewinds; and C3 says that q

is a factor of every word to which q rewinds. These conditions can be checked in polynomial time

in the length of the word q. The following result has an easy proof.

Proposition 4.1. Let q be a path query. If q satisfies C1, then q satisfies C2; and if q satisfies C2,
then q satisfies C3.

The main part of this chapter comprises a proof of the following theorem, which refines the

statement of Theorem 1.3 by adding syntactic conditions. The theorem is illustrated by Exam-

ple 4.3.

Theorem 4.2. For every path query q, the following complexity upper bounds obtain:

• if q satisfies C1, then CERTAINTY(q) is in FO;

• if q satisfies C2, then CERTAINTY(q) is in NL; and
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• if q satisfies C3, then CERTAINTY(q) is in PTIME.

Moreover, for every path query q, the following complexity lower bounds obtain:

• if q violates C1, then CERTAINTY(q) is NL-hard;

• if q violates C2, then CERTAINTY(q) is PTIME-hard; and

• if q violates C3, then CERTAINTY(q) is coNP-complete.

Example 4.3. The query q1 = RXRX rewinds to (and only to) RX ·RX ·RX and R·XR·XR·X,

which both contain q1 as a prefix. It is correct to conclude that CERTAINTY(q1) is in FO.

The query q2 = RXRY rewinds only to RX·RX·RY , which contains q2 as a factor, but not as a

prefix. Therefore, q2 satisfies C3, but violates C1. Since q2 vacuously satisfies C2 (because no relation

name occurs three times in q2), it is correct to conclude that CERTAINTY(q2) is NL-complete.

The query q3 = RXRY RY rewinds to RX ·RX ·RY RY , to RXRY ·RXRY ·RY , and to

RX ·RY ·RY ·RY = RXR·Y R·Y R·Y . Since these words contain q3 as a factor, but not always as

a prefix, we have that q3 satisfies C3 but violates C1. It can be verified that q3 violates C2 by writing

it as follows:

q3 = ε︸︷︷︸
u

RX︸︷︷︸
Rv1

RY︸︷︷︸
Rv2

RY︸︷︷︸
Rw

We have X = v1 ̸= v2 = Y , but Rw = RY is not a prefix of Rv1 = RX. Thus, CERTAINTY(q3) is

PTIME-complete.

Finally, the path query q4 = RXRXRY RY rewinds, among others, toRX ·RXRY ·RXRY ·RY ,

which does not contain q4 as a factor. It is correct to conclude that CERTAINTY(q4) is coNP-

complete.

4.2 Regexes for C1, C2, and C3
In this section, we show that the conditions C1, C2, and C3 can be captured by regular expressions

(or regexes) on path queries, which will be used in the proof of Theorem 4.2. Since these results

are within the field of combinatorics of words, we will use the term word rather than path query.

Definition 4.1. We define four properties B1, B2a, B2b, B3 that a word q can possess:

B1: For some integer k ≥ 0, there are words v, w such that vw is self-join-free and q is a prefix of

w (v)k.

B2a: For some integers j, k ≥ 0, there are words u, v, w such that uvw is self-join-free and q is a

factor of (u)j w (v)k.
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B2b: For some integer k ≥ 0, there are words u, v, w such that uvw is self-join-free and q is a factor

of (uv)k wv.

B3: For some integer k ≥ 0, there are words u, v, w such that uvw is self-join-free and q is a factor

of uw (uv)k.

We can identify each condition among C1, C2, C3, B1, B2a, B2b, B3 with the set of all words

satisfying this condition. Note then that B1 ⊆ B2a ∩ B3. The results in the remainder of this

section can be summarized as follows:

• C1 = B1 (Lemma 4.1)

• C2 = B2a ∪ B2b (Lemma 4.3)

• C3 = B2a ∪ B2b ∪ B3 (Lemma 4.2)

Moreover, Lemma 4.3 characterizes C3 \ C2.

Lemma 4.1. For every word q, the following are equivalent:

1. q satisfies C1; and

2. q satisfies B1.

Lemma 4.2. For every word q, the following are equivalent:

1. q satisfies C3; and

2. q satisfies B2a, B2b, or B3.

Definition 4.2 (First and last symbol). For a nonempty word u, we write first(u) and last(u) for,

respectively, the first and the last symbol of u.

Lemma 4.3. Let q be a word that satisfies C3. Then, the following three statements are equivalent:

1. q violates C2;

2. q violates both B2a and B2b; and

3. there are words u, v, w with u ̸= ε and uvw self-join-free such that either

(a) v ̸= ε and last(u) · wuvu · first(v) is a factor of q; or

(b) v = ε, w ̸= ε, and last(u) · w (u)2 · first(u) is a factor of q.

The shortest word of the form (3a) in the preceding lemma is RRSRS (let u = R, v = S, and

w = ε), and the shortest word of the form (3b) is RSRRR (let u = R, v = ε, and w = S). Note

that since each of C2, B2a, and B2b implies C3, it is correct to conclude that the equivalence between

the first two items in Lemma 4.3 does not need the hypothesis that q must satisfy C3.
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Figure 4.4: The NFA(q) automaton for the path query q = RXRRR.

4.3 Automaton-Based Perspective

In this section, we prove an important lemma, Lemma 4.7, which will be used for proving the

complexity upper bounds in Theorem 4.2.

4.3.1 From Path Queries to Finite Automata

We can view a path query q as a word where the alphabet is the set of relation names. We now

associate each path query q with a nondeterministic finite automaton (NFA), denoted NFA(q).

Definition 4.3 (NFA(q)). Every word q gives rise to a nondeterministic finite automaton (NFA)

with ε-moves, denoted NFA(q), as follows.

States: The set of states is the set of prefixes of q. We include the empty word ε in the prefixes

of q.

Forward transitions: If u and uR are states, then there is a transition with label R from state

u to state uR. These transitions are said to be forward.

Backward transitions: If uR and wR are states such that |u| < |w| (and therefore uR is a prefix

of w), then there is a transition with label ε from state wR to state uR. These transitions

are said to be backward, and capture the operation dubbed rewinding.

Initial and accepting states: The initial state is ε and the only accepting state is q.

Figure 4.4 shows the automaton NFA(RXRRR). Informally, the forward transitions capture

the automaton that would accept the word RXRRR, while the backward transitions capture the

existence of self-joins that allow an application of the rewind operator. We now take an alternative

route for defining the language accepted by NFA(q), which straightforwardly results in Lemma 4.4.

Then, Lemma 4.5 gives alternative ways for expressing C1 and C3.
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Definition 4.4. Let q be a path query, represented as a word over the alphabet of relation names.

We define the language L↬(q) as the smallest set of words such that

(a) q belongs to L↬(q); and

(b) Rewinding: if uRvRw is in L↬(q) for some relation name R and (possibly empty) words u,

v and w, then uRvRvRw is also in L↬(q).

That is, L↬(q) is the smallest language that contains q and is closed under rewinding.

Lemma 4.4. For every path query q, the automaton NFA(q) accepts the language L↬(q).

Lemma 4.5. Let q be a path query. Then,

1. q satisfies C1 if and only if q is a prefix of each p ∈ L↬(q);

2. q satisfies C3 if and only if q is a factor of each p ∈ L↬(q).

Proof. ⇐= in (1) and (2) This direction is trivial, because whenever q = uRvRw, we have that

uRvRvRw ∈ L↬(q).

We now show the =⇒ direction in both items. To this end, we call an application of the

rule (b) in Definition 4.4 a rewind. By construction, each word in L↬(q) can be obtained from q by

using k rewinds, for some nonnegative integer k. Let qk be a word in L↬(q) that can be obtained

from q by using k rewinds.

=⇒ in (1) We use induction on k to show that q is a prefix of qk. For he induction basis,

k = 0, we have that q is a prefix of q0 = q. We next show the induction step k → k + 1. Let

qk+1 = uRvRvRw where qk = uRvRw is a word in L↬(q) obtained with k rewinds. By the

induction hypothesis, we can assume a word s such that qk = q · s.

• If q is a prefix of uRvR, then qk+1 = uRvRvRw trivially contains q as a prefix.

• If uRvR is a proper prefix of q, let q = uRvRt where t is nonempty. Since q satisfies C1, Rt
is a prefix of Rv. Then qk+1 = uRvRvRw contains q = u ·Rv ·Rt as a prefix.

=⇒ in (2) We use induction on k to show that q is a factor of qk. For the induction basis,

k = 0, we have that q is a prefix of q0 = q. For the induction step, k → k+1, let qk+1 = uRvRvRw

where qk = uRvRw is a word in L↬(q) obtained with k rewinds. By the induction hypothesis,

qk = uRvRw contains q as a factor. If q is a factor of either uRvR or RvRw, then qk+1 = uRvRvRw

contains q as a factor. Otherwise, we may decompose qk = u−q−RvRq+w+ where q = q−RvRq+,

u = u−q− and w = q+w+. Since q satisfies C3, the word q−RvRvRq+, which is a factor of qk+1,

contains q as a factor.
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In the technical treatment, it will be convenient to consider the automaton obtained from NFA(q)

by changing its start state, as defined next.

Definition 4.5. If u is a prefix of q (and thus u is a state in NFA(q)), then S-NFA(q, u) is the

automaton obtained from NFA(q) by letting the initial state be u instead of the empty word. Note

that S-NFA(q, ε) = NFA(q). It may be helpful to think of the first S in S-NFA(q, u) as “Start at

u.”

4.3.2 Reification Lemma

In this subsection, we first define how an automaton executes on a database instance. We then

state an helping lemma which will be used in the proof of Lemma 4.7, which constitutes the main

result of Section 4.3. To improve the readability and logical flow of our presentation, we postpone

the proof of the helping lemma to Section 4.3.3.

Definition 4.6 (Automata on database instances). Let db be a database instance. A path (in

db) is defined as a sequence R1(c1, c2), R2(c2, c3), . . . , Rn(cn, cn+1) of facts in db. Such a path is

said to start in c1. We call R1R2 · · ·Rn the trace of this path. A path is said to be accepted by an

automaton if its trace is accepted by the automaton.

Let q be a path query and r be a consistent database instance. We define start(q, r) as the set

containing all (and only) constants c ∈ adom(r) such that there is a path in r that starts in c and

is accepted by NFA(q).

Example 4.4. Consider the query q2 = RRX and the database instance of Figure 4.2. Let r1 and

r2 be the repairs containing, respectively, R(1, 2) and R(1, 3). The only path with trace RRX in r1

starts in 1; and the only path with trace RRX in r2 starts in 0. The regular expression for L↬(q)

is RR (R)∗X. We have start(q, r1) = {0, 1} and start(q, r2) = {0}.

The following lemma tells us that, among all repairs, there is one that is inclusion-minimal with

respect to start(q, ·). In the preceding example, the repair r2 minimizes start(q, ·).

Lemma 4.6. Let q be a path query, and db a database instance. There exists a repair r∗ of db

such that for every repair r of db, start(q, r∗) ⊆ start(q, r).

Informally, we think of the next Lemma 4.7 as a reification lemma. The notion of reifiable

variable was coined in [Wij12, Definition 8.5], to refer to a variable x in a query ∃x (φ(x)) such

that whenever that query is true in every repair of a database instance, then there is a constant c

such that φ(c) is true in every repair. The following lemma captures a very similar concept.
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Lemma 4.7 (Reification Lemma for C3). Let q be a path query that satisfies C3. Then, for every

database instance db, the following are equivalent:

1. db is a “yes”-instance of CERTAINTY(q); and

2. there exists a constant c (which depends on db) such that for every repair r of db, c ∈
start(q, r).

Proof. 1 =⇒ 2 Assume (1). By Lemma 4.6, there exists a repair r∗ of db such that for every

repair r of db, start(q, r∗) ⊆ start(q, r). Since r∗ satisfies q, there is a path R1(c1, c2), R2(c2, c3),

. . . , Rn(cn, cn+1) in r∗ such that q = R1R2 · · ·Rn. Since q is accepted by NFA(q), we have c1 ∈
start(q, r∗). It follows that c1 ∈ start(q, r) for every repair r of db.

2 =⇒ 1 Let r be any repair of db. By our hypothesis that (2) holds true, there is some

c ∈ start(q, r). Therefore, there is a path in r that starts in c and is accepted by NFA(q). Let p

be the trace of this path. By Lemma 4.4, p ∈ L↬(q). Since q satisfies C3 by the hypothesis of the

current lemma, it follows by Lemma 4.5 that q is a factor of p. Consequently, there is a path in r

whose trace is q. It follows that r satisfies q.

4.3.3 Proof of Lemma 4.6

We will use the following definition.

Definition 4.7 (States Set). This definition is relative to a path query q. Let r be a consistent

database instance, and let f be an R-fact in r, for some relation name R. The states set of f in r,

denoted STq(f, r), is defined as the smallest set of states satisfying the following property, for all

prefixes u of q:

if S-NFA(q, u) accepts a path in r that starts with f , then uR belongs to STq(f, r).

Note that if f is an R-fact, then all states in S-NFA(q, r) have R as their last relation name.

Example 4.5. Let q = RRX and r = {R(a, b), R(b, c), R(c, d), X(d, e), R(d, e)}. Then NFA(q) has

states {ε,R,RR,RRX} and accepts the regular language RR (R)∗X. Since S-NFA(q, ε) accepts

the path R(b, c), R(c, d), X(c, d), the states set STq(R(b, c), r) contains ε ·R = R. Since the latter

path is also accepted by S-NFA(q,R), we also have R · R ∈ STq(R(b, c), r). Finally, note that

STq(R(d, e), r) = ∅, because there is no path that contains R(d, e) and is accepted by NFA(q).

Lemma 4.8. Let q be a path query, and r a consistent database instance. If STq(f, r) contains

state uR, then it contains every state of the form vR with |v| ≥ |u|.

Proof. Assume uR ∈ STq(f, r). Then f is an R-fact and there is a path f · π in r that is accepted

by S-NFA(q, u). Let vR be a state with |v| > |u|. Thus, by construction, NFA(q) has a backward

transition with label ε from state vR to state uR.
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It suffices to show that f ·π is accepted by S-NFA(q, v). Starting in state v, S-NFA(q, v) traverses

f (reaching state vR) and then uses the backward transition (with label ε) to reach the state uR.

From there on, S-NFA(q, v) behaves like S-NFA(q, u).

From Lemma 4.8, it follows that STq(f, r) is completely determined by the shortest word in it.

Definition 4.8. Let q be a path query and db a database instance. For every fact f ∈ db, we

define:

cqaSTq(f,db) :=
⋂
{STq(f, r) | r is a repair of db that contains f},

where
⋂
X =

⋂
S∈X S.

It is to be noted here that whenever r1 and r2 are repairs containing f , then by Lemma 4.8,

STq(f, r1) and STq(f, r2) are comparable by set inclusion. Therefore, informally, cqaSTq(f,db) is

the ⊆-minimal states set of f over all repairs that contain f .

Definition 4.9 (Preorder ⪯q on repairs). Let db be a database instance. For all repairs r, s of

db, we define r ⪯q s if for every f ∈ r and g ∈ s such that f and g are key-equal, we have

STq(f, r) ⊆ STq(g, s).

Clearly, ⪯q is a reflexive and transitive binary relation on the set of repairs of db. We write

r ≺q s if both r ⪯q s and for some f ∈ r and g ∈ s such that f and g are key-equal, STq(f, r) ⊊
STq(g, s).

Lemma 4.9. Let q be a path query. For every database instance db, there is a repair r∗ of db

such that for every repair r of db, r∗ ⪯q r.

Proof. Construct a repair r∗ as follows. For every block b of db, insert into r∗ a fact f of b such

that cqaSTq(f,db) =
⋂{cqaSTq(g,db) | g ∈ b}. More informally, we insert into r∗ a fact f from

b with a states set that is ⊆-minimal over all repairs and all facts of b. We first show the following

claim.

Claim 4.1. For every fact f in r∗, we have STq(f, r
∗) = cqaSTq(f,db).

Proof. Let f1 be an arbitrary fact in r∗. We show STq(f1, r
∗) = cqaSTq(f1,db).

⊇ Obvious, because r∗ is itself a repair of db that contains f1.

⊆ Let f1 = R1(c0, c1). Assume by way of a contradiction that there is p1 ∈ STq(f1, r
∗) such

that p1 /∈ cqaSTq(f1,db). Then, for some (possibly empty) prefix p0 of q, there is a sequence:

p0
ε−→ p′0

f1=R1(c0,c1)

−−−−−−−−−−−→ p1
ε−→ p′1

f2=R2(c1,c2)

−−−−−−−−−−−→ p2 · · · pn−1
ε−→ p′n−1

fn=Rn(cn−1,cn)

−−−−−−−−−−−→ pn = q,

(4.1)
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where f1, f2, . . . , fn ∈ r∗, for each i ∈ {1, . . . , n}, pi = p′i−1Ri, and for each i ∈ {0, . . . , n − 1},
either p′i = pi or p′i is a strict prefix of pi such that p′i and pi agree on their rightmost relation

name. Informally, the sequence (4.1) represents an accepting run of S-NFA(q, p0) in r∗. Since

p1 ∈ STq(f1, r
∗) \ cqaSTq(f1,db), we can assume a largest index ℓ ∈ {1, . . . , n} such that pℓ ∈

STq(fℓ, r
∗) \ cqaSTq(fℓ,db). By construction of r∗, there is a repair s such that fℓ ∈ s and

STq(fℓ, s) = cqaSTq(fℓ,db). Consequently, pℓ /∈ STq(fℓ, s). We distinguish two cases:

Case that ℓ = n. Thus, the run (4.1) ends with

· · · pℓ−1
ε−→ p′ℓ−1

fℓ=Rℓ(cℓ−1,cℓ)

−−−−−−−−−−−→ pℓ = q.

Thus, the rightmost relation name in q is Rℓ. Since fℓ ∈ s, it is clear that pℓ ∈ STq(fℓ, s), a

contradiction.

Case that ℓ < n. Thus, the run (4.1) includes

· · · pℓ−1
ε−→ p′ℓ−1

fℓ=Rℓ(cℓ−1,cℓ)

−−−−−−−−−−−→ pℓ
ε−→ p′ℓ

fℓ+1=Rℓ+1(cℓ,cℓ+1)

−−−−−−−−−−−→ pℓ+1 · · · ,

where ℓ+1 can be equal to n. Clearly, pℓ+1 ∈ STq(fℓ+1, r
∗). Assume without loss of generality

that s contains f ′ℓ+1 := Rℓ+1(cℓ, c
′
ℓ+1), which is key-equal to fℓ+1 (possibly c

′
ℓ+1 = cℓ+1). From

pℓ /∈ STq(fℓ, s), it follows pℓ+1 /∈ STq(f
′
ℓ+1, s). Consequently, pℓ+1 /∈ cqaSTq(f

′
ℓ+1,db). By

our construction of r∗, we have pℓ+1 /∈ cqaSTq(fℓ+1,db). Consequently, pℓ+1 ∈ STq(fℓ+1, r
∗)\

cqaSTq(fℓ+1,db), which contradicts that ℓ was chosen to be the largest such an index possible.

The proof of Claim 4.1 is now concluded. ◁

To conclude the proof of the lemma, let r be any repair of db, and let f ∈ r∗ and f ′ ∈ r be

two key-equal facts in db. By Claim 4.1 and the construction of r∗, we have that STq(f, r
∗) =

cqaSTq(f,db) ⊆ cqaSTq(f
′,db) ⊆ STq(f

′, r), as desired.

We can now give the proof of Lemma 4.6.

Proof of Lemma 4.6. Let db be a database instance. Then by Lemma 4.9, there is a repair r∗ of

db such that for every repair r of db, r∗ ⪯q r. It suffices to show that for every repair r of db,

start(q, r∗) ⊆ start(q, r). To this end, consider any repair r and c ∈ start(q, r∗). Let R be the first

relation name of q. Since c ∈ start(q, r∗), there is d ∈ adom(r∗) such that R ∈ STq(R(c, d), r
∗).

Then, there is a unique d′ ∈ adom(r) such that R(c, d′) ∈ r, where it is possible that d′ = d. From

r∗ ⪯q r, it follows STq(R(c, d), r
∗) ⊆ STq(R(c, d

′), r). Consequently, R ∈ STq(R(c, d
′), r), which

implies c ∈ start(q, r). This conclude the proof.
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Initialization Step: N ← {⟨c, q⟩ | c ∈ adom(db)}.
Iterative Rule: if uR is a prefix of q, and R(c, ∗) is a nonempty block in db s.t.

for every R(c, y) ∈ db, ⟨y, uR⟩ ∈ N
then

N ← N ∪ {⟨c, u⟩}︸ ︷︷ ︸
forward

∪{⟨c, w⟩ | NFA(q) has an ε-transition from w to u}︸ ︷︷ ︸
backward

Figure 4.5: Polynomial-time algorithm for computing {⟨c, u⟩ | db ⊢q ⟨c, u⟩}, for a fixed path

query q satisfying C3.

4.4 Complexity Upper Bounds

We now show the complexity upper bounds of Theorem 4.2.

4.4.1 A PTIME Algorithm for C3
We now specify a polynomial-time algorithm for CERTAINTY(q), for path queries q that satisfy

condition C3. The algorithm is based on the automata defined in Definition 4.5, and uses the

concept defined next.

Definition 4.10 (Relation ⊢q). Let q be a path query and db a database instance. For every

c ∈ adom(q) and every prefix u of q, we write db ⊢q ⟨c, u⟩ if every repair of db has a path that

starts in c and is accepted by S-NFA(q, u).

An algorithm that decides the relation ⊢q can be used to solve CERTAINTY(q) for path queries

satisfying C3. Indeed, by Lemma 4.7, for path queries satisfying C3, db is a “yes”-instance for the

problem CERTAINTY(q) if and only if there is a constant c ∈ adom(db) such that db ⊢q ⟨c, u⟩ with
u = ε.

Figure 4.5 shows an algorithm that computes {⟨c, u⟩ | db ⊢q ⟨c, u⟩} as the fixed point of a

binary relation N . The Initialization Step inserts into N all pairs ⟨c, q⟩, which is correct because

db ⊢q ⟨c, q⟩ holds vacuously, as q is the accepting state of S-NFA(q, q). Then, the Iterative Rule is

executed until N remains unchanged; it intrinsically reflects the constructive proof of Lemma 4.9:

db ⊢q ⟨c, u⟩ if and only if for every fact f = R(c, d) ∈ db, we have uR ∈ cqaSTq(f,db). Figure 4.6

shows an example run of the algorithm in Figure 4.5. The next lemma states the correctness of the

algorithm.

Lemma 4.10. Let q be a path query. Let db be a database instance. Let N be the output relation

returned by the algorithm in Figure 4.5 on input db. Then, for every c ∈ adom(db) and every

prefix u of q,
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Iteration Tuples added to N

init. <0, RRX>, <1, RRX>, <2, RRX>, <3, RRX>, <4, RRX>, <5, RRX>

1 <4, RR>

2 <3, R>, <3, RR>

3 <2, R>, <2, RR>

4 <1, R>, <1, RR>

5 <0, R>, <0, RR>, <0, ε>

0 1 2 3

4 5

R R RR

R R R

X

Figure 4.6: Example run of our algorithm for q = RRX, on the database instance db shown

below.
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⟨c, u⟩ ∈ N if and only if db ⊢q ⟨c, u⟩.

Proof. ⇐= Proof by contraposition. Assume ⟨c, u⟩ /∈ N . The proof shows the construction of

a repair r of db such that r has no path that starts in c and is accepted by S-NFA(q, u). Such a

repair shows db ̸⊢q ⟨c, u⟩.
We explain which fact of an arbitrary block R(a, ∗) of db will be inserted in r. Among all

prefixes of q that end with R, let u0R be the longest prefix such that ⟨a, u0⟩ /∈ N . If such u0R

does not exist, then an arbitrarily picked fact of the block R(a, ∗) is inserted in r. Otherwise, the

Iterative Rule in Figure 4.5 entails the existence of a fact R(a, b) such that ⟨b, u0R⟩ /∈ N . Then,

R(a, b) is inserted in r. We remark that this repair r is constructed in exactly the same way as the

repair r∗ built in the proof of Lemma 4.9.

Assume for the sake of contradiction that there is a path π in r that starts in c and is accepted

by S-NFA(q, u). Let π := R1(c0, c1), R2(c1, c2), . . . , Rn(cn−1, cn) where c0 = c. Since ⟨c0, u⟩ ̸∈ N
and ⟨cn, q⟩ ∈ N , there is a longest prefix u0 of q, where |u0| ≥ |u|, and i ∈ {1, . . . , n} such

that ⟨ci−1, u0⟩ ̸∈ N and ⟨ci, u0Ri⟩ ∈ N . From ⟨ci−1, u0⟩ ̸∈ N , it follows that db contains a fact

Ri(ci−1, d) such that ⟨d, u0Ri⟩ ̸∈ N . Then Ri(ci−1, ci) would not be chosen in a repair, contradicting

Ri(ci−1, ci) ∈ r.

=⇒ Assume that ⟨c, u⟩ ∈ N . Let ℓ be the number of executions of the Iterative Rule that

were used to insert ⟨c, u⟩ in N . We show db ⊢q ⟨c, u⟩ by induction on ℓ.

The basis of the induction, ℓ = 0, holds because the Initialization Step is obviously correct.

Indeed, since q is an accepting state of S-NFA(q, q), we have db ⊢q ⟨c, q⟩. For the inductive step,

ℓ→ ℓ+ 1, we distinguish two cases.

Case that ⟨c, u⟩ is added to N by the forward part of the Iterative Rule. That is, ⟨c, u⟩
is added because db has a block {R(c, d1), . . . , R(c, dk)} with k ≥ 1 and for every i ∈ {1, . . . , k},
we have that ⟨di, uR⟩ was added to N by a previous execution of the Iterative Rule. Let r be an

arbitrary repair of db. Since every repair contains exactly one fact from each block, we can assume

i ∈ {1, . . . , k} such that R(c, di) ∈ r. By the induction hypothesis, db ⊢q ⟨di, uR⟩ and thus r has

a path that starts in di and is accepted by S-NFA(q, uR). Clearly, this path can be left extended

with R(c, di), and this left extended path is accepted by S-NFA(q, u). Note incidentally that the

path in r may already use R(c, di), in which case the path is cyclic. Since r is an arbitrary repair,

it is correct to conclude db ⊢q ⟨c, u⟩.

Case that ⟨c, u⟩ is added to N by the backward part of the Iterative Rule. Then, there

exists a relation name S and words v, w such that u = vSwS, and ⟨c, u⟩ is added because ⟨c, vS⟩
was added in the same iteration. Then, S-NFA(q, u) has an ε-transition from state u to vS. Let r
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φq(N, x, z) :=


(α(x) ∧ z = ‘q’)

∨
(∨

uR≤q ((z = ‘u’) ∧ ∃yR(x, y) ∧ ∀y (R(x, y)→ N(y, ‘uR’)))
)

∨
(∨

ε<u<uv≤q
last(u)=last(v)

(N(x, ‘u’) ∧ z = ‘uv’)

)


Figure 4.7: Definition of φq(N, x, z). The predicate α(x) states that x is in the active domain,

and < is shorthand for “is a strict prefix of”.

be an arbitrary repair of db. By the reasoning in the previous case, r has a path that starts in c

and is accepted by S-NFA(q, vS). We claim that r has a path that starts in c and is accepted by

S-NFA(q, u). Indeed, S-NFA(q, u) can use the ε-transition to reach the state vS, and then behave

like S-NFA(q, vS). This concludes the proof.

The following corollary is now immediate.

Corollary 4.1. Let q be a path query. Let db be a database instance, and c ∈ adom(db). Then,

the following are equivalent:

1. c ∈ start(q, r) for every repair r of db; and

2. ⟨c, ϵ⟩ ∈ N , where N is the output of the algorithm in Figure 4.5.

Finally, we obtain the following tractability result.

Lemma 4.11. For each path query q satisfying C3, CERTAINTY(q) is expressible in Least Fix-

point Logic, and hence is in PTIME.

Proof. For a path query q, define the following formula in LFP [Lib04]:

ψq(s, t) :=
[
lfpN,x,zφq(N, x, z)

]
(s, t), (4.2)

where φq(N, x, z) is given in Figure 4.7. Herein, α(x) denotes a first-order query that computes

the active domain. That is, for every database instance db and constant c, db |= α(c) if and only

if c ∈ adom(db). Further, u ≤ v means that u is a prefix of v; and u < v means that u is a proper

prefix of v. Thus, u < v if and only if u ≤ v and u ̸= v. The formula φq(N, x, z) is positive in

N , which is a 2-ary predicate symbol. It is understood that the middle disjunction ranges over all

nonempty prefixes uR of q (possibly u = ε). The last disjunction ranges over all pairs (u, uv) of

distinct nonempty prefixes of q that agree on their last symbol. We used a different typesetting to

distinguish the constant words q, uR, uv from first-order variables x, z. It is easily verified that the

LFP query (5.7) expresses the algorithm of Figure 4.5.
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Since the formula (5.7) in the proof of Lemma 4.11 uses universal quantification, it is not in

Existential Least Fixpoint Logic, which is equal to DATALOG¬ [Lib04, Theorem 10.18].

4.4.2 FO-Rewritability for C1
We now show that if a path query q satisfies C1, then CERTAINTY(q) is in FO, and a first-order

rewriting for q can be effectively constructed.

Definition 4.11 (First-order rewriting). If q is a Boolean query such that CERTAINTY(q) is in

FO, then a (consistent) first-order rewriting for q is a first-order sentence ψ such that for every

database instance db, the following are equivalent:

1. db is a “yes”-instance of CERTAINTY(q); and

2. db satisfies ψ.

Definition 4.12. If q = {R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)}, k ≥ 1, and c is a constant,

then q[c] is the Boolean conjunctive query q[c] := {R1(c, x2), R2(x2, x3), . . . , Rk(xk, xk+1)}.

Lemma 4.12. For every nonempty path query q and constant c, the problem CERTAINTY(q[c]) is

in FO. Moreover, it is possible to construct a first-order formula ψ(x), with free variable x, such

that for every constant c, the sentence ∃x (ψ(x) ∧ x = c) is a first-order rewriting for q[c].

Proof. The proof inductively constructs a first-order rewriting for q[c], where the induction is on

the number n of atoms in q. For the basis of the induction, n = 1, we have q[c] = R(c, y). Then,

the first-order formula ψ(x) = ∃yR(x, y) obviously satisfies the statement of the lemma.

We next show the induction step, n → n + 1. Let R(x1, x2) be the left-most atom of q, and

assume that p := q\{R(x1, x2)} is a path query with n ≥ 1 atoms. By the induction hypothesis, it is

possible to construct a first-order formula φ(z), with free variable z, such that for every constant d,

∃z (φ(z) ∧ z = d) is a first-order rewriting for p[d]. (4.3)

We now define ψ(x) as follows:

ψ(x) = ∃y (R(x, y)) ∧ ∀z (R(x, z)→ φ(z)) . (4.4)

We will show that for every constant c, ∃x (ψ(x) ∧ x = c) is a first-order rewriting for q[c]. To

this end, let db be a database instance. It remains to be shown that db is a “yes”-instance of

CERTAINTY(q[c]) if and only if db satisfies ∃x (ψ(x) ∧ x = c).

⇐= Assume db satisfies ∃x (ψ(x) ∧ x = c). Because of the conjunct ∃y (R(x, y)) in (4.4), we

have that db includes a block R(c, ∗). Let r be a repair of db. We need to show that r satisfies q[c].
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Clearly, r contains R(c, d) for some constant d. Since db satisfies ∃z (φ(z) ∧ z = d), the induction

hypothesis (4.3) tells us that r satisfies p[d]. It is then obvious that r satisfies q[c].

=⇒ Assume db is a “yes”-instance for CERTAINTY(q[c]). Then db must obviously satisfy

∃y (R(c, y)). Therefore, db includes a block R(c, ∗). Let r be an arbitrary repair of db. There

exists d such that R(c, d) ∈ r. Since r satisfies q[c], it follows that r satisfies p[d]. Since r is an

arbitrary repair, the induction hypothesis (4.3) tells us that db satisfies ∃z (φ(z) ∧ z = d). It is

then clear that db satisfies ∃x (ψ(x) ∧ x = c).

Lemma 4.13. For every path query q that satisfies C1, the problem CERTAINTY(q) is in FO, and

a first-order rewriting for q can be effectively constructed.

Proof. By Lemmas 4.5 and 4.7, a database instance db is a “yes”-instance for CERTAINTY(q)

if and only if there is a constant c (which depends on db) such that db is a “yes”-instance for

CERTAINTY(q[c]). By Lemma 4.12, it is possible to construct a first-order rewriting ∃x (ψ(x) ∧ x = c)

for q[c]. It is then clear that ∃x (ψ(x)) is a first-order rewriting for q.

4.4.3 An NL Algorithm for C2
We show that CERTAINTY(q) is in NL if q satisfies C2 by expressing it in linear Datalog with

stratified negation. The proof will use the syntactic characterization of C2 established in Lemma 4.3.

Lemma 4.14. For every path query q that satisfies C2, the problem CERTAINTY(q) is in linear

Datalog with stratified negation (and hence in NL).

In the remainder of this section, we develop the proof of Lemma 4.14.

Definition 4.13. Let q be a path query. We define NFAmin(q) as the automaton that accepts w if

w is accepted by NFA(q) and no proper prefix of w is accepted by NFA(q).

It is well-known that such an automaton NFAmin(q) exists.

Example 4.6. Let q = RXRY R. Then, RXRY RY R is accepted by NFA(q), but not by NFAmin(q),

because the proper prefix RXRY R is also accepted by NFA(q).

Definition 4.14. Let q be a path query and r be a consistent database instance. We define

startmin(q, r) as the set containing all (and only) constants c ∈ adom(r) such that there is a path

in r that starts in c and is accepted by NFAmin(q).

Lemma 4.15. Let q be a path query. For every consistent database instance r, we have that

start(q, r) = startmin(q, r).
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Proof. By construction, startmin(q, r) ⊆ start(q, r). Next assume that c ∈ start(q, r) and let π be the

path that starts in c and is accepted by NFA(q). Let π− be the shortest prefix of π that is accepted

by NFA(q). Since π− starts in c and is accepted by NFAmin(q), it follows c ∈ startmin(q, r).

Lemma 4.16. Let u · v · w be a self-join-free word over the alphabet of relation names. Let s be

a suffix of uv that is distinct from uv. For every integer k ≥ 0, NFAmin(s (uv)k wv) accepts the

language of the regular expression s (uv)k (uv)∗wv.

Proof. Let q = s (uv)k wv. Since u·v ·w is self-join-free, applying the rewinding operation, zero, one,

or more times, in the part of q that precedes w will repeat the factor uv. This gives words of the

form s (uv)ℓwv with ℓ ≥ k. The difficult case is where we rewind a factor of q that itself contains w

as a factor. In this case, the rewinding operation will repeat a factor of the form v2 (uv)
ℓwv1 such

that v = v1v2 and v2 ̸= ε, which results in words of one of the following forms (s = s1 · v2):(
s (uv)ℓ1 uv1

)
·v2 (uv)ℓ2 wv1 ·v2 (uv)ℓ2 wv1 ·(v2); or

(s1)·v2 (uv)ℓwv1 ·v2 (uv)ℓwv1 ·(v2).

These words have a prefix belonging to the language of the regular expression s (uv)k (uv)∗wv.

Definition 4.15. Let db be a database instance, and q a path query.

For a, b ∈ adom(db), we write db |= a
q−→ b if there exists a path in db from a to b with trace q.

Even more formally, db |= a
q−→ b if db contains facts R1(a1, a2), R2(a2, a3), . . . , R|q|(a|q|, a|q|+1)

such that R1R2 · · ·R|q| = q. We write db |= a
q1−→ b

q2−→ c as a shorthand for db |= a
q1−→ b and

db |= b
q2−→ c.

We write db |= a
q−→−→ b if there exists a consistent path in db from a to b with trace q, where

a path is called consistent if it does not contain two distinct key-equal facts.

A constant c ∈ adom(db) is called terminal for q in db if for some (possibly empty) proper

prefix p of q, there is a consistent path in db with trace p that cannot be right extended to a

consistent path in db with trace q.

Note that for every c ∈ adom(db), we have c
ε−→−→ c. Clearly, if q is self-join-free, then c

q−→ d

implies c
q−→−→ d (the converse implication holds vacuously true).

Example 4.7. Let db = {R(c, d), S(d, c), R(c, e), T (e, f)}. Then, c is terminal for RSRT in db

because the path R(c, d), S(d, c) cannot be right extended to a consistent path with trace RSRT ,

because d has no outgoing T -edge. Note incidentally that db |= c
RS−→−→ c

RT−→−→ f , but db ̸|= c
RSRT−→−→

f .
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Lemma 4.17. Let db be a database instance, and c ∈ adom(db). Let q be a path query. Then, c is

terminal for q in db if and only if db is a “no”-instance of CERTAINTY(q[c]), with q[c] as defined

by Definition 4.12.

Proof. =⇒ Straightforward. ⇐= Assume db is a “no”-instance of CERTAINTY(q[c]). Then,

there is a repair r of db such that r ̸|= q[c]. The empty path is a path in r that starts in c and has

trace ε, which is a prefix of q. We can therefore assume a longest prefix p of q such there exists a

path π in r that starts in c and has trace p. Since r is consistent, π is consistent. From r ̸|= q[c], it

follows that p is a proper prefix of q. By Definition 4.15, c is terminal for q in db.

We can now give the proof of Lemma 4.14.

Proof of Lemma 4.14. Assume q satisfies C2. By Lemma 4.3, q satisfies B2a or B2b. We treat

the case that q satisfies B2b (the case that q satisfies B2a is even easier). We have that q is a

factor of (uv)k wv, where k is chosen as small as possible, and uvw is self-join-free. The proof is

straightforward if k = 0; we assume k ≥ 1 from here on. To simplify notation, we will show the

case where q is a suffix of (uv)k wv; our proof can be easily extended to the case where q is not a

suffix, at the price of some extra notation. There is a suffix s of uv such that q = s (uv)k−1wv.

We first define a unary predicate P (which depends on q) such that db |= P (d) if for some

ℓ ≥ 0, there are constants d0, d1, . . . , dℓ ∈ adom(db) with d0 = d such that:

(i) db |= d0
uv−→ d1

uv−→ d2
uv−→ · · · uv−→ dℓ;

(ii) for every i ∈ {0, 1, . . . , ℓ}, di is terminal for wv in db; and

(iii) either dℓ is terminal for uv in db, or dℓ ∈ {d0, . . . , dℓ−1}.

Claim 4.2. The definition of the predicate P does not change if we replace item (i) by the stronger

requirement that for every i ∈ {0, 1, . . . , ℓ− 1}, there exists a path πi from di to di+1 with trace uv

such that the composed path π0 · π1 · · ·πℓ−1 is consistent.

Proof. It suffices to show the following statement by induction on increasing l:

whenever there exist l ≥ 1 and constants d0, d1, . . . , dl with d0 = d such that con-

ditions (i), (ii), and (iii) hold, there exist another constant k ≥ 1 and constants

c0, c1, . . . , ck with c0 = d such that conditions (i), (ii), and (iii) hold, and, moreover, for

each i ∈ {0, 1, . . . , k− 1}, there exists a path πi from ci to ci+1 such that the composed

path π0 · π1 · · ·πk−1 is consistent.

Basis l = 1. Then we have db |= d0
uv−→ d1, witnessed by a path π0. Since uv is self-join-free, the

path π0 is consistent. The claim thus follows with k = l = 1, c0 = d0 and c1 = d1.
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Inductive step l→ l + 1. Assume that the statement holds for any integer in {1, 2, . . . , l}. Sup-

pose that there exist l ≥ 2 and constants d0, d1, . . . , dl+1 with d0 = d such that conditions (i),

(ii), and (iii) hold.

For i ∈ {0, . . . , l}, let πi be a path with trace uv from di to di+1 in db. The claim holds if the

composed path π0 · π1 · · ·πl is consistent, with k = l + 1 and ci = di for i ∈ {0, 1, . . . , l + 1}.
Now, assume that for some i < j, the paths that show db |= di

uv−→ di+1 and db |= dj
uv−→ dj+1

contain, respectively, R(a, b1) and R(a, b2) with b1 ̸= b2. It is easily verified that

db |= d0
uv−→ d1

uv−→ d2
uv−→ · · · uv−→ di

uv−→ dj+1
uv−→ · · · uv−→ dl+1,

where the number of uv-steps is strictly less than l+1. Informally, we follow the original path

until we reach R(a, b1), but then follow R(a, b2) instead of R(a, b1), and continue on the path

that proves db |= dj
uv−→ dj+1. Then the claim holds by applying the inductive hypothesis

on constants d0, d1, . . . , di, dj+1, . . . , dl+1.

The proof is now complete.

Since we care about the expressibility of the predicate P in Datalog, Claim 4.2 is not cooked

into the definition of P . The idea is the same as in an NL-algorithm for reachability: if there exists

a directed path from s to t, then there is such a path without repeated vertices; but we do not care

for repeated vertices when computing reachability.

Claim 4.3. The definition of predicate P does not change if we require that for i ∈ {0, 1, . . . , ℓ−1},
di is not terminal for uv in db.

Proof. Assume that for some 0 ≤ i < ℓ, di is terminal for uv in db. Then, all conditions in the

definition are satisfied by choosing ℓ equal to j.

Claim 4.3 is not cooked into the definition of P to simplify the the encoding of P in Datalog.

Next, we define a unary predicate O such that db |= O(c) for a constant c if c ∈ adom(db) and

one of the following holds true:

1. c is terminal for s (uv)k−1 in db; or

2. there is a constant d ∈ adom(db) such that both db |= c
s(uv)k−1

−−−−−→−→ d and db |= P (d).

Claim 4.4. Let c ∈ adom(db). The following are equivalent:

(I) there is a repair r of db that contains no path that starts in c and whose trace is in the

language of the regular expression s (uv)k−1 (uv)∗wv; and

(II) db |= O(c).
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Proof. Let wv = S0S1 · · ·Sm−1 and uv = R0R1 · · ·Rn−1.

(I) =⇒ (II) Assume that item (I) holds true. Let the first relation name of s be Ri. Starting

from c, let π be a maximal (possibly infinite) path in r that starts in c and has trace RiRi+1Ri+2 · · · ,
where addition is modulo n. Since r is consistent, π is deterministic. Since r is finite, π contains

only finitely many distinct edges. Therefore, π ends either in a loop or in an edge Rj(d, e) such

that db |= ¬∃yRj+1(e, y) (recall that r contains a fact from every block of db). Assume that π

has a prefix π′ with trace s (uv)k−1; if e occurs at the non-primary key position of the last Rn−1-

fact of π′ or of any Rn−1-fact occurring afterwards in π, then it follows from item (I) that there

exist a (possibly empty) prefix pSj of wv and a constant f ∈ adom(r) such that r |= e
p−→ f and

db |= ¬∃ySj(f, y). It is now easily verified that db |= O(c).

(II) =⇒ (I) Assume db |= O(c). It is easily verified that the desired result holds true if c is

terminal for s (uv)k−1 in db. Assume from here on that c is not terminal for s (uv)k−1 in db. That is,

for every repair r of db, there is a constant d such that r |= c
s(uv)k−1

−−−−−→ d. Then, there is a consistent

path α with trace s (uv)k−1 from c to some constant d ∈ adom(db) such that db |= P (d), using

the stronger definition of P implied by Claims 4.2 and 4.3. Let d0, . . . , dℓ be as in our (stronger)

definition of P (d), that is, first, d1, . . . , dℓ−1 are not terminal for uv in db (cf. Claim 4.3), and second,

there is a ⊆-minimal consistent subset π of db such that π |= d0
uv−→ d1

uv−→ d2
uv−→ · · · uv−→ dℓ

(cf. Claim 4.2). We construct a repair r as follows:

1. insert into r all facts of π;

2. for every i ∈ {0, . . . , ℓ}, di is terminal for wv in db. We ensure that r |= di
S0S1···Sji−−−−−→ ei for

some ji ∈ {0, . . . ,m− 2} and some constant ei such that db |= ¬∃ySji+1(ei, y);

3. if dℓ is terminal for uv in db, then we ensure that r |= dℓ
R0R1···Rj

−−−−−→ e for some j ∈ {0, . . . , n−2}
and some constant e such that db |= ¬∃ySj+1(e, y);

4. insert into r the facts of α that are not key-equal to a fact already in r; and

5. complete r into a ⊆-maximal consistent subset of db.

Since r is a repair of db, there exists a path δ with trace s (uv)k−1 in r that starts from c. If δ ̸= α,

then δ must contain a fact of π that was inserted in step 1. Consequently, no matter whether δ = α

or δ ̸= α, the endpoint of δ belongs to {d0, . . . , dℓ}. It follows that there is a (possibly empty) path

from δ’s endpoint to dℓ whose trace is of the form (uv)∗. Two cases can occur:

• dℓ is terminal for uv in db.

• dℓ is not terminal for uv in db. Then there is j ∈ {0, . . . , ℓ − 1} such that dj = dℓ. Then,

there is a path of the form (uv)∗ that starts from δ’s endpoint and eventually loops.
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Since, by construction, each di is terminal for wv in r, it will be the case that δ cannot be extended

to a path in r whose trace is of the form s (uv)k (uv)∗wv.

Claim 4.5. The unary predicate O is expressible in linear Datalog with stratified negation.

Proof. The construction of the linear Datalog program is straightforward. Concerning the com-

putation of predicates P and O, note that it can be checked in FO whether or not a constant c

is terminal for some path query q, by Lemmas 4.12 and 4.17. The only need for recursion comes

from condition (i) in the definition of the predicate P , which searches for a directed path of a

particular form. It is easily seen that any path query satisfying B2b admits such a program for the

predicate O.

By Lemmas 4.7, 4.15, and 4.16, the following are equivalent:

(a) db is a “no”-instance of CERTAINTY(q); and

(b) for every constant ci ∈ adom(q), there is a repair r of db that contains no path that starts

in ci and whose trace is in the language of the regular expression s (uv)k−1 (uv)∗wv.

By Claim 4.4, item (b) holds true if and only if for every c ∈ adom(db), db |= ¬O(c). It follows

from Claim 4.5 that the latter test is in linear Datalog with stratified negation, which concludes

the proof of Lemma 4.14.

4.5 Complexity Lower Bounds

In this section, we show the complexity lower bounds of Theorem 4.2. For a path query q =

{R1(x1, x2), . . . , Rk(xk, xk+1)} and constants a, b, we define the following database instances:

ϕba[q] := {R1(a,□2), R2(□2,□3), . . . , Rk(□k, b)}
ϕ⊥a [q] := {R1(a,□2), R2(□2,□3), . . . , Rk(□k,□k+1)}
ϕb⊥[q] := {R1(□1,□2), R2(□2,□3), . . . , Rk(□k, b)}

where the symbols □i denoted fresh constants not occurring elsewhere. Significantly, two occur-

rences of □i will represent different constants.

4.5.1 NL-Hardness

We first show that if a path query violates C1, then CERTAINTY(q) is NL-hard, and therefore

not in FO.

Lemma 4.18. If a path query q violates C1, then CERTAINTY(q) is NL-hard.
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Proof. Assume that q does not satisfy C1. Then, there exists a relation name R such that q =

uRvRw and q is not a prefix of uRvRvRw. It follows that Rw is not a prefix of RvRw. Since

Rv ̸= ε, there exists no (conjunctive query) homomorphism from q to uRw.

The problem REACHABILITY takes as input a directed graph G(V,E) and two vertices s, t ∈ V ,

and asks whether G has a directed path from s to t. This problem is NL-complete and remains

NL-complete when the inputs are acyclic graphs. Recall that NL is closed under complement.

We present a first-order reduction from REACHABILITY to the complement of CERTAINTY(q), for

acyclic directed graphs.

Let G = (V,E) be an acyclic directed graph and s, t ∈ V . Let G′ = (V ∪ {s′, t′}, E ∪
{(s′, s), (t, t′)}), where s′, t′ are fresh vertices. We construct an input instance db for CERTAINTY(q)

as follows:

• for each vertex x ∈ V ∪ {s′}, we add ϕx⊥[u];

• for each edge (x, y) ∈ E ∪ {(s′, s), (t, t′)}, we add ϕyx[Rv]; and

• for each vertex x ∈ V , we add ϕ⊥x [Rw].

This construction can be executed in FO. Figure 4.8 shows an example of the above construction.

Observe that the only conflicts in db occur in R-facts outgoing from a same vertex.

s′ s a t t′

u u u u

Rw Rw Rw

Rv Rv Rv Rv

Figure 4.8: Database instance for the NL-hardness reduction from the graph G with V = {s, a, t}
and E = {(s, a), (a, t)}.

We now show that there exists a directed path from s to t in G if and only if there exists a

repair of db that does not satisfy q.

=⇒ Suppose that there is a directed path from s to t in G. Then, G′ has a directed path

P = s, x0, x1, . . . , t, t
′. Then, consider the repair r that chooses the first R-fact from ϕyx[Rv] for

each edge (x, y) on the path P , and the first R-fact from ϕ⊥y [Rw] for each y not on the path P .

We show that r falsifies q. Assume for the sake of contradiction that r satisfies q. Then, there

exists a valuation θ for the variables in q such that θ(q) ⊆ r. Since, as argued in the beginning of

this proof, there exists no (conjunctive query) homomorphism from q to uRw, it must be that all

facts in θ(q) belong to a path in r with trace u (Rv)k, for some k ≥ 0. Since, by construction, no

constants are repeated on such paths, there exists a (conjunctive query) homomorphism from q to
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u (Rv)k, which implies that Rw is a prefix of RvRw, a contradiction. We conclude by contradiction

that r falsifies q.

⇐= Proof by contradiction. Suppose that there is no directed path from s to t in G. Let

r be any repair of db; we will show that r satisfies q. Indeed, there exists a maximal path

P = x0, x1, . . . , xn such that x0 = s′, x1 = s, and ϕ
xi+1
xi [Rv] ⊆ r. By construction, s′ cannot reach

t′ in G′, and thus xn ̸= t′. Since P is maximal, we must have ϕ⊥xn
[Rw] ⊆ r. Then ϕ

xn−1

⊥ [u] ∪
ϕxn
xn−1

[Rv] ∪ ϕ⊥xn
[Rw] satisfies q.

4.5.2 coNP-Hardness

Next, we show the coNP-hard lower bound.

Lemma 4.19. If a path query q violates C3, then CERTAINTY(q) is coNP-hard.

Proof. If q does not satisfy C3, then there exists a relation R such that q = uRvRw and q is not a

factor of uRvRvRw. Note that this means that there is no homomorphism from q to uRvRvRw.

Also, u must be nonempty (otherwise, q = RvRw is trivially a suffix of RvRvRw). Let S be the

first relation of u.

The proof is a first-order reduction from SAT to the complement of CERTAINTY(q). The

problem SAT asks whether a given propositional formula in CNF has a satisfying truth assignment.

Given any formula ψ for SAT, we construct an input instance db for CERTAINTY(q) as follows:

• for each variable z, we add ϕ⊥z [Rw] and ϕ
⊥
z [RvRw];

• for each clause C and positive literal z of C, we add ϕzC [u];

• for each clause C and variable z that occurs in a negative literal of C, we add ϕzC [uRv].

This construction can be executed in FO. Figure 4.9 depicts an example of the above construction.

Intuitively, ϕ⊥z [Rw] corresponds to setting the variable z to true, and ϕ⊥z [RvRw] to false. There

are two types of conflicts that occur in db. First, we have conflicting facts of the form S(C, ∗);
resolving this conflict corresponds to the clause C choosing one of its literals. Moreover, for each

variable z, we have conflicting facts of the form R(z, ∗); resolving this conflict corresponds to the

variable z choosing a truth assignment.

We show now that ψ has a satisfying truth assignment if and only if there exists a repair of db

that does not satisfy q.

=⇒ Assume that there exists a satisfying truth assignment σ for ψ. Then for any clause C,

there exists a variable zC ∈ C whose corresponding literal is true in C under σ. Consider the repair

r that:
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(x2 ∨ x3)
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Figure 4.9: Database instance for the coNP-hardness reduction from the formula

ψ = (x1 ∨ x2) ∧ (x2 ∨ x3).

• for each variable z, it chooses the first R-fact of ϕ⊥z [Rw] if σ(z) is true, otherwise the first

R-fact of ϕ⊥z [RvRw];

• for each clause C, it chooses the first S-fact of ϕzC [u] if zC is positive in C, or the first S-fact

of ϕzC [uRv] if zC is negative in C.

Assume for the sake of contradiction that r satisfies q. Then we must have a homomorphism from

q to either uRw or uRvRvRw. But the former is not possible, while the latter contradicts C3. We

conclude by contradiction that r falsifies q.

⇐= Suppose that there exists a repair r of db that falsifies q. Consider the assignment σ:

σ(z) =

true if ϕ⊥z [Rw] ⊆ r

false if ϕ⊥z [RvRw] ⊆ r

We claim that σ is a satisfying truth assignment for ψ. Indeed, for each clause C, the repair must

have chosen a variable z in C. If z appears as a positive literal in C, then ϕzC [u] ⊆ r. Since r falsifies

q, we must have ϕ⊥z [Rw] ⊆ r. Thus, σ(z) is true and C is satisfied. If z appears in a negative

literal, then ϕzC [uRv] ⊆ r. Since r falsifies q, we must have ϕ⊥z [RvRw] ⊆ r. Thus, σ(z) is false and

C is again satisfied.

4.5.3 PTIME-Hardness

Finally, we show the PTIME-hard lower bound.

Lemma 4.20. If a path query q violates C2, then CERTAINTY(p) is PTIME-hard.

Proof. Suppose q violates C2. If q also violates C3 , then the problem CERTAINTY(q) is PTIME-

hard since it is coNP-hard by Lemma 4.19. Otherwise, it is possible to write q = uRv1Rv2Rw,
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with three consecutive occurrences of R such that v1 ̸= v2 and Rw is not a prefix of Rv1. Let v be

the maximal path query such that v1 = vv+1 and v2 = vv+2 . Thus v+1 ̸= v+2 and the first relation

names of v+1 and v+2 are different.

Our proof is a reduction from theMonotone Circuit Value Problem (MCVP) known to bePTIME-

complete [Gol77]:

Problem: MCVP

Input: A monotone Boolean circuit C on inputs x1, x2, . . . , xn and output gate o; an assignment

σ : {xi | 1 ≤ i ≤ n} → {0, 1}.

Question: What is the value of the output o under σ?

We construct an instance db for CERTAINTY(q) as follows:

• for the output gate o, we add ϕo⊥[uRv1];

• for each input variable x with σ(x) = 1, we add ϕ⊥x [Rv2Rw];

• for each gate g, we add ϕg⊥[u] and ϕ
⊥
g [Rv2Rw];

• for each AND gate g = g1 ∧ g2, we add

ϕg1g [Rv1] ∪ ϕg2g [Rv1].

Here, g1 and g2 can be gates or input variables; and

• for each OR gate g = g1 ∨ g2, we add

ϕc1g [Rv] ∪ ϕg1c1 [v+1 ] ∪ ϕc2c1 [v+2 ]
∪ ϕc2⊥ [u] ∪ ϕg2c2 [Rv1] ∪ ϕ⊥c2 [Rw]

where c1, c2 are fresh constants.

This construction can be executed in FO. An example of the gadget constructions is shown in

Figure 4.10. We next show that the output gate o is evaluated to 1 under σ if and only if each

repair of db satisfies q.

=⇒ Suppose the output gate o is evaluated to 1 under σ. Consider any repair r. We construct

a sequence of gates starting from o, with the invariant that every gate g evaluates to 1, and there

is a path of the form uRv1 in r that ends in g. The output gate o evaluates to 1, and also we have

that ϕo⊥[uRv1] ⊆ r by construction. Suppose that we are at gate g. If there is a Rv2Rw path in

r that starts in g, the sequence ends and the query q is satisfied. Otherwise, we distinguish two

cases:
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Figure 4.10: Gadgets for the PTIME-hardness reduction.

1. g = g1 ∧ g2. Then, we choose the gate with ϕgig [Rv1] ⊆ r. Since both gates evaluate to 1 and

ϕg⊥[u] ⊆ r, the invariant holds for the chosen gate.

2. g = g1 ∨ g2. If g1 evaluates to 1, we choose g1. Observe that ϕg⊥[u]∪ ϕc1g [Rv]∪ ϕg1c1 [v+1 ] creates
the desired uRv1 path. Otherwise g2 evaluates to 1. If ϕ⊥c2 [Rw] ⊆ r, then there is a path with

trace uRv1 ending in g, and a path with trace Rv2Rw starting in g, and therefore r satisfies q.

If ϕ⊥c2 [Rw] ⊈ r, we choose g2 and the invariant holds.

If the query is not satisfied at any point in the sequence, we will reach an input variable x evaluated

at 1. But then there is an outgoing Rv2Rw path from x, which means that q must be satisfied.

⇐= Proof by contraposition. Assume that o is evaluated to 0 under σ. We construct a repair

r as follows, for each gate g:

• if g is evaluated to 1, we choose the first R-fact in ϕ⊥g [Rv2Rw];

• if g = g1 ∧ g2 and g is evaluated to 0, let gi be the gate or input variable evaluated to 0. We

then choose ϕgig [Rv1];

• if g = g1 ∨ g2 and g is evaluated to 0, we choose ϕc1g [Rv]; and

• if g = g1 ∨ g2, we choose ϕg2c2 [Rv1].

For a path query p, we write head(p) for the variable at the key-position of the first atom, and

rear(p) for the variable at the non-key position of the last atom.

Assume for the sake of contradiction that r satisfies q. Then, there exists some valuation θ such

that θ(uRv1Rv2Rw) ⊆ r. Then the gate g∗ := θ(head(Rv1)) is evaluated to 0 by construction. Let

g1 := θ(rear(Rv1)). By construction, for g∗ = g1 ∧ g2 or g∗ = g1 ∨ g2, we must have ϕg1g [Rv1] ⊆ r

and g1 is a gate or an input variable also evaluated to 0. By our construction of r, there is no path

with trace Rv2Rw outgoing from g1. However, θ(Rv2Rw) ⊆ r, this can only happen when g1 is an

OR gate, and one of the following occurs:
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• Case that |Rw| ≤ |Rv1|, and the trace of θ(Rv2Rw) is a prefix of Rvv+2 Rv1. Then Rw is a

prefix of Rv1, a contradiction.

• Case that |Rw| > |Rv1|, and Rvv+2 Rv1 is a prefix of the trace of θ(Rv2Rw). Consequently,

Rv1 is a prefix of Rw. Then, for every k ≥ 1, L↬(q) contains uRv1 (Rv2)
k Rw. It is now

easily verified that for large enough values of k, uRv1Rv2w is not a factor of uRv1 (Rv2)
k Rw.

By Lemmas 4.5 and 4.19, CERTAINTY(q) is coNP-hard.

4.6 Path Queries with Constants

We now extend our complexity classification of CERTAINTY(q) to path queries in which con-

stants can occur.

Definition 4.16 (Generalized path queries). A generalized path query is a Boolean conjunctive

query of the following form:

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1)}, (4.5)

where s1, s2,. . . , sk+1 are constants or variables, all distinct, and R1, R2,. . . , Rk are (not necessarily

distinct) relation names. Significantly, every constant can occur at most twice: at a non-primary-

key position and the next primary-key-position.

The characteristic prefix of q, denoted by char(q), is the longest prefix

{R1(s1, s2), R2(s2, s3), . . . , Rℓ(sℓ, sℓ+1)}, 0 ≤ ℓ ≤ k

such that no constant occurs among s1, s2, . . . , sℓ (but sℓ+1 can be a constant). Clearly, if q is

constant-free, then char(q) = q.

Example 4.8. If q = {R(x, y), S(y, 0), T (0, 1), R(1, w)}, where 0 and 1 are constants, then

char(q) = {R(x, y), S(y, 0)}.

The following lemma implies that if a generalized path query q starts with a constant, then

CERTAINTY(q) is in FO. This explains why the complexity classification in the remainder of this

section will only depend on char(q).

Lemma 4.21. For any generalized path query q, CERTAINTY(p) is in FO, where p := q \ char(q).

Lemma 4.21 is an immediate corollary of Lemma 4.24, which states that whenever a generalized

path query starts with a constant, then CERTAINTY(q) is in FO. Its proof needs two helping

lemmas.
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Lemma 4.22. Let q = q1∪q2∪· · ·∪qk be a Boolean conjunctive query such that for all 1 ≤ i < j ≤ k,
vars(qi) ∩ vars(qj) = ∅. Then, the following are equivalent for every database instance db:

1. db is a “yes”-instance for CERTAINTY(q); and

2. for each 1 ≤ i ≤ k, db is a “yes”-instance for CERTAINTY(qi).

Proof. We give the proof for k = 2. The generalization to larger k is straightforward.

1 =⇒ 2 Assume that (1) holds true. Then each repair r of db satisfies q, and therefore satisfies

both q1 and q2. Therefore, db is a “yes”-instance for both CERTAINTY(q1) and CERTAINTY(q2).

2 =⇒ 1 Assume that (2) holds true. Let r be any repair of db. Then there are valuations µ

from vars(q1) to adom(db), and θ from vars(q2) to adom(db) such that µ(q1) ⊆ r and θ(q2) ⊆ r.

Since vars(q1) ∩ vars(q2) = ∅ by construction, we can define a valuation σ as follows, for every

variable z ∈ vars(q1) ∪ vars(q2):

σ(z) =

µ(z) if z ∈ vars(q1)

θ(z) if z ∈ vars(q2)

From σ(q) = σ(q1) ∪ σ(q2) = µ(q1) ∪ θ(q2) ⊆ r, it follows that r satisfies q. Therefore, db is a

“yes”-instance for CERTAINTY(q).

Lemma 4.23. Let q be a generalized path query with

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, c)},

where c is a constant, and each si is either a constant or a variable for all i ∈ {1, . . . , k}. Let

p = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1), N(sk+1, sk+2)},

where sk+1, sk+2 are fresh variables to q and N is a fresh relation to q. Then there exists a

first-order reduction from CERTAINTY(q) to CERTAINTY(p).

Proof. Let db be an instance for CERTAINTY(q) and consider the instance db ∪ {N(c, d)} for

CERTAINTY(p) where d is a fresh constant to adom(db).

We show that db is a “yes”-instance for CERTAINTY(q) if and only if db∪{N(c, d)} is a “yes”-

instance for CERTAINTY(p).

=⇒ Assume db is a “yes”-instance for CERTAINTY(q). Let r be any repair of db∪{N(c, d)},
and thus r \ {N(c, d)} is a repair for db. Then there exists a valuation µ with µ(q) ⊆ r \ {N(c, d)}.
Consider the valuation µ+ from vars(q) ∪ {sk+1, sk+2} to adom(db) ∪ {c, d} that agrees with µ on
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vars(q) and maps additionally µ+(sk+1) = c and µ+(sk+2) = d. We thus have µ+(p) ⊆ r. It is

correct to conclude that db ∪ {N(c, d)} is a “yes”-instance for CERTAINTY(p).

⇐= Assume that db ∪ {N(c, d)} is a “yes”-instance for the problem CERTAINTY(p). Let r

be any repair of db. Then r ∪ {N(c, d)} is a repair of db ∪ {N(c, d)}, and thus there exists some

valuation θ with θ(p) ⊆ r ∪ {N(c, d)}. Since db contains only one N -fact, we have θ(sk+1) = c. It

follows that θ(q) ⊆ r, as desired.

Lemma 4.24. Let q be a generalized path query with

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1)}

where s1 is a constant, and each si is either a constant or a variable for all i ∈ {2, . . . , k+1}. Then

the problem CERTAINTY(q) is in FO.

Proof. Let the 1 = j1 < j2 < · · · < jℓ ≤ k + 1 be all the indexes j such that sj is a constant for

some ℓ ≥ 1. Let jℓ+1 = k + 1. Then for each i ∈ {1, 2, . . . , ℓ}, the query

qi =
⋃

ji≤j<ji+1

{Rj(sj , sj+1)}

is a generalized path query where each sji is a constant.

We claim that CERTAINTY(qi) is in FO for each 1 ≤ i ≤ ℓ. Indeed, if sji+1
is a variable, then

the claim follows by Lemma 4.12; if sji+1
is a constant, then the claim follows by Lemma 4.23 and

Lemma 4.12.

Since by construction, q = q1 ∪ q2 ∪ · · · ∪ qℓ, we conclude that CERTAINTY(q) is in FO by

Lemma 4.22.

The proof of Lemma 4.21 is now simple.

Proof of Lemma 4.21. If q contains no constants, the lemma holds trivially. Otherwise, the problem

CERTAINTY(p) is in FO by Lemma 4.24.

We now introduce some definitions and notations used in our complexity classification. The fol-

lowing definition introduces a convenient syntactic shorthand for characteristic prefixes previously

defined in Definition 4.16.

Definition 4.17. Let q = {R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)} be a path query. We write

[[q, c]] for the generalized path query obtained from q by replacing xk+1 with the constant c. The

constant-free path query q will be denoted by [[q,⊤]], where ⊤ is a distinguished special symbol.
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Definition 4.18 (Prefix homomorphism). Let

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1)}
p = {S1(t1, t2), S2(t2, t3), . . . , Rℓ(sℓ, sℓ+1)}

be generalized path queries. A homomorphism from q to p is a substitution θ for the variables in q,

extended to be the identity on constants, such that for every i ∈ {1, . . . , k}, Ri(θ(si), θ(si+1)) ∈ p.
Such a homomorphism is a prefix homomorphism if θ(s1) = t1.

Example 4.9. Let q = {R(x, y), R(y, 1), S(1, z)}, and p = {R(x, y), R(y, z), R(y, 1)}. Then

char(q) = {R(x, y), R(y, 1)} = [[RR, 1]] and p = [[RRR, 1]]. There is a homomorphism from char(q)

to p, but there is no prefix homomorphism from char(q) to p.

The following conditions generalize C1, C2, and C3 from constant-free path queries to generalized

path queries. Let γ be either a constant or the distinguished symbol ⊤.

D1: Whenever char(q) = [[uRvRw, γ]], there is a prefix homomorphism from char(q) to the gener-

alized path query [[uRvRvRw, γ]].

D2: Whenever char(q) = [[uRvRw, γ]], there is a homomorphism from char(q) to [[uRvRvRw, γ]];

and whenever char(q) = [[uRv1Rv2Rw, γ]] for consecutive occurrences of R, v1 = v2 or there

is a prefix homomorphism from [[Rw, γ]] to [[Rv1, γ]].

D3: Whenever char(q) = [[uRvRw, γ]], there is a homomorphism from char(q) to [[uRvRvRw, γ]].

It is easily verified that if γ = ⊤, then D1, D2, and D3 are equivalent to, respectively, C1, C2, and
C3. Likewise, the following theorem degenerates to Theorem 4.2 for path queries without constants.

Theorem 4.3. For every generalized path query q, the following complexity upper bounds obtain:

• if q satisfies D1, then CERTAINTY(q) is in FO;

• if q satisfies D2, then CERTAINTY(q) is in NL; and

• if q satisfies D3, then CERTAINTY(q) is in PTIME.

The following complexity lower bounds obtain:

• if q violates D1, then CERTAINTY(q) is NL-hard;

• if q violates D2, then CERTAINTY(q) is PTIME-hard; and

• if q violates D3, then CERTAINTY(q) is coNP-complete.
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4.6.1 Upper bounds in Theorem 4.3

The proof of Theorem 4.3 requires the notion of an extended query of a generalized path query.

Definition 4.19 (Extended query). Let q be a generalized path query. The extended query of q,

denoted by ext(q), is defined as follows:

• if q does not contain any constant, then ext(q) := q;

• otherwise, char(q) = {R1(x1, x2), R2(x2, x3), . . . , Rℓ(xℓ, c)} for some constant c. In this case,

we define

ext(q) := {R1(x1, x2), . . . , Rℓ(xℓ, xℓ+1), N(xℓ+1, xℓ+2)},

where xℓ+1 and xℓ+2 are fresh variables and N is a fresh relation name not occurring in q.

By definition, ext(q) does not contain any constant.

Example 4.10. Let q = R(x, y), S(y, 0), T (0, 1), R(1, w) where 0 and 1 are constants. We have

ext(q) = R(x, y), S(y, z), N(z, u).

We show two lemmas which, taken together, show that the problem CERTAINTY(q) is first-order

reducible to CERTAINTY(ext(q)), for every generalized path query q.

Lemma 4.25. For every generalized path query q, there is a first-order reduction from the problem

CERTAINTY(q) to CERTAINTY(char(q)).

Proof. Let p := q \ char(q). Since vars(char(q))∩ vars(p) = ∅, Lemmas 4.22 and 4.24 imply that the

following are equivalent for every database instance db:

1. db is a “yes”-instance for CERTAINTY(q); and

2. db is a “yes”-instance for CERTAINTY(char(q)) and a “yes”-instance for CERTAINTY(p).

To conclude the proof, it suffices to observe that CERTAINTY(p) is in FO by Lemma 4.24.

Lemma 4.26. For every generalized path query q, there is a first-order reduction from the problem

CERTAINTY(char(q)) to CERTAINTY(ext(q)).

Proof. Let q be a generalized path query. If q contains no constants, the lemma trivially obtains

because char(q) = ext(q) = q. If q contains at least one constant, then there exists a first-order

reduction from CERTAINTY(char(q)) to CERTAINTY(ext(q)) by Lemma 4.23.

Lemma 4.27. Let q be a generalized path query that contains at least one constant. If q satisfies

D3, then q satisfies D2 and ext(q) satisfies C2.



93

Proof. Assume that q satisfies D3. Let char(q) = [[p, c]] for some constant c. We have ext(q) = p ·N
where N is a fresh relation name not occurring in p.

We first argue that ext(q) is a factor of every word to which ext(q) rewinds. To this end, let

ext(q) = uRvRwN where p = uRvRw. Since q satisfies D3, there exists a homomorphism from

char(q) = [[uRvRw, c]] to [[uRvRvRw, c]], implying that uRvRw is a suffix of uRvRvRw. It follows

that uRvRwN is a suffix of uRvRvRwN . Hence ext(q) satisfies C3.
The remaining test for C2 is where ext(q) = uRv1Rv2RwN for consecutive occurrences of R.

We need to show that either v1 = v2 or RwN is a prefix of Rv1 (or both). We have p =

uRv1Rv2Rw. Since q satisfies D3, there exists a homomorphism from char(q) = [[uRv1Rv2Rw, c]]

to [[uRv1Rv2Rv2Rw, c]]. Since c is a constant, the homomorphism must map Rv1 to Rv2, implying

that v1 = v2. It is correct to conclude that q satisfies D2 and ext(q) satisfies C2.

Lemma 4.28. For every generalized path query q,

• if q satisfies D1, then ext(q) satisfies C1;

• if q satisfies D2, then ext(q) satisfies C2; and

• if q satisfies D3, then ext(q) satisfies C3.

Proof. The lemma holds trivially if q contains no constant. Assume from here on that q contains

at least one constant.

Assume that q satisfies D1. Then char(q) must be self-join-free. In this case, ext(q) is self-join-

free, and thus ext(q) satisfies C1.
For the two remaining items, assume that q satisfies D2 or D3. Since D2 logically implies D3, q

satisfies D3. By Lemma 4.27, ext(q) satisfies C2. Since C2 logically implies C3, q satisfies C3.

We can now prove the upper bounds in Theorem 4.3.

Proof of upper bounds in Theorem 4.3. Since first-order reductions compose, there is a first-order

reduction from the problem CERTAINTY(q) to CERTAINTY(ext(q)) by Lemmas 4.25 and 4.26. The

upper bound results then follow by Lemma 4.28.

Finally, the proof of Theorem 4.3 reveals that for generalized path queries q containing at least

one constant, the complexity of CERTAINTY(q) exhibits a trichotomy (instead of a tetrachotomy

as in Theorem 4.3).

Theorem 4.4. For any generalized path query q containing at least one constant, the problem

CERTAINTY(q) is either in FO, NL-complete, or coNP-complete.

Proof. Immediate from Theorem 4.3 and Lemma 4.27.
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4.6.2 Lower bounds in Theorem 4.3

The complexity lower bounds in Theorem 4.3 can be proved by slight modifications of the

proofs in Sections 4.5.1 and 4.5.2. We explain these modifications below for a generalized path

query q containing at least one constant. Note incidentally that the proof in Section 4.5.3 needs no

revisiting, because, by Lemma 4.27, a violation of D2 implies a violation of D3.

In the proof of Lemma 4.18, let char(q) = [[uRvRw, c]] where c is a constant and there is no

prefix homomorphism from char(q) to [[uRvRvRw, c]]. Let p = q\char(q). Note that the path query

uRv does not contain any constant. We revise the reduction description in Lemma 4.18 to be

• for each vertex x ∈ V ∪ {s′}, we add ϕx⊥[u];

• for each edge (x, y) ∈ E ∪ {(s′, s), (t, t′)}, we add ϕyx[Rv];

• for each vertex x ∈ V , we add ϕcx[Rw]; and

• add a canonical copy of p (which starts in the constant c).

An example is shown in Figure 4.11. Since the constant c occurs at most twice in q by Defini-

tion 4.16, the query q can only be satisfied by a repair including each of ϕx⊥[u], ϕ
y
x[Rv], ϕcy[Rw],

and the canonical copy of p. NL-hardness can now be proved as in the proof of Lemma 4.18.

s′ s a t t′

c

u u u u

Rw
Rw Rwp

Rv Rv Rv Rv

Figure 4.11: Database instance for the revised NL-hardness reduction from the graph G with

V = {s, a, t} and E = {(s, a), (a, t)}.

In the proof of Lemma 4.19, let char(q) = [[uRvRw, c]] where c is a constant and there is no

homomorphism from char(q) to [[uRvRvRw, c]]. Let p = q \ char(q). Note that both path queries

uRv and u do not contain any constant. We revise the reduction description in Lemma 4.19 to be

• for each variable z, we add ϕcz[Rw] and ϕ
c
z[RvRw];

• for each clause C and positive literal z of C, we add ϕzC [u];

• for each clause C and variable z that occurs in a negative literal of C, we add ϕzC [uRv]; and

• add a canonical copy of p (which starts in the constant c).
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Figure 4.12: Database instance for the revised coNP-hardness reduction from the formula

ψ = (x1 ∨ x2) ∧ (x2 ∨ x3).

An example is shown in Figure 4.12. Since the constant c occurs at most twice in q, the query q

can only be satisfied by a repair r such that either

• r contains ϕzC [uRv], ϕ
c
z[Rw], and the canonical copy of p; or

• r contains ϕzC [u], ϕ
c
z[RvRw], and the canonical copy of p.

coNP-hardness can now be proved as in the proof of Lemma 4.19.

4.7 Conclusion

We established a complexity classification in consistent query answering relative to primary

keys, for path queries that can have self-joins: for every path query q, the problem CERTAINTY(q)

is in FO, NL-complete, PTIME-complete, or coNP-complete, and it is decidable in polynomial

time in the size of q which of the four cases applies. If CERTAINTY(q) is in FO or in PTIME,

rewritings of q can be effectively constructed in, respectively, first-order logic and Least Fixpoint

Logic . Notably, we extend the existing classification of CERTAINTY(q) beyond self-join-free BCQs.
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Chapter 5

A Trichotomy for CQA on Rooted Tree Queries
and Beyond

眾里尋他千百度
驀然回首
那人卻在燈火闌珊處

—辛棄疾《青玉案》

In this chapter, we further our existing tetrachotomy classification for CQA on path queries to

a more general class of query, called rooted tree queries. We then show that the classification on

rooted tree queries can be extended to other classes of queries with self-joins.

Past research has indicated that the tools used for proving Theorem 1.1 largely fall short in

dealing with difficulties caused by self-joins. A notable example concerns path queries, which we

discussed in Chapter 4, of the form

∃x1 · · · ∃xk+1(R1(x1, x2) ∧R2(x2, x3) ∧ · · · ∧Rk(xk, xk+1)).

If a query of this form is self-join-free (i.e., if Ri ̸= Rj whenever i ̸= j), then the “attack graph”

tool [KW21] immediately tells us that CERTAINTY(q) is in FO. However, for path queries q with

self-joins, CERTAINTY(q) exhibits a tetrachotomy between FO, NL-complete, PTIME-complete,

and coNP-complete [KOW21], and the complexity classification requires sophisticated tools that

concern “word rewinding”.

A natural question addressed in this chapter is to extend the complexity classification for path

queries to queries that are syntactically less constrained. In particular, while path queries are

restricted to binary relation names, we aim for unrestricted arities, as in practical database systems,

which brings us to the construct of tree queries.

A query q in BCQ is a rooted (ordered) tree query if it is uniquely (up to a variable renaming)

representable by a rooted ordered tree in which each non-leaf vertex is labeled by a relation name,
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(a) A rooted

ordered tree

representing q1.

x

y

u1 v1

z

u2 v2

(b) Each vertex
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with a fresh

variable.
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R
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(c) A rooted

ordered tree

representing q2.

Figure 5.1: The left rooted ordered tree represents (up to a variable renaming) the Boolean

conjunctive query q1 with atoms C(x, y, z), R(y, u1, v1), A(u1), B(v1), R(z, u2, v2), B(u2), A(v2).

The right rooted ordered tree represents q2 with atoms C(x, y, z), R(y, u1, v1), A(u1), B(v1),

R(z, u2, v2), A(u2), B(v2).

and each leaf vertex is labeled by a unary relation name, a constant, or ⊥. The query q is read

from this tree as follows: each vertex labeled by either a relation name or ⊥ is first associated

with a fresh variable, and each vertex labeled by a constant is associated with that same constant;

then, a vertex labeled with relation name R and associated with variable x represents the query

atom R(x, y1, . . . , yn), where y1, . . . , yn are the symbols (variables or constants) associated with the

left-to-right ordered children of the vertex x. The underlined position is the primary key. Note

that a vertex labeled with a relation name of arity n + 1 must have n children. For example,

consider the rooted tree in Figure 5.1(a) and associate fresh variables to its vertices as depicted in

Figure 5.1(b). The rooted tree thus represents a query q1 that contains, among others, the atoms

C(x, y, z) and R(y, u1, v1). It is easy to see that every path query is a rooted tree query. The class

of all rooted tree queries is denoted TreeBCQ. We can now present our main results, previously

stated in Theorem 1.4.

Theorem 5.1. For every query q in TreeBCQ, CERTAINTY(q) is in FO, NL-hard ∩ LFPL, or

coNP-complete, and it is decidable in polynomial time in the size of q which of the three cases

applies.

Here LFPL denotes the class of problems expressible in Least Fixed-point Logic. The classifi-

cation criteria implied in Theorem 1.4 and 5.1 are explicitly stated in Theorem 5.4.

It will turn out that subtree homomorphisms play a crucial role in the complexity classification

of CERTAINTY(q) for queries q in TreeBCQ. For example, our results show that for the queries

q1 and q2 represented in, respectively, Figure 5.1(a) and (c), CERTAINTY(q1) is coNP-complete,
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while CERTAINTY(q2) is in FO. The difference occurs because the two ordered subtrees rooted at

R are isomorphic in q2 (A precedes B in both subtrees), but not in q1. Another novel and useful

tool in the complexity classification is a tree automaton that generalizes the NFA for path queries

used in [KOW21].

Once Theorem 1.4 is proved, it is quite natural to generalize rooted tree queries further by

allowing queries that can be represented by graphs that are not trees. Toward this generalization,

we next define a new subclass of BCQ.

Definition 5.1 (GraphBCQ). GraphBCQ is the class of Boolean conjunctive queries q satisfying the

following conditions:

1. every atom in q is of the form R(x, y1, . . . , yn) where x is a variable and y1, . . . , yn are symbols

(variables or constants) such that no variable occurs twice in the atom; and

2. if R(x, y1, . . . , yn) and S(u, v1, . . . , vm) are distinct atoms of q, then x ̸= u. Note that R and

S need not be distinct.

Every rooted tree query belongs to GraphBCQ. Furthermore, the graph representation of rooted

tree queries naturally extends to all queries q in GraphBCQ: there is a vertex for every variable

or constant occurring in q; and for every atom R(x, y1, . . . , yn) of q, the vertex x is labeled by R

and has left-to-right ordered outgoing edges to vertices y1, . . . , yn. Every sink vertex s that is not

labeled by a relation name is labeled by “⊥” if s is a variable, and by “s” if s is a constant.

Significantly, we were able to establish the FO-boundary in the set {CERTAINTY(q) | q ∈
GraphBCQ}.

Theorem 5.2. For every query q in GraphBCQ, it is decidable whether or not CERTAINTY(q) is

in FO; and when it is, a first-order rewriting can be effectively constructed.

So far, we have not achieved a fine-grained complexity classification of all problems in the set

{CERTAINTY(q) | q ∈ GraphBCQ}. However, we were able to do so for the set of Berge-acyclic

queries in GraphBCQ, denoted GraphBergeBCQ. Recall that a conjunctive query is Berge-acyclic if

its incidence graph (i.e., the undirected bipartite graph that connects every variable x to all query

atoms in which x occurs) is acyclic.

Theorem 5.3. For every query q in GraphBergeBCQ, the decision problem CERTAINTY(q) is in

FO, NL-hard ∩ LFPL, or coNP-complete, and it is decidable in polynomial time in the size of q

which of the three cases applies.



99

Since

TreeBCQ ⊊ GraphBergeBCQ ⊊ GraphBCQ (5.1)

is easily verified, Theorem 1.4 is subsumed by Theorem 5.3. We nevertheless provide Theorem 1.4

explicitly, because its proof makes up the main part of this chapter.

5.1 Preliminaries

A Boolean conjunctive query can also be represented by a finite set q = {R1(x⃗1, y⃗1), . . . ,

Rn(x⃗n, y⃗n)} of atoms. The set q represents the first-order sentence with no free-variables

∃u1 · · · ∃uk(R1(x⃗1, y⃗1) ∧ · · · ∧Rn(x⃗n, y⃗n)),

and we denote vars(q) = {u1, . . . , uk}, the set of variables that occur in q. We write BCQ for the

class of Boolean conjunctive queries.

Rooted relation trees. A rooted relation tree is a (directed) rooted ordered tree where each

internal vertex is labeled by a relation name, and each leaf vertex is labeled with either a unary

relation name, a constant, or ⊥, such that every two vertices sharing the same label have the same

number of children. We denote by τu△ the subtree rooted at vertex u in τ . Any rooted relation tree

τ has a succinct representation recursively defined as follows:

• if τ contains a single vertex labeled ℓ, then τ = ℓ;

• if the root of τ is labeled R and has the following ordered children v1, v2, . . . , vn, then τ =

R(τ1, τ2, . . . , τn), where τi is the succinct representation of τvi
△ .

Rooted tree query and rooted tree sets. A querification of a rooted relation tree τ is a

total function f with domain τ ’s vertex set that maps each vertex labeled by a constant to that

same constant, and injectively maps all other vertices to variables. Such a querification naturally

extends to a mapping f(τ) of the entire tree: if u is a vertex in τ with label R and children v1, v2,

. . . , vn, then f(τ) contains the atom R(f(u), f(v1), f(v2), . . . , f(vn)). A Boolean conjunctive query

is a rooted tree query if it is equal to f(τ) for some querification f of some rooted relation tree τ .

If q = f(τ), we also say that q is represented by τ . It can be verified that every rooted tree query

belongs to GraphBCQ, as stated by (5.1). We write R[x] for the unique R-atom in q with primary

key variable x. We write TreeBCQ for the class of rooted tree queries.

Every query q in TreeBCQ is represented by a unique rooted relation tree. Conversely, every

rooted relation tree represents a query in TreeBCQ that is unique up to a variable renaming. When

f(τ) = q, by a slight abuse of terminology, we may use q to refer to τ , and use the query variable x
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(or the expression R[x]) to refer to the vertex u in τ that satisfies f(u) = x and whose label is R.

The variable r is the root variable of a query q in TreeBCQ if r is the root vertex of q’s rooted

relation tree. For two distinct vertices x and y, we write x <q y if the vertex x is an ancestor of

y in q, and write x ∥q y if neither x <q y nor y <q x. When x and y have the same label R, we

can also write R[x] <q R[y] and R[x] ∥q R[y] instead of x <q y and x ∥q y respectively. For every

variable x in a rooted tree query q, we write qx△ for the subquery of q whose rooted relation tree is

the subtree rooted at vertex x in q. A variable x is a leaf variable in q if qx△ = ⊥, qx△ = c, or qx△ = A,

for some constant c or unary relation name A.

An instantiation of a rooted relation tree τ is a total function g from τ ’s vertex set to constants

such that each vertex labeled by a constant c is mapped to c. As before, we define g(τ) as the

⊆-minimal set that contains R(g(u), g(v1), g(v2), . . . , g(vn)) whenever u is a vertex in τ with label R

and children v1, v2, . . . , vn. A subset S of db is a rooted tree set in db starting in c if S = g(τ)

for some instantiation g of τ that maps τ ’s root to c. A case of particular interest is when db

is consistent, in particular, when db is a repair. It can be verified that a rooted tree set in a

repair r is uniquely determined by a constant c and a rooted tree τ (because only one instantiation

is possible); by overloading terminology, τ is also called a rooted tree set in r starting in c. For

convenience, an empty rooted tree set, denoted by ⊥, starts in any constant c.

Example 5.1. Figure 5.2 depicts a rooted relation tree that corresponds to the following rooted

tree query

q = {A(x0, x1, x2), R(x1, x3, x4), R(x2, x5, x6),
R(x3, x7, x8), U(x7),

X(x4, c1), Y (x5, x9), Z(x6, c2, x10)}

for constants c1 and c2, which has a succinct representation

q = A(R(R(U,⊥), X(c1)), R(Y (⊥), Z(c2,⊥))),

where

qx1
△ = R(x1, x3, x4), R(x3, x7, x8), U(x7), X(x4, c1)

= R(R(U,⊥), X(c1)),

qx2
△ = R(x2, x5, x6), Y (x5, x9), Z(x6, c2, x10)

= R(Y (⊥), Z(c2,⊥)),
qx3
△ = R(x3, x7, x8), U(x7)

= R(U,⊥).
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Figure 5.2: An example rooted relation tree, where c1 and c2 are constants.
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In this query q, we have R[x1] ∥q R[x2], R[x1] <q R[x3] and R[x2] ∥q R[x3].

It can now be verified that for rooted tree queries p and q, there is a homomorphism h from

p to q if and only if there is a label-preserving homomorphism from the rooted relation tree of p

to that of q (we assume that a leaf vertex with label ⊥ can map to a vertex with any label). In

particular, the order of child vertices must be preserved under such homomorphism: for example,

there is no homomorphism between the rooted trees in Figure 5.1(a) and (c).

5.2 The Complexity Classification

Our classification focuses on rooted tree queries (TreeBCQ). We will extend to GraphBergeBCQ

and GraphBCQ in Section 5.7. The classification of path queries in [KOW21] concerns a notion of

“rewinding”: if a path query q, when treated as a word, can be written as q = u ·Rv ·Rw, then q
rewinds to u ·Rv ·Rv ·Rw. We generalize the notion of rewinding from path queries to rooted tree

queries.

Definition 5.2 (Rewinding). Let q be a query in TreeBCQ. Let R(x, . . . ) and R(y, . . . ) be two

(not necessarily distinct) atoms in q. We define qR:y↬x as the following rooted tree query

qR:y↬x := (q \ qy△) ∪ f(qx△),

for some isomorphism f that maps x to y (i.e., f(x) = y), and maps every other variable in qx△ to

a fresh variable.

Intuitively, the rooted tree query qR:y↬x can be obtained by replacing qy△ with a fresh copy of

qx△. Figure 5.3 presents some rooted tree queries obtained from rewinding on the rooted tree q in

Figure 5.2.

The classification criteria in [KOW21] uses the notions of factors and prefixes that are specific

to words, which can be generalized using homomorphism on rooted tree queries. Consider the

following syntactic conditions on a rooted tree query q with root variable r:

• C2 : for every two atoms R(x, . . . ) and R(y, . . . ) in q, either q ≤→ qR:y↬x or q ≤→ qR:x↬y.

• C1 : for every two atoms R(x, . . . ) and R(y, . . . ) in q, either q ≤r→r q
R:y↬x or q ≤r→r q

R:x↬y.

It is easy to see that conditions C1 and C2 are decidable in polynomial time in the size of the

query. The conditions C1 and C2 introduced in this chapter can be viewed as generalizations of

conditions C1 and C3 in Chapter 4 respectively. We may restate C2 and C1 using more fine-grained

syntactic conditions below.
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Figure 5.3: An illustration of rewinding for the query of Figure 5.2; the modified subtrees are

highlighted in red.
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• Cbranch : for every two atoms R[x] ∥q R[y] in q, either qy△ ≤y→x q
x
△ or qx△ ≤x→y q

y
△.

• Cfactor : for every two atoms R[x] <q R[y] in q, we have q ≤→ qR:y↬x.

• Cprefix : for every two atoms R[x] <q R[y] in q, we have q ≤r→r q
R:y↬x.

Lemma 5.1. For every two atoms R[x] ∥q R[y] in a rooted tree query q, we have q ≤→ qR:y↬x if

and only if qy△ ≤y→x q
x
△.

Proof. We denote

p = qR:y↬x = (q \ qy△) ∪ f(qx△),

for some isomorphism f that maps every variable in qx△ to a fresh variable, except for x, which we

have f(x) = y.

Assume first that qy△ ≤y→x q
x
△, witnessed by the homomorphism h with h(y) = x. It is easy to

verify that the homomorphism g : vars(q)→ vars(p) with

g(z) =

z if z ∈ vars(q \ qy△),
f(h(z)) otherwise

is a homomorphism from q to p.

Assume there is a homomorphism h : vars(q)→ vars(p) from q to p. Hence

h(q) = h(q \ qy△) ∪ h(qy△) ⊆ (q \ qy△) ∪ f(qx△).

Note that q is minimal, i.e., there is no automorphism α such that α(q) ⊊ q. If h(y) = y, since q is

minimal, we have h(q \ qy△) = q \ qy△, and we have h(qy△) ⊆ f(qx△). Thus qy△ ≤y→x q
x
△, witnessed by

the homomorphism g = f−1 ◦ h with g(y) = f−1(h(y)) = f−1(y) = x, as desired.

Suppose for contradiction that h(y) ̸= y. In this case, we have h(q \ qy△) ∩ f(qx△) ̸= ∅.
We argue that y = f(x) <p h(y). Case (i) Assume h(y) <p y = f(x) holds. Then h maps the

unique path of nodes from r to y in q to the unique path from h(r) to h(y) in p. While we have

r = h(r) or r <p h(r), but since h(y) <p y, this is not possible because the path from h(r) to h(y)

in p is strictly shorter than the path from r to y in q. Case (ii) Assume h(y) ∥p y = f(x) holds.

Let y0 = y, and for each i ≥ 1, yi = h(yi−1). We argue that variables y0, y1, . . . are all distinct,

thereby reaching a contradiction to the finite size of q. Assume first that y1 is a left sibling of y0

in q: for the greatest common ancestor y∗ of y1 and y0, there is an atom R(y∗, .., yl, .., yr) such

that yl and yr are ancestors of y1 and y0. The arguments for the case where y1 is a right sibling

of y0 in q is similar. Note that y1 appears in both p and q and its subtree is not affected by the

rewinding operation since y1 ∥p y0. Since y1 is a left sibling of y0 and that the children of rooted
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trees are ordered, h(y1) is a left sibling of h(y0), that is y2 is a left sibling of y1 in q, and this process

continues. Since each yi+1 is a left sibling of yi, the variables need to be distinct, or otherwise there

is some yj+1 is a right sibling of yj , a contradiction.

Let T [z] be the greatest common ancestor of R[x] and R[y] in q and let u and v be variables in

T [z] such that u <q x and v <q y and u ∥q v. Hence z appears in both q and p. Hence z <p h(z)

but h(z) ̸= z. We have

|qu△|+ |qv△|+ 1 ≤ |qz△| ≤ |ph(z)△ |,

because the homomorphism maps qz△ to the subtree of p, rooted at h(z).

We show that v <q h(z). Since z <q h(z) and v is the immediate child of z, we can have

either v <q h(z) or v ∥q h(z). Suppose for contradiction that v ∥q h(z), then h(z) /∈ {u, v}. Then,

p
h(z)
△ = q

h(z)
△ since the rewinding leaves q

h(z)
△ intact. But that implies h(qz△) ⊆ qh(z)△ with z <q h(z),

a contradiction.

Therefore, we have

|qu△|+ |qv△|+ 1 ≤ |ph(z)△ | ≤ |pv△| ≤ |qv△| − |qy△|+ |qx△|,

where the second inequality follows by construction of rewinding that replaces qy△ with qx△.

This yields

0 ≤ |qu△| − |qx△| ≤ −|qy△| − 1 < 0,

a contradiction.

Proposition 5.1. C2 = Cfactor ∧ Cbranch, C1 = Cprefix ∧ Cbranch.

Proof. Immediate from Lemma 5.1.

Example 5.2. Let q be as in Figure 5.2. We have that q violates Cbranch (and therefore C2), since
there is no homomorphism from q to neither qR:x1↬x2 nor qR:x2↬x1 .

Figure 5.4 shows some example rooted relation trees annotated with the syntactic conditions

they satisfy or violate.

Our main classification result can now be stated.

Theorem 5.4 (Trichotomy Theorem). For every query q in TreeBCQ,

• if q satisfies C2, then the problem CERTAINTY(q) is in LFPL; otherwise it is coNP-complete;

and

• if q satisfies C1, then the problem CERTAINTY(q) is in FO; otherwise it is NL-hard.
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Figure 5.4: Examples of rooted relation trees. Trees annotated with ¬C violate syntactic

condition C, while trees annotated with C satisfy C. For example, the tree in (a) satisfies C1; and
the tree (b) satisfies C2 but violates Cprefix.
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C 1 2 3

∗ c1 x1 z−

c1 x2 z−

c2 z+ x1

∗ c2 z+ x2

R 1 2 3

x1 a b

∗ x1 b a

∗ x2 a b

x2 b a

∗ z+ a b

∗ z− b a

A 1

∗ a

B 1

∗ b

Figure 5.5: An inconsistent database instance db for CERTAINTY(q1), where q1 is represented in

Figure 5.1(a). Blocks are separated by dashed lines. The facts with ∗ form a repair that

falsifies q1, corresponding to a satisfying truth assignment x1 = 1 and x2 = 0.

Let us provide some intuitions behind Theorem 5.4. Both Cprefix and Cfactor concern the homo-

morphism from q to the rooted tree query obtained by rewinding from a subtree to its ancestor

subtree, which resembles the case on path queries. The condition Cbranch is vacuously satisfied for

path queries, but is crucial to the classification of rooted tree queries.

For the complexity lower bound, if q violates Cbranch, then CERTAINTY(q) is coNP-hard. In-

tuitively, this is because if qx△ and qy△ are not homomorphically comparable and appear in different

branches, then the facts in their common ancestor relation may “choose” which branch to satisfy,

which allows us to reduce from SAT in Lemma 5.14. For example, consider the query q1 as in

Figure 5.1(a) and the example database instance db in Figure 5.5. It can be shown that there is a

repair of db that falsifies q1 if and only if the following CNF formula is satisfiable:

(x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (x1 ∨ x2)︸ ︷︷ ︸
C2

.

For the complexity upper bound, if qy△ ≤y→x q
x
△, the arguments above fail because the facts

in their common ancestor relation cannot “choose” which branch to satisfy anymore: informally,

whenever qx△ is satisfied, qy△ will be satisfied due to the homomorphism. This crucial observation

from Cbranch also leads to a total preorder on all self-joining atoms, which allows us to deal with

self-joining atoms in different branches as if they were on a path.

Definition 5.3 (Relation ⪯q). Let q be a query in TreeBCQ. Let R[x] and R[y] be two atoms in

q. We write R[x] ⪯q R[y] if either R[x] <q R[y] or q
y
△ ≤y→x q

x
△.

Proposition 5.2. Let q be a query in TreeBCQ satisfying Cbranch. For every relation name R, the

relation ⪯q is a total preorder on all R-atoms in q.
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Proof. We first show that every two distinct atoms R[x] and R[x] are comparable by ⪯q. Let R[x]

and R[y] be two distinct atoms in q. The claim holds if R[x] <q R[y] or R[y] <q R[x]. Otherwise,

we have R[x] ∥q R[y], and since q satisfies Cbranch, we have either qx△ ≤x→y q
y
△ or qy△ ≤y→x q

x
△, as

desired.

Next we show show that ⪯q is transitive. Assume that R[x] ⪯q R[y] and R[y] ⪯q R[z]. We

distinguish four cases.

• Case that R[x] <q R[y] and R[y] <q R[z]. Then we have R[x] <q R[z], as desired.

• Case that qy△ ≤y→x q
x
△ and qz△ ≤z→y q

y
△. Then we have qz△ ≤z→x q

x
△, as desired.

• Case that R[x] <q R[y] and qz△ ≤z→y q
y
△. The claim follows if R[x] <q R[z]. Suppose for

contradiction that R[z] <q R[x]. Then R[z] <q R[y], and q
z
△ contains more atoms than qy△.

However, we have qz△ ≤z→y q
y
△, a contradiction. It then must be that R[x] ∥q R[z]. Suppose for

contradiction that qx△ ≤x→z q
z
△. Then we have qx△ ≤x→y q

y
△, but R[x] <q R[y], a contradiction.

Since q satisfies Cbranch, we have qz△ ≤z→x q
x
△, as desired.

• Case that qy△ ≤y→x q
x
△ and R[y] <q R[z]. The claim follows if R[x] <q R[z]. Suppose for

contradiction that R[z] <q R[x]. Then R[y] <q R[x], and qy△ contains more atoms than

qx△. However, we have qy△ ≤y→x qx△, a contradiction. It then must be that R[x] ∥q R[z].
Suppose for contradiction that qx△ ≤x→z q

z
△. Then we have qy△ ≤y→z q

z
△, but R[y] <q R[z], a

contradiction. Since q satisfies Cbranch, it follows qz△ ≤z→x q
x
△.

This concludes the proof.

The remainder of this chapter is organized as follows.

• In Section 5.3, we define a tree automaton NFA♣(q) for each q ∈ TreeBCQ, and the problem

CERTAINtr(q) that concerns NFA
♣(q). Lemma 5.2 concludes the equivalence of CERTAINTY(q)

and CERTAINtr(q) if q satisfies C2 (or C1).

• In Section 5.4, we show that CERTAINtr(q) is in LFPL (and in PTIME) if q satisfies Cbranch.

• In Sections 5.5 and 5.6, we show the upper bounds and lower bounds in Theorem 5.4 respec-

tively.

• In Section 5.7, we prove Theorems 5.2 and 5.3.
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5.3 Context-Free Grammar

We first generalize NFAs used in the study of path queries [KOW21] to context-free grammars

(CFGs).

Definition 5.4 (CFG♣(q)). Let q be a query in TreeBCQ with root variable r. We define a context-

free grammar CFG♣(q) over the string representations of rooted relation trees for each rooted tree

query q. The alphabet Σ of CFG♣(q) contains every relation symbol and constant in q, open/close

parentheses, ⊥ and comma.

Whenever v is a variable or a constant in q, there is a nonterminal symbol Sv. Every symbol in

Σ is a terminal symbol. The rules of CFG♣(q) are as follows:

• for each atom R[y] = R(y, y1, y2, . . . , yn) in q, there is a forward production rule

Sy →q R(Sy1
, Sy2

, . . . , Syn
) (5.2)

• whenever R[x] and R[y] are atoms in q such that R[x] <q R[y], there is a backward production

rule

Sy →q Sx (5.3)

• for every leaf variable u whose label L is either ⊥ or a unary relation name, there is a rule

Su →q L (5.4)

• for each constant c in q, there is a rule

Sc →q c (5.5)

The starting symbol of CFG♣(q) is Sr where r is the root variable of q. A rooted relation tree

τ is accepted by CFG♣(q), denoted as τ ∈ CFG♣(q), if the string representation of τ can be derived

from Sr, written as Sr
∗→q τ .

Example 5.3. Let q be as in Figure 5.2(a) with variables labeled as in Figure 5.2(b). The rooted

relation tree τ in Figure 5.3(c) has string representation τ = A(τ1, τ2) where

τ1 = R(R(R(U,⊥), X(c1)), X(c1)),

τ2 = R(Y (⊥), Z(c2,⊥)).

We have Sx2

∗→q τ2 by applying only forward rewrite rules. We show next Sx1

∗→q τ1, using a

backward rewrite rule Sx3
→q Sx1

at some point:
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Sx1
→q R(Sx3

, Sx4
)

→q R(Sx1
, X(Sc1))

→q R(R(Sx3
, Sx4

), X(c1))

→q R(R(R(Sx7
, Sx8

), X(Sc1)), X(c1))

→q R(R(R(U,⊥)), X(c1)), X(c1)) = τ1.

Thus Sx0
→q A(Sx1

, Sx2
)

∗→q A(τ1, τ2) = τ. So it is correct to conclude that τ is accepted by

CFG♣(q).

Recall from Section 5.1 that a rooted tree set in a repair r is uniquely determined by a rooted

tree τ and a constant c; such a rooted tree set is said to be accepted by CFG♣(q) if τ ∈ CFG♣(q).

For our technical treatment later, we next define modifications of CFG♣(q) by changing its starting

terminal.

Definition 5.5 (S-CFG♣(q, u)). For a query q in TreeBCQ and a variable u in q, we define

S-CFG♣(q, u) as the context-free grammar that accepts a rooted relation tree τ if and only if

Su
∗→q τ .

We now introduce the certain trace problem. For each q in TreeBCQ, CERTAINtr(q) is defined

as the following decision problem:

PROBLEM CERTAINtr(q)

Input: A database instance db.

Question: Is there a constant c ∈ db, such that for every repair r of db, there is a rooted

tree set τ in r starting in c with τ ∈ CFG♣(q)?

The problems CERTAINTY(q) and CERTAINtr(q) reduce to each other if q satisfies C2.

Lemma 5.2. Let q be a query in TreeBCQ satisfying C2. Let db be a database instance. Then the

following statements are equivalent:

1. db is a “yes”-instance of CERTAINTY(q); and

2. db is a “yes”-instance of CERTAINtr(q).

The proof of Lemma 5.2 is deferred to Section 5.5 since it requires some useful results to be

developed in the subsequent sections.
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Initialization Step: for every c ∈ adom(db) and leaf variable or constant u in q

add ⟨c, u⟩ to B if u = c is a constant,

or the label of variable u in q is either ⊥,
or L with L(c) ∈ db.

Iterative Rule: for every c ∈ adom(db) and atom R(y, y1, y2, . . . , yn) in q

add ⟨c, y⟩ to B if the following formula holds:

∃d⃗ : R(c, d⃗) ∈ db ∧ ∀d⃗ :
(
R(c, d⃗) ∈ db→ fact(R(c, d⃗), y)

)
,

where

fact(R(c, d⃗), y) =

 ∧
1≤i≤n

⟨di, yi⟩ ∈ B


︸ ︷︷ ︸

forward production

∨

 ∨
R[x]<qR[y]

fact(R(c, d⃗), x)


︸ ︷︷ ︸

backward production

and d⃗ = ⟨d1, d2, . . . , dn⟩.

Figure 5.6: A fixpoint algorithm for computing a set B, for a fixed rooted tree q.

5.4 Membership of CERTAINtr(q) in LFPL

In this section, we show that the problem CERTAINtr(q) is expressible in LFPL (and thus in

PTIME) if q satisfies Cbranch. Let db be a database instance. Consider the algorithm in Figure 5.6,

following a dynamic programming fashion. The algorithm iteratively computes a set B of pairs

⟨c, y⟩ until it reaches a fixpoint, ensuring that

whenever ⟨c, y⟩ is added to B, then every repair of db contains a rooted tree set starting

in c that is accepted by S-CFG♣(q, y).

Intuitively, this holds true because ⟨c, y⟩ is added to B if for every possible fact f = R(c, d⃗) that can

be chosen by a repair of db, the context-free grammar S-CFG♣(q, y) can proceed by firing forward

rule with nonterminal Sy that consumes f from the rooted tree set, or by non-deterministically

firing some backward rule of the form Sy →q Sx.

The formal semantics for each pair ⟨c, y⟩ is stated in Lemma 5.3.

Lemma 5.3. Let q be a query in TreeBCQ satisfying Cbranch. Let db be a database instance. Let B

be the output of the algorithm in Figure 5.6. Then for any constant c ∈ adom(db) and a variable

y in q, the following statements are equivalent:

1. ⟨c, y⟩ ∈ B; and

2. for every repair r of db, there exists a rooted tree set τ in r starting in c such that τ ∈
S-CFG♣(q, y).
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The crux in the proof of Lemma 5.3 relies on the existence of repairs called frugal : to show

item (2) of Lemma 5.3, it will be sufficient to show that it holds true for frugal repairs. Frugal

repairs also turn out to be useful in proving Lemma 5.2 and offer an alternative perspective to the

algorithm, as stated in Corollary 5.1.

5.4.1 Frugal repairs

We show that the evaluation result of the predicate “fact” and the membership in B in the

algorithm of Figure 5.6 propagate along the total preorder ⪯q. The first step is to show that the

formula in Figure 5.6 propagate on root homomorphism.

Lemma 5.4. Let q be a rooted tree query and db a database instance. Then for constants

c, d1, d2, . . . , dn ∈ adom(db) where d⃗ = ⟨d1, d2, . . . , dn⟩ and any two atoms R[x] and R[y] with

qy△ ≤y→x q
x
△, the following statements hold:

1. if fact(R(c, d⃗), x) is true, then fact(R(c, d⃗), y) is true; and

2. if ⟨c, x⟩ ∈ B, then ⟨c, y⟩ ∈ B.

Proof. We show both (1) and (2) by an induction on the height k of the atom R[y] in q.

• Basis k = 0. In this case, y is a leaf variable of q and (1) holds vacuously. Assume that the

label of y is L, then there is an atom L(y) in q. Then there must be an atom L(x) in q. From

⟨c, x⟩ ∈ B, we have L(c) ∈ db, and thus ⟨c, y⟩ ∈ B by the initialization step.

• Inductive step. Assume that both (1) and (2) holds if the height of qy△ is less than k. Consider

the case where the height of qy△ is k.

First we show (1) holds. Assume that fact(R(c, d⃗), x) holds. Let R[x] = R(x, x1, x2, . . . , xn)

and R[y] = R(y, y1, y2, . . . , yn). Consider two cases.

– Case (I) that the following formula is true∧
1≤i≤n

⟨di, xi⟩ ∈ B. (5.6)

To show fact(R(c, d⃗), y) holds, it suffices to show∧
1≤i≤n

⟨di, yi⟩ ∈ B.

Consider any yi. If yi is a leaf variable with label ⊥, then ⟨di, yi⟩ ∈ B by the initialization

step. Otherwise, there is an atom T [yi] in q. Since qy△ ≤y→x q
x
△, there is some atom

T [xi] in q such that qyi

△ ≤yi→xi
qxi
△ and ⟨di, xi⟩ ∈ B, by Equation (5.6). Since the height

of T [yi] is less than k, by the inductive hypothesis for (2), we have ⟨di, yi⟩ ∈ B.
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– Case (II) that there is some atom R[u] <q R[x], such that fact(R(c, d⃗), u) is true.

If R[u] <q R[y], then fact(R(c, d⃗), y) holds. Otherwise, we must have R[u] ∥q R[y].

Indeed, if not, we would have R[y] <q R[u] <q R[x], but q
y
△ ≤y→x q

x
△, a contradiction.

We argue that qy△ ≤y→u q
u
△. If not, then by Cbranch, we have qu△ ≤u→y q

y
△ ≤y→x q

x
△, but

R[u] <q R[x], a contradiction.

Note that we just established fact(R(c, d⃗), u) is true and qy△ ≤y→u q
u
△ for R[u] <q R[x].

If Case (I) holds when fact(R(c, d⃗), u) is true, then fact(R(c, d⃗), y) is true, as desired.

Otherwise, by the previous argument in Case (II), either fact(R(c, d⃗), y) is true as desired,

or there is another atom R[w] such that R[w] <q R[u] <q R[x] and q
y
△ ≤y→w qw△ . Since

there are only finitely many R-atoms in q, this process must terminate and show that

fact(R(c, d⃗), y) is true.

For (2), assume that ⟨c, x⟩ ∈ B. For every fact R(c, d⃗) ∈ db, fact(R(c, d⃗), x) holds. By (1),

fact(R(c, d⃗), y) holds for every R(c, d⃗) ∈ db. Hence ⟨c, y⟩ ∈ B.

The proof is now complete.

Lemma 5.5. Let q be a query in TreeBCQ satisfying Cbranch, and db a database instance. Let

R[x], R[y] be two atoms of q. Then for every fact R(c, d⃗) in db and two atoms R[x] ⪯q R[y],

1. if fact(R(c, d⃗), x) is true, then fact(R(c, d⃗), y) is true, where fact is defined by the algorithm

of Figure 5.6; and

2. if ⟨c, x⟩ ∈ B, then ⟨c, y⟩ ∈ B, where B is the output of the algorithm of Figure 5.6; and

Proof. The lemma follows from Lemma 5.4 if qy△ ≤y→x q
x
△. Assume that R[x] <q R[y], and both

(1) and (2) are straightforward by definition of fact(R(c, d⃗), y).

Definition 5.6 (Frugal Set). Let q be a query in TreeBCQ satisfying Cbranch, and db a database

instance. Let f = R(c, d⃗) be an R-fact in db. We define the frugal set of f in db with respect to

q as

STq(f,db) = {R[x] ∈ atoms(q) | fact(R(c, d⃗), x) is true}.

Lemma 5.6. Let q be a query in TreeBCQ satisfying Cbranch, and db a database instance. For

every two key-equal facts f and g in db, the sets STq(f,db) and STq(g,db) are comparable by ⊆.

Proof. Suppose for contradiction that there exists two key-equal facts f = R(c, d⃗1) and g = R(c, d⃗2)

in db such that R[x] ∈ STq(f,db) \ STq(g,db) and R[y] ∈ STq(g,db) \ STq(f,db). By Proposi-

tion 5.2, assume without loss of generality that R[x] ⪯q R[y]. Then since R[x] ∈ STq(f,db), we
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have fact(R(c, d⃗1), x) is true, and thus fact(R(c, d⃗1), y) is true by Lemma 5.5, and hence R[y] ∈
STq(f,db), a contradiction. A similar contradiction can also be reached if R[y] ⪯q R[x]. This

completes the proof.

Informally, by Lemma 5.6, among all facts of a non-empty block R(c, ∗) in db, there is a (not

necessarily unique) fact R(c, d⃗) with a ⊆-minimal frugal set in db. The repair r∗ of db containing

all such facts is frugal in the sense that each fact in it satisfies as few R-atoms as possible; and if r∗

contains a rooted tree set τ starting in c accepted by S-CFG♣(q, y), so should every repair of db.

We now formalize this idea.

Definition 5.7 (Frugal repair). Let q be a query in TreeBCQ satisfying Cbranch. Let db be a

database instance. A frugal repair r∗ of db with respect to q is constructed by picking, from each

block R(c, ∗) of db, a fact R(c, d⃗) which ⊆-minimizes STq(R(c, d⃗),db).

Lemma 5.7 is then straightforward by construction of a frugal repair.

Lemma 5.7. Let q be a rooted tree query satisfying Cbranch. Let db be a database instance. Let

r∗ be a frugal repair of db with respect to q and let R(c, d⃗) ∈ r∗. Let R[u] be an atom in q. If

fact(R(c, d⃗), u) is true, then ⟨c, u⟩ ∈ B.

Proof. Let R(c, b⃗) be an arbitrary fact in the block R(c, ∗) in db. By construction of a frugal repair,

we have that STq(R(c, d⃗),db) ⊆ STq(R(c, b⃗),db). Since R(c, d⃗) ∈ r∗ and fact(R(c, d⃗), u) is true,

we have R[u] ∈ STq(R(c, d⃗),db). Thus, R[u] ∈ STq(R(c, b⃗),db) and fact(R(c, b⃗), u) is true. Hence

⟨c, u⟩ ∈ B.

Lemma 5.8 shows a desirable property of frugal repairs.

Lemma 5.8. Let q be a query in TreeBCQ satisfying Cbranch. Let db be a database instance. Let

r∗ be a frugal repair of db with respect to q. If there is a rooted tree set τ in r∗ starting in c such

that τ ∈ S-CFG♣(q, y), then ⟨c, y⟩ ∈ B.

Proof. Let τ be a rooted tree set starting in c in r∗ such that τ ∈ S-CFG♣(q, y). We recursively

define a tree trace T on nodes of the form (c, x), where c ∈ adom(r∗) and x is a variable in q, as

follows:

• the root node of T is (c, y, τ); and

• whenever (a, u, σ) is a node in T with a rooted tree set σ starting in a in r∗ for an atom

R(u, u1, u2, . . . , un) in q and fact R(a, b1, b2, . . . , bn) in r∗,
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(i) if S-CFG♣(q, y) invokes a forward production rule

Su →q R(Su1
, Su2

, . . . , Sun
),

then the node (a, u, σ) has n outgoing R-edges to its children (b1, u1, τ1), (b2, u2, τ2), . . . ,

(bn, un, τn); or

(ii) if S-CFG♣(q, y) invokes a backward production rule Su →q Sv, then the node (a, u, σ)

has a single outgoing ε-edge to its only child (a, v, σ).

The tree trace T succinctly records the rule productions that witness τ ∈ S-CFG♣(q, y) in r∗.

We use a structural induction to show that for every node (a, u, σ) in T , ⟨a, u⟩ ∈ B.

• Basis. The claim holds for every leaf node (a, u, σ) in T , since if σ = ⊥, then ⟨a, u⟩ ∈ B, or

otherwise σ = L starting in a in r∗ for some unary relation name L, and we have L(a) is in

db.

• Inductive step. Let (a, u, σ) be a node in T . Assume that for any child node (b, w, σ′)

of (a, u) in T (possibly b = a), ⟨b, w⟩ ∈ B. It suffices to argue that for the atom R[u] =

R(u, u1, u2, . . . , un) in q, ⟨a, u⟩ ∈ B.

(i) Case that (a, u, σ) has child nodes (b1, u1, τ1), (b2, u2, τ2), . . . , (bn, un, τn) in T with σ =

R(τ1, τ2, . . . , τn). By the inductive hypothesis ⟨bi, ui⟩ ∈ B for every 1 ≤ i ≤ n, which yields

that fact(R(a, b⃗), u) is true, where b⃗ = ⟨b1, b2, . . . , bn⟩. Then by Lemma 5.7, ⟨a, u⟩ ∈ B.

(ii) Case that (a, u, σ) has a child node (a, v, σ) in T connected with an ε-edge. Then there

is some atom R[v] with R[v] <q R[u]. By the inductive hypothesis on the child (a, v, σ),

⟨a, v⟩ ∈ B. Hence ⟨a, u⟩ ∈ B by Lemma 5.5.

This completes the proof.

The proof of Lemma 5.3 can now be given.

Proof of Lemma 5.3. 2 =⇒ 1 Let r∗ be a frugal repair of db with respect to q. Then there is a

rooted tree set τ starting in c in r∗ with τ ∈ S-CFG♣(q, y). The claim follows by Lemma 5.8.

1 =⇒ 2 Assume that ⟨c, y⟩ ∈ B. We use induction on k to show that if ⟨c, y⟩ is added to B

at the k-th iteration, then for any repair r of db, there exists a rooted tree set τ starting in c in τ

with τ ∈ S-CFG♣(q, y).

• Basis k = 0. Then every ⟨c, u⟩ is added to B for every leaf variable u of q such that either the

label of u in q is ⊥, or a unary relation name L. If the label of u is ⊥, the empty rooted tree set

τ = ∅ starting in c with string representation ⊥ is accepted by S-CFG♣(q, u), Otherwise, we

must have L(c) ∈ db, and the rooted tree set τ = L starting in c is accepted by S-CFG♣(q, u).
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• Inductive step. Assume that ⟨c, y⟩ is added to B in the k-th iteration, and for any tuple

⟨b, x⟩ added to B prior to the addition of ⟨c, y⟩, any repair of db contains a rooted tree set

τ ∈ S-CFG♣(q, x) starting in b. Let r be any repair of db. It suffices to construct a rooted

tree set τ in r starting in c such that τ ∈ S-CFG♣(q, y). Let R[y] = R(y, y1, y2, . . . , yn). Let

R(c, d1, d2, . . . , dn) ∈ r and let d⃗ = ⟨d1, d2, . . . , dn⟩. Since ⟨c, y⟩ ∈ B, fact(R(c, d⃗), y) is true.

Consider two cases.

– Case that ⟨di, yi⟩ ∈ B for every 1 ≤ i ≤ n. Since each ⟨di, yi⟩ was added to B in

an iteration < k, by the inductive hypothesis, there is a rooted tree set τi starting

in di in r with τi ∈ S-CFG♣(q, yi), i.e., Syi

∗→q τi. Consider the rooted tree set τ =

{R(c, d⃗)}∪⋃1≤i≤n τi, starting in c in r with a string representation τ = R(τ1, τ2, . . . , τn).

From

Sy →q R(Sy1
, Sy2

, . . . , Syn
)

∗→q R(τ1, τ2, . . . , τn) = τ,

we conclude that τ ∈ S-CFG♣(q, y).

– Case that fact(R(c, d⃗), x) is true for some R[x] <q R[y]. Without loss of generality, we

assume that x is the smallest with respect to <q for the atom R(x, x1, x2, . . . , xn). Hence

we must have ⟨di, xi⟩ ∈ B for every 1 ≤ i ≤ n, and by the previous case, there exists

a rooted tree set τi starting in di such that τi ∈ S-CFG♣(q, xi), i.e., Sxi

∗→q τi. Since

R[x] <q R[y], we have

Sy →q Sx

→q R(Sx1
, Sx2

, . . . , Sxn
)

∗→q R(τ1, τ2, . . . , τn) = τ,

and therefore τ ∈ S-CFG♣(q, y).

The proof is hence complete.

5.4.2 Expressibility in LFPL and FO

Lemma 5.9. For every query q in TreeBCQ that satisfies Cbranch, CERTAINtr(q) is expressible in

LFPL (and thus is in PTIME).

Proof. Let r be the root variable of q. Our algorithm first computes the set B, and then checks

∃c : ⟨c, r⟩ ∈ B. The algorithm is correct by Lemma 5.3.
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For a rooted tree query q, define the following formula in LFPL [Lib04]:

ψq(s, t) :=
[
lfpB,x,zφq(B, x, z)

]
(s, t), (5.7)

where we have

φq(B, x, z) :=


α(x) ∧ (z = R[u])

∧ ∃yR(x, y⃗)

∧ ∀y⃗ (R(x, y⃗)→ fact(R(x, y⃗), u))


and the formula fact(R(x, y⃗), u) is defined in Figure 5.6. The initialization step of B in Figure 5.6

is expressible in FO. Herein, α(x) denotes a first-order query that computes the active domain.

That is, for every database instance db and constant c, db |= α(c) if and only if c ∈ adom(db). It

is easy to verify that the LFP formula in (5.7) computes the set B in Figure 5.6.

We now show that if q satisfies C1, we can safely remove the recursion from the algorithm in

Figure 5.6.

Lemma 5.10. Let q be a rooted tree query satisfying C1. Let db be a database. Let R[y] =

R(y, y1, y2, . . . , yn) be an atom in q and let R(c, d⃗) = R(c, d1, d2, . . . , dn) be a fact in db. Then

fact(R(c, d⃗), y) is true if and only if for every atom Ti[yi] in q, ⟨di, yi⟩ ∈ B.

Proof. ⇐= Immediate by definition of fact(R(c, d⃗), y).

=⇒ Assume that fact(R(c, d⃗), y) is true. Let R[x] be a minimal atom with respect to <q such

that R[x] <q R[y] and fact(R(c, d⃗), x) is true. If such an atom R[x] does not exist, then the claim

follows by definition of fact(R(c, d⃗), y). Otherwise, since R[x] is minimal with respect to <q, for

every atom Ti[xi] in q, ⟨di, xi⟩ ∈ B, where R(x, x⃗) = R(x, x1, x2, . . . , xn).

It suffices to show that for every atom Ti[yi] in q, ⟨di, yi⟩ ∈ B. Let Ti[yi] be an atom in q. From

C1 and R[x] <q R[y], q
yi

△ ≤yi→xi
qxi
△ . Thus there is some atom Ti[xi] in q with Ti[xi] <q Ti[yi]. Since

⟨di, xi⟩ ∈ B, by Lemma 5.4, ⟨di, yi⟩ ∈ B.

Lemma 5.11. CERTAINtr(q) is in FO for each q in TreeBCQ that satisfies C1.

Proof. Consider the following variant of the algorithm in Figure 5.6, where we simply have

fact(R(c, d⃗), y) =
∧

1≤i≤n

⟨di, yi⟩ ∈ B.

The variant algorithm is correct for CERTAINtr(q) by Lemma 5.10. Since the size of the query q

is fixed, for every constant c and variable y in q, deciding whether ⟨c, y⟩ ∈ B is in FO since the

algorithm in Figure 5.6 can be expanded into a sentence of fixed size. So is our algorithm, which

checks ∃c : ⟨c, r⟩ ∈ B.
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5.5 Complexity Upper Bounds

In this section, we prove the upper bound results in Theorem 5.4. First, we shall prove

Lemma 5.2.

Lemma 5.12. Let q be a rooted tree query. Then q satisfies Cfactor if and only if q ≤→ τ for every

τ ∈ NFA♣(q).

Proof of Lemma 5.12. Consider two directions.

⇐= Let R[x] and R[y] be two atoms in q with R[x] <q R[y]. It suffices to show that qR:y↬x ∈
NFA♣(q). Indeed, there is an execution of Sr(q

R:y↬x) that follows exactly Sr(q), until it invokes

Sy(q
x
△), instead of Sy(q

y
△) in Sr(q). Note that Sy(q

x
△) = Sx(q

x
△) = qx△. Thus Sr(q

R:y↬x) = qR:y↬x,

concluding that qR:y↬x ∈ NFA♣(q).

=⇒ Let τ ∈ NFA♣(q) with Sr(τ) = τ . We use an induction on the number k of backward

transitions in Sr(τ) = τ to show that q ≤→ τ .

• Basis k = 0. We have τ = q, and the claim follows.

• Inductive step k → k+1. Assume that if Sr(σ) = σ uses k backward transitions, then q ≤→ σ.

Let τ ∈ NFA♣(q) such that Sr(τ) = τ uses k + 1 backward transitions. Let σ be a subtree of

τ such that the execution of Sr(σ) invokes exactly 1 backward transition Sy(σ) = Sx(σ) = σ.

Hence σ = qx△. Consider the rooted tree τ∗, obtained by replacing σ = qx△ with σ∗ =

qy△. We have τ∗ ∈ NFA♣(q), since Sr(τ
∗) would invoke Sy(σ

∗) = σ∗ and use exactly k

backward transitions. By the inductive hypothesis, there is a homomorphism h from q to τ∗.

If h(q)∩ σ∗ = ∅, then h(q) is still present in τ , and thus q ≤→ τ . Otherwise, assume that the

homomorphism h maps qz△ in q to σ∗. Hence R[x] <q R[y] <q R[z]. Since q satisfies Cfactor,
there is a homomorphism g from q to qR:z↬x, and thus a homomorphism from q to τ .

The proof is now complete.

The following definition is helpful in our exposition.

Definition 5.8. Let q be a rooted tree query. Let db be a database. For each repair r of db,

we define start(q, r) as the set containing all (and only) constants c ∈ adom(r) such that there is a

rooted tree set τ in r starting in c with τ ∈ NFA♣(q).

The problem CERTAINtr(q) essentially asks whether there is some constant c such that for every

repair r of db, c ∈ start(q, r). Surprisingly, the frugal repair r∗ of db minimizes start(q, ·) across all
repairs of db.
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Lemma 5.13. Let q be a rooted tree query satisfying Cbranch. Let db be a database. Let r∗ be a

frugal repair of db. Then for any repair r of db, start(q, r∗) ⊆ start(q, r).

Proof of Lemma 5.13. Let B be the output of the algorithm in Figure 5.6. Let r∗ be a frugal repair

of db. Let r be any repair of db. We show that start(q, r∗) ⊆ start(q, r). Let r be the root variable

of q. Assume that c ∈ start(q, r∗). Then there exists a rooted tree set τ starting in c in r∗ with

τ ∈ NFA♣(q) = S-NFA♣(q, r). By Lemma 5.8, we have ⟨c, r⟩ ∈ B. By Lemma 5.3, there exists a

rooted tree set τ ′ starting in c in r with τ ′ ∈ S-NFA♣(q, r) = NFA♣(q). Thus c ∈ start(q, r).

The proof of Lemma 5.2 can now be given.

Proof of Lemma 5.2. 1 =⇒ 2 Assume (1). Let r∗ be a frugal repair of db. Since r∗ satisfies

q, there is a rooted tree set starting in c isomorphic to q in r∗. Since q ∈ NFA♣(q), we have

c ∈ start(q, r∗). By Lemma 5.13, for every repair r of db, start(q, r∗) ⊆ start(q, r). It follows that

c ∈ start(q, r) for every repair r of db.

2 =⇒ 1 Let r be any repair of db. By our hypothesis that (2) holds true, there is some

c ∈ start(q, r). Let τ be a rooted tree set in r starting in c with τ ∈ NFA♣(q). Since q satisfies C2
by the hypothesis of the current lemma, it follows by Lemma 5.12 that q ≤→ τ . Consequently, r

satisfies q.

Proposition 5.3. For every q in TreeBCQ,

1. if q satisfies C2, then CERTAINTY(q) is in LFPL; and

2. if q satisfies C1, then CERTAINTY(q) is in FO.

Proof. Immediate from Lemmas 5.2, 5.9, and 5.11 by noting that C1 implies C2.

Interestingly, for each query q in TreeBCQ satisfying C2, “checking the frugal repair is all you

need”.

Corollary 5.1. Let q be a query in TreeBCQ, and let db be a database instance. Let r∗ be a frugal

repair of db with respect to q. If q satisfies C2, then db is a “yes”-instance of CERTAINTY(q) if

and only if r∗ satisfies q.

Proof. Let r∗ be a frugal repair of db with respect to q.

=⇒ This direction is straightforward. ⇐= Assume that r∗ satisfies q. Let r be the root

variable of q. Hence there exists a constant c in db, such that there exists a rooted relation tree

τ in r∗ that is isomorphic to q accepted by S-NFA(q, r). Then by Lemma 5.8, ⟨c, r⟩ ∈ B, where B

is the output of algorithm in Figure 5.6. Hence db is a “yes”-instance for CERTAINtr(q), and by

Lemma 5.2, a “yes”-instance for CERTAINTY(q).
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5.6 Complexity Lower Bounds

In this section, we present the hardness results in Theorem 5.4.

We define a canonical copy of a query q as a set of facts µ(q), where µ maps each variable in q

to a unique constant. The following notation will be central in all our reductions. For a query q,

variables xi in q and distinct constants ci, we denote

⟨q, [x1, x2, . . . , xn → c1, c2, . . . , cn]⟩

as the canonical copy µ(q), where

µ(z) =

ci if z = xi

a fresh distinct constant otherwise.

Lemma 5.14. CERTAINTY(q) is coNP-hard for each q in TreeBCQ that violates C2.

Proof. Since q violates C2, there exist two atoms R(p, . . . ) and R(n, . . . ) in q such that there is no

homomorphism from q to neither qR:p↬n nor qR:n↬p.

Consider now the root atom A(r, . . . ). It must be that r ̸= p, since otherwise, there would be a

homomorphism from q to qR:n↬p, a contradiction. Similarly, we have that r ̸= n. Hence, the root

atom is distinct from R(p, . . . ) and R(n, . . . ). We also have that r <q p and r <q n.

We present a reduction from MonotoneSAT: Given a monotone CNF formula φ, i.e., each clause

in φ contains either all positive literals or all negative literals, does φ has a satisfying assignment?

Let φ be a monotone CNF formula. We construct an instance db for CERTAINTY(q) as follows.

• for each variable z in φ, we introduce the facts ⟨qp△, [p→ z]⟩ and ⟨qn△, [n→ z]⟩;

• for each positive literal z in clause C, we introduce the facts ⟨q \ qp△, [r, p→ C, z]⟩;

• for each negative literal z in clause C, we introduce the facts ⟨q \ qn△, [r, n→ C, z]⟩;

Observe that the instance db has two types of inconsistent blocks. For relation A, we have

a block for each positive or negative clause, where the primary key position is the clause. For

relation R, for every variable z we have a block of size two, which corresponds to choosing a

true/false assignment for z. All the other relations are consistent.

Additionally, for a positive literal z ∈ C, the set of facts ⟨qp△, [p→ z]⟩ ∪ ⟨q \ qp△, [r, p→ C, z]⟩
make q true; similarly for a negative literal z ∈ C, the facts ⟨qn△, [n→ z]⟩ ∪ ⟨q \ qn△, [n, p→ C, z]⟩
make q true. Note also that ⟨qn△, [n→ z]⟩ ∪ ⟨q \ qp△, [r, p→ C, z]⟩ is a canonical copy of qR:p↬n (and

hence cannot satisfy q), while ⟨qp△, [p→ z]⟩ ∪ ⟨q \ qn△, [r, n→ C, z]⟩ is a canonical copy of qR:n↬p

(which also cannot satisfy q).
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Now we argue that φ has a satisfying assignment χ if and only if db has a repair r that does

not satisfy q.

=⇒ Assume that φ has a satisfying assignment χ. Consider the repair r of db that

• for each variable z, if χ(z) = true, picks ⟨qn△, [n→ z]⟩, or otherwise ⟨qp△, [p→ z]⟩;

• for each positive clause C, picks ⟨q \ qp△, [r, p→ C, z]⟩ where z is a positive literal in C with

χ(z) = true; and

• for each negative clause C, picks ⟨q \ qn△, [r, n→ C, z]⟩ where z is a negative literal in C with

χ(z) = false.

We show that r does not satisfy q. Indeed, for each positive clause C, there is a literal z ∈ C
with χ(z) = true, and thus ⟨q \ qp△, [r, p→ C, z]⟩ ⊆ r. However, we have ⟨qn△, [n→ z]⟩ ⊆ r, and thus

q is not satisfied. Similarly, for each negative clause C, there is a literal z ∈ C with χ(z) = false,

and thus ⟨q \ qn△, [n, p→ C, z]⟩ ⊆ r. However, we have ⟨qp△, [p→ z]⟩ ⊆ r and hence this part also

cannot satisfy q. Hence r does not satisfy q.

⇐= Now assume that db has a repair r that does not satisfy q. Consider the assignment χ

that sets χ(z) = true if ⟨qn△, [n→ z]⟩ ⊆ r, or otherwise χ(z) = false. We argue that φ is satisfied.

For each positive clause C, there exists some z ∈ C such that ⟨q \ qp△, [r, p→ C, z]⟩ ⊆ r. Since r does

not satisfy q, it must be that ⟨qp△, [p→ z]⟩ ⊈ r and thus ⟨qn△, [n→ z]⟩ ⊆ r. By construction, z is true

and the clause C is satisfied. Similarly, the negative clauses are all satisfied by the assignment.

Lemma 5.15. Let q be a rooted tree query. If there exist two distinct atoms R(x, . . . ) and R(y, . . . )

such that x <q y and there is no root homomorphism from qy△ to qx△ (i.e., it does not hold that

qy△ ≤y→x q
x
△), then CERTAINTY(q) is NL-hard.

Proof. We may assume without loss of generality two things (i) there is no atom R(z, . . . ) such

that z /∈ {x, y}, x <q z <q y (we then say that the two R-atoms are consecutive), and (ii) for any

y <q z, z ̸= y, we have qz△ ≤z→y q
y
△. Indeed, we can pick R(x, . . . ) and R(y, . . . ) to be the pair

of consecutive R-atoms that violates the root homomorphism condition and occurs lowest in the

rooted tree. Such a pair must always exists, since the root homomorphism property is transitive,

i.e., if qy△ ≤y→z q
z
△ and qz△ ≤z→x q

x
△, then we also have that qy△ ≤y→x q

x
△.

We present a reduction from the complement of REACHABILITY problem, which is NL-hard:

Given a directed acyclic graph G = (V,E) and s, t ∈ V , is there a directed path from s to t in G?

We construct an instance db for CERTAINTY(q) as follows. First, we introduce two new con-

stants s′ and t′. Then:

• for each u ∈ V ∪ {s′}, introduce ⟨q \ qx△, [x→ u]⟩;
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• for every edge (u, v) ∈ E ∪ {(s′, s), (t, t′)}, introduce ⟨qx△ \ qy△, [x, y → u, v]⟩;

• for every vertex u ∈ V , introduce ⟨qy△, [y → u]⟩.

Note that the above construction guarantees that only R has inconsistent blocks.

We now argue that there is a directed path (u1, u2, . . . , uk) with (ui, ui+1) ∈ E, u1 = s and

uk = t in G if and only if there is a repair of db that does not satisfy q.

=⇒ Assume that there exists a directed path (u1, u2, . . . , uk) with (ui, ui+1) ∈ E, u1 = s and

uk = t in G. Denote u0 = s′ and uk+1 = t′. Let r be the repair that picks ⟨qx△ \ qy△, [x, y → ui, ui+1]⟩
for every 1 ≤ i ≤ k − 1, and ⟨qy△, [y → u]⟩ for any other vertex u. Suppose for contradiction that r

satisfies q with a valuation θ. It is not possible that θ(q) ⊆ ⟨qy△, [y → u]⟩ for any u /∈ V since the

size does not fit.

We argue that we must have θ(x) = ui and θ(y) = ui+1 for some 0 ≤ i < k. If θ(x) = ui ∈
{u0, u1, . . . , uk}, then we must have θ(y) = ui+1 since ⟨qx△ \ qy△, [x, y → u, v]⟩ is a canonical copy.

Suppose for contradiction that θ(x) /∈ {u0, u1, . . . , uk}. It is not possible that θ(x) = uk+1 = t′

since by construction, there is no rooted tree set rooted at t′. Note that there is no atom R(z, . . . )

such that z /∈ x, y, x <q z <q y. Hence θ(x) cannot fall on the path connecting any ui and ui+1,

and θ(qx△) must be contained in some ⟨qx△ \ qy△, [x, y → ui, ui+1]⟩. Then, there must be an atom

R(z, . . . ) such that (i) x <q z, (ii) z ∥q y and (iii) θ(qx△) is contained in ⟨qz△, [z → θ(x)]⟩, which is

impossible since the sizes do not fit.

By construction, there is a canonical copy of qy△ rooted at ui+1. If this canonical copy is contained

in ⟨qx△ \ qy△, [x, y → ui+1, ui+2]⟩, then there is a root homomorphism from qy△ to qx△ \ qy△, and so from

qy△ to qx△, a contradiction. Otherwise, there exists some atom R(z, . . . ) such that (i) y <q z and

(ii) qy△ \ qz△ has a root homomorphism to qx△ \ qy△. Recall now that from our initial assumption we

must have that qz△ ≤z→y q
y
△. This implies that we can now generate a root homomorphism from

qy△ to qx△, a contradiction.

⇐= Assume that there is no directed path from s to t in G. Consider any repair r of db.

Since G is acyclic, there exists a maximal sequence u0, u1, . . . , uk with k ≥ 1 such that u0 = s′,

u1 = s, ⟨qx△ \ qy△, [x, y → ui, ui+1]⟩ ⊆ r for 0 ≤ i < k and ⟨qy△, [y → uk]⟩ ⊆ r. Then, the following set

of facts satisfies q:

⟨q \ qx△, [x→ uk−1]⟩∪
⟨qx△ \ qy△, [x, y → uk−1, uk]⟩∪
⟨qy△, [y → uk]⟩.

This shows that CERTAINTY(q) is NL-hard since NL is closed under complement.

Lemma 5.16. CERTAINTY(q) is NL-hard for each q in TreeBCQ that violates C1.
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Proof. Assume that q violates C1. Then there exist two distinct atoms R(x, . . . ) and R(y, . . . ) in

q such that there is no root homomorphism from qy△ to qx△ or from qx△ to qy△. If x ∥q y, Lemma 5.1

we implies that C2 is also violated, so CERTAINTY(q) is coNP-hard from Lemma 5.14. Otherwise,

CERTAINTY(q) is NL-hard by Lemma 5.15.

Proposition 5.4. For every q in TreeBCQ,

1. if q violates C2, then CERTAINTY(q) is coNP-hard; and

2. if q violates C1, then CERTAINTY(q) is NL-hard.

Proof. Immediate from Lemma 5.14 and 5.16.

5.7 Extending the Trichotomy

In this section, we extend the complexity classification for rooted tree queries to larger classes

of Boolean conjunctive queries.

Lemma 5.17. Let q be a minimal query in BCQ with connected components q1, q2, . . . , qn. Then:

1. for every 1 ≤ i ≤ n, there exists a first order reduction from the problem CERTAINTY(qi) to

CERTAINTY(q); and

2. for every database instance db, db is a “yes”-instance of the problem CERTAINTY(q) if and

only if for every 1 ≤ i ≤ n, db is a “yes”-instance of CERTAINTY(qi).

Proof. For item (1), let db be an instance for CERTAINTY(qi) and construct an instance db′ =

db ∪ ⋃j ̸=iD[qj ] for CERTAINTY(q), where D[qj ] is a canonical copy of qj . Clearly, db′ can be

constructed in FO. Next, we show that CERTAINTY(qi) is true on db if and only if CERTAINTY(q)

is true on db′.

Assume that db is a “yes”-instance for CERTAINTY(qi). Let r
′ be any repair of db′. We have⋃

j ̸=iD[qj ] ⊆ r′, since each D[qj ] is consistent. Thus r = r′ \⋃j ̸=iD[qj ] is a repair of db, and we

have that r satisfies qi. Then r′ satisfies q, since r also contains D[qj ], which satisfies qj for j ̸= i.

Assume that db′ is a “yes”-instance for CERTAINTY(q). Let r be any repair of db. It remains

to show that r satisfy qi. Let r′ = r ∪⋃j ̸=iD[qj ]. Hence r′ is a repair of db′, and and there is a

valuation µ such that µ(q) ⊆ r′. It suffices to show that µ(qi) ⊆ r. Suppose not, since each qi is

connected and each D[qj ] is connected, we must have µ(qi) ⊆ D[qj ] for some j ̸= i, which implies

a homomorphism from qi to qj , contradicting that q is minimal. Thus µ(qi) ⊆ r, as desired.

Item (2) is proved in Lemma B.1 in [KOW21].
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Lemma 5.17 implies that the complexity of CERTAINTY(q) is equal to the highest complexity

of CERTAINTY(q′) over every connected component q′ of q.

Attacks. Let q be a self-join-free Boolean CQ. For every atom F ∈ q, we define F+,q as the

set of all variables in q that are functionally determined by key(F ) with respect to all functional

dependencies of the form key(G)→ vars(G) with G ∈ q \ {F}. Following [KW15], the attack graph

of q is a directed graph whose vertices are the atoms of q. There is a directed edge, called attack,

from F to G (F ̸= G), written F
q
⇝ G, if there exists a path between F and G in the query

such that every two adjacent atoms share a variable not in F+,q. The attack is called weak if

key(F ) → key(G), otherwise it is called strong. It was proved in [KW15] that for a self-join-free

Boolean CQ q, CERTAINTY(q) is coNP-hard if and only if there exist two atoms F ̸= G that

attack each other and at least one of the attacks is strong.

We can now prove the proposition.

Proposition 5.5. If q is a connected minimal conjunctive query in GraphBCQ \ TreeBCQ, then

CERTAINTY(q) is L-hard (and not in FO); if q is also Berge-acyclic, then CERTAINTY(q) is

coNP-hard.

Proof. Let q be a minimal connected query in GraphBCQ.

Assume that q is not a rooted tree query. Then, there exist two atoms R(x, . . . , z, . . . ) and

S(y, . . . , z, . . . ) with x ̸= y (and possibly R = S) in q. Consider now qsjf , and let R0 and S0 be the

corresponding atoms of R and S in qsjf .

Since q satisfies (1) and (3), so does qsjf , and we have R+,qsjf

0 = {x} and S+,qsjf

0 = {y}. Hence

R0
qsjf
⇝ S0, and similarly, S0

qsjf
⇝ R0. By [KW15] CERTAINTY(qsjf) is L-hard (due to this cycle in the

attack graph of qsjf), and so is CERTAINTY(q) by Lemma 5.18.

Next we additionally assume that q is Berge-acyclic, that is, q ∈ GraphBergeBCQ. We thus have

either x ̸<q y or y ̸<q x. Indeed, otherwise there exist atoms R0, R1, . . . , Rn and S0, S1, . . . , Sm and

variables x0, x1, x2, . . . , xn+1, y0, y1, . . . , ym+1 in qsjf where x0 = x, xn+1 = y, y0 = y, ym+1 = x

such that qsjf contains atoms Ri(xi, . . . , xi+1, . . . ) for every 0 ≤ i ≤ n and Si(yi, yi+1) for every

0 ≤ i ≤ m. Then,

{x0, R0, x1, R1, . . . , Rn, xn+1(= y = y0), S0, y1, S1, . . . , Sm, ym+1(= x = x0)}

is a Berge-cycle in qsjf , a contradiction to that qsjf (and q) are Berge-acyclic. This implies that at

least one of the two attacks is strong. Hence, applying the result from [KW15], CERTAINTY(qsjf)

is coNP-hard (due to this strong cycle in the attack graph of qsjf), and so is CERTAINTY(q) by

Lemma 5.18.
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Proof of Theorems 5.2 and 5.3. Let q be a query in GraphBCQ. Then the minimal query q∗ of q

is also in GraphBCQ. If every connected component of q∗ is in TreeBCQ and satisfies C1, then

CERTAINTY(q) is in FO. Otherwise, there exists some connected component q′ of q∗ that is either

not in TreeBCQ, or violates C1, and CERTAINTY(q) is L-hard or NL-hard by Lemma 5.17, Propo-

sition 5.5, and Theorem 5.4. Assume that q is also Berge-acyclic. If some connected component

q′ of q∗ is not in TreeBCQ, then CERTAINTY(q) is coNP-complete; or otherwise, CERTAINTY(q)

exhibits a trichotomy by Theorem 5.4.

Lemma 5.18 (adapted from [Wij19a]) is essential to the proof of Proposition 5.5, but is of

independent interest. It relates the complexity of CQA on queries with self-joins to that on self-

join-free queries.

Given a query q in BCQ, a self-join-free version of q, denoted qsjf , is any self-join-free Boolean

conjunctive query obtained from q by (only) renaming relation names. For example, a self-join-free

version of {R(x, y), R(y, x)} is {R(x, y), S(y, x)}.

Lemma 5.18 (Bridging Lemma). Let q be a minimal query in BCQ and C a complexity class. If

CERTAINTY(qsjf) is C-hard, then CERTAINTY(q) is C-hard.

Proof. For each atom N(x⃗, y⃗) in qsjf , we denote π(N) = R if R(x⃗, y⃗) in q.

We present a reduction from CERTAINTY(qsjf) to CERTAINTY(q) in FO.

Let dbsjf be an instance for CERTAINTY(qsjf) and N(α1, α2, . . . , αn) an atom in qsjf . Consider

a mapping ϕ from facts to facts that for any fact f = N(f1, f2, . . . , fn) in dbsjf ,

ϕ(f) = π(N)(⟨f1, α1⟩, ⟨f2, α2⟩, . . . , ⟨fn, αn⟩)

where each ⟨fi, αi⟩ is a fresh constant such that ⟨fi, αi⟩ = ⟨fj , αj⟩ if and only if fi = fj and αi = αj .

Let db = {ϕ(f) | f ∈ dbsjf}.
We first show that ϕ is bijective from dbsjf to db. By construction, ϕ is onto. Suppose ϕ is not

injective, then there exist two distinct facts f = R(f1, f2, . . . , fn) and g = S(g1, g2, . . . , gm) from

atoms R(α1, α2, . . . , αn) and S(β1, β2, . . . , βm) in qsjf such that ϕ(f) = ϕ(g). We then have m = n,

π(R) = π(S) and for each 1 ≤ i ≤ n, ⟨fi, αi⟩ = ⟨gi, βi⟩, implying that π(R)(α1, α2, . . . , αn) =

π(S)(β1, β2, . . . , βm) in q, but q is minimal, a contradiction.

We show that dbsjf is a “yes”-instance for CERTAINTY(qsjf) if and only if db is a “yes”-

instance for CERTAINTY(q). Towards this end, let rsjf be a repair of dbsjf , and consider the set

r = {ϕ(f) | f ∈ rsjf}. It is easy to see that r is a repair of db. Hence it is sufficent to show that

rsjf satisfies qsjf if and only if r satisfies q.

Therefore, rsjf satisfies qsjf if and only if there exists a valuation µ such that µ(qsjf) ⊆ rsjf .

That is, for every fact f = R(µ(α1), µ(α2), . . . , µ(αn)) in rsjf , ϕ(f) ∈ r. Since ϕ is bijective, this is
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equivalent to ϕ(µ(q)) ⊆ r. This shows that r satisfies q. The other direction follows similarly since

ϕ is bijective.

Example 5.4. For q1 = {R(x, y, z), R(z, x, y)}, we have q1
sjf = {R1(x, y, z), R2(z, x, y)}. By

Theorem 1.1 [KW15], CERTAINTY(q1
sjf) is L-complete, and thus CERTAINTY(q1) is L-hard by

Lemma 5.18.

For q2 = {R(x, z), R(y, z)}, we have q2
sjf = {R1(x, z), R2(y, z)}. By Theorem 1.1 [KW15],

CERTAINTY(q2
sjf) is coNP-complete. In fact, CERTAINTY(q2) is in FO because q2 ≡ q′2 where

q′2 = {R(x, z)}. Lemma 5.18 does not apply here because q2 is not minimal.

5.8 Open Problems

So far, we have established the FO-boundary of CERTAINTY(q) for all queries q in GraphBCQ,

and a fine-grained complexity classification for all Berge-acyclic queries in GraphBCQ, which include

all rooted tree queries. We briefly discuss the remaining syntactic restrictions and the challenges

in extending Theorem 5.3 beyond GraphBergeBCQ.

The complexity classification of CERTAINTY(q) for queries q in GraphBCQ that are not Berge-

acyclic is likely to impose new challenges. In particular, Figueira et al. [FPSS23] showed that for

q1 in Example 5.4 (that is not Berge-acyclic), the complement of CERTAINTY(q1) is complete for

Bipartite Matching under LOGSPACE-reductions.

The restriction imposed by GraphBCQ that every variable occurs at most once at a primary-key

position allows for an elegant graph representation. We found that dropping this requirement im-

poses serious challenges. The following Proposition 5.6 hints at the difficulty of having to “correlate

two rooted tree branches” that share the same primary-key variable.

Proposition 5.6. Consider the following queries:

• q1 = {R(u, x1), R(x1, x2), S(u, y1), S(y1, y2)};

• q2 = q1 ∪ {X(x2, x3)}; and

• q3 = q1 ∪ {X(x2, x3), Y (y2, y3)}.

Then it follows that CERTAINTY(q1) is in FO, CERTAINTY(q2) is in NL-hard ∩ LFPL, and

CERTAINTY(q3) is coNP-complete.

We define two first-order formula φR(u) and φS(u):

φR(u) = ∃yR(u, y) ∧ ∀y
(
R(u, y)→ ∃zR(y, z)

)
φS(u) = ∃yS(u, y) ∧ ∀y

(
S(u, y)→ ∃zS(y, z)

)
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Lemma 5.19 ([KOW21]). For q = R(c, y), R(y, z), the FO-rewriting of the query CERTAINTY(q)

is φR(c).

Lemma 5.20. Let q = {R(u, x1), R(x1, x2), S(u, y1), S(y1, y2)}. Then CERTAINTY(q) is in FO.

Proof. Let db be a database instance. We show that db is a “yes”-instance for CERTAINTY(q) if

and only if db satisfies the formula

∃c : φR(c) ∧ φS(c).

⇐= This direction is straightforward. Let r be any repair of db. By Lemma 5.19, r contains

a path of RR starting in c and a path SS starting in c. Hence r satisfies q.

=⇒ Assume that db does not satisfy r. We construct a falsifying repair r of db as follows:

For each constant c ∈ adom(db):

• if R(c, ∗) is empty and S(c, ∗) is nonempty, pick an arbitrary fact from S(c, ∗);

• if R(c, ∗) is nonempty and S(c, ∗) is empty, pick an arbitrary fact from R(c, ∗);

• Assume that R(c, ∗) and S(c, ∗) are nonempty. If φR(c) is false, we pick R(c, d1) such that

R(d1, ∗) is empty; or otherwise φS(c) is false, we pick S(c, d2) such that S(d2, ∗) is empty.

We argue that r is a falsifying repair. Suppose for contradiction that r satisfies q and u is

mapped to c. Assume that R(c, d1), S(c, d2) ∈ r. If φR(c) is false, then we would have picked a

fact R(c, d1) such that R(d1, ∗) is empty, a contradiction, and so is the other case where φS(c) is

false.

Lemma 5.21. Let q = {R(u, x1), R(x1, x2), X(x2, x3), S(u, y1), S(y1, y2)}. Then CERTAINTY(q)

is in NL-hard and in LFPL.

Proof. The NL-hardness proof follows by modifying the proof of Lemma 7.1 in [KOW21] to also

add a copy of SS path starting in every vertex v ∈ {s′} ∪ V .

Let db be a database instance. We revise the algorithm in Figure 5.6 for CERTAINTY(RRX)

as follows:

• Initialize N = {⟨c, x2⟩ | X(c, ∗) ̸= ∅}

• while N is not fixed:

• add ⟨c, x1⟩ to N if

∃dR(c, d) ∧ ∀d
(
R(c, d)→ f2(R(c, d), R(x1, x2))

)
,
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where

f2(R(c, d), R(x1, x2)) = ⟨d, x2⟩ ∈ N ∨ (φS(c) ∧ f1(R(c, d), R(u, x1)))︸ ︷︷ ︸
rewinding to R(u, x1) allowed only when φS(c) is true

• add ⟨c, u⟩ to N if

φS(c) ∧ ∃dR(c, d) ∧ ∀d (R(c, d)→ f1(R(c, d), R(u, x1))) ,

where

f1(R(c, d), R(u, x1)) = ⟨d, x1⟩ ∈ N.

Our algorithm essentially first computes the set N and then checks ∃c : ⟨c, u⟩ ∈ N . Notice that

this algorithm is in LFPL. To show correctness, we argue that there exists a constant c such that

⟨c, u⟩ ∈ N if and only if db is a “yes”-instance for CERTAINTY(q).

To this end, we need to define a refined notion of frugal repairs that take into account of φS(u)

constructed as follows:

• pick an arbitrary fact from every nonempty block X(c, ∗);

• for every nonempty block S(c, ∗), if φS(c) is true, pick an arbitrary fact; or otherwise, pick

S(c, d) such that S(d, ∗) is empty; and

• for every fact R(c, d) in the block R(c, ∗), we define the frugal index of R(c, d) to be

– 0, if φS(c) ∧ f1(R(c, d), R(u, x1)) is true;

– 1, if φS(c) ∧ f1(R(c, d), R(u, x1)) is false and f2(R(c, d), R(x1, x2)) is true; or

– 2, otherwise.

We then pick the fact R(c, d) from each nonempty block R(c, ∗) with the largest frugal index.

Definition 5.9. An extended RRX-path in a repair r is a sequence of facts

R(c0, c1), R(c1, c2), . . . , R(cn−1, cn), X(cn, cn+1)

in r for some n ≥ 2 such that for every 0 ≤ i ≤ n− 2, there exists an SS-path in r starting in ci.

The following claim concludes the proof.

Claim 5.1. The following statements are equivalent:

1. ⟨c, u⟩ ∈ N ;

2. there exists an extended RRX-path in r∗ starting in c; and
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3. for every repair r in db, there exists an extended RRX-path in r starting in c.

Proof. (3) =⇒ (2) Straightforward. (2) =⇒ (1) Let R(c0, c1), R(c1, c2), . . . , R(cn−1, cn),

X(cn, cn+1) be an extendedRRX-path in r∗ for some n ≥ 2 and c0 = c. Since for every 0 ≤ i ≤ n−2,
there exists an SS-path in r∗ starting in ci, by construction of r∗, we have that φS(ci) is true for

every 0 ≤ i ≤ n− 2.

We have that ⟨cn, x2⟩ ∈ N . Then for R(cn−1, ∗), we have that f2(R(cn−1, cn), R(x1, x2)) is

true. Then by the choice of the frugal repair r∗, the frugal index of R(cn−1, cn) is at most 1, and

thus f2(R(cn−1, c
′
n), R(x1, x2)) is true for every fact R(cn−1, c

′
n) in the block R(cn−1, ∗). Hence

⟨cn−1, x1⟩ ∈ N .

Then, we must have f1(R(cn−2, cn−1, R(u, x1)) is true, because ⟨cn−1, x1⟩ ∈ N . Notice that

φS(cn−2) is true, the frugal index of R(cn−2, cn−1) is 0. Then by construction of r∗, for every

fact R(cn−2, c
′
n−1) in block R(cn−2, ∗), f1(R(cn−2, cn−1, R(u, x1)) is true. Hence ⟨cn−2, u⟩ ∈ N .

Additionally, for every fact R(cn−2, c
′
n−1) in block R(cn−2, ∗), φS(cn−2)∧f1(R(cn−2, cn−1, R(u, x1))

is true, and thus f2(R(cn−2, c
′
n−1, R(x1, x2)) is also true. This gives ⟨cn−2, x1⟩ ∈ N .

This argument may continue, until we yield that ⟨c0, u⟩ = ⟨c, u⟩ ∈ N .

(1) =⇒ (3) Assume that ⟨c, u⟩ in N . Let r be any repair of db. We inductively construct

an extended RRX-path in r starting in c. Assume that R(c0, c1) ∈ r with c0 = c. Hence φS(c0)

is true, and that ⟨c1, x1⟩ ∈ N . Let R(c1, c2) ∈ r, and we have f2(R(c1, c2), R(x1, x2)) is true. If

⟨c2, x2⟩ ∈ N , let X(c2, c3) ∈ r and then the proof is complete since R(c0, c1), R(c1, c2), X(c2, c3)

is an extended RRX-path in r. Otherwise, we have that φS(c1) ∧ f1(R(c1, c2), R(u, x1)) is true.

Therefore, φS(c1) is true and ⟨c2, x1⟩ ∈ N . This process thus continues, until we have produced facts

R(c0, c1), R(c1, c2), . . . , R(cn−1, cn), such that φS(ci) is true for 0 ≤ i ≤ n − 2 and ⟨cn, x2⟩ ∈ N ,

which gives a fact X(cn, cn+1) ∈ r. Hence there exists an extended RRX-path in r starting in

c0 = c.

Now, assume that ⟨c, u⟩ ∈ N . Then by Claim 5.1, every repair r of db contains an extended

RRX-path starting in c, which satisfies q. Assume that ⟨c, u⟩ /∈ N . Then by Claim 5.1, there is no

extended RRX-path in r∗, and thus r∗ does not satisfy q.

Lemma 5.22. Let q = {R(u, x1), R(x1, x2), X(x2, x3), S(u, y1), S(y1, y2), Y (y2, y3)}. Then the

problem CERTAINTY(q) is coNP-complete.

Proof. For coNP-hardness, we present a reduction from Monotone SAT: given a monotone CNF

formula φ, does φ have a satisfying assignment?

Let φ be a monotone CNF formula. We construct a database db for CERTAINTY(q) as follows:
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• for each variable z in φ, introduce a copy of

z− = ⟨{R(u, x1), R(x1, x2), X(x2, x3), S(u, y1), Y (y1, y2)}, [u→ z]⟩

and a copy of

z+ = ⟨{R(u, x1), X(x1, x2), S(u, y1), S(y1, y2), Y (y2, y3)}, [u→ z]⟩;

• for each positive literal z in a positive clause C, introduce a copy of

Cz = ⟨{R(u, x1), R(x1, x2), X(x2, x3), S(u, y1)}, [u, y1 → C, z]⟩,

• for each negative literal z in a negative clause C, introduce a copy of

Cz = ⟨{R(u, x1), S(u, y1), S(y1, y2), Y (y2, y3)}, [u, x1 → C, z]⟩.

Note that by construction, the only inconsistencies happen at each block R(z, ∗) and S(z, ∗),
because each R-block may choose either an R-edge or an RX-edge; and each S-block may choose

either an S-edge or an SY -edge. Surprisingly, there are 4 possible repairs for each variable z, but

it is sufficient to encode a Boolean choice between z = 0 and z = 1. An example gadget is shown

in Figure 5.7.

We show that φ has a satisfying assignment if and only if there is a repair of db that does not

satisfy q.

=⇒ Assume that σ is a satisfying assignment to φ. We now construct a repair r of db as

follows. For each variable z, if σ(z) = 1, then we pick z+ ⊆ r, or otherwise we pick z− ⊆ r; and for

each positive clause C, there must be some literal z ∈ C with σ(z) = 1, we pick Cz ⊆ r; and for

each negative clause C, there must be literal z ∈ C with σ(z) = 0, we pick Cz ⊆ r.

We argue that r does not satisfy q. Indeed, by construction, for each clause C, we have Cz ⊆ r,

but for the variable z, we picked z+ ⊆ r, and they cannot satisfy the query q. Similarly, every

negative clause C cannot satisfy q. Each variables are picked so that they also do not satisfy q. We

conclude that r does not satisfy q.

⇐= Assume that r is a repair of db that does not satisfy q. Consider the assignment σ that

assigns σ(z) = 1, for every variable z with z+ ⊆ r, and assigns σ(z) = 0 for every z− ⊆ r, and

assign all other variables arbitrarily.

We now argue that σ is a satisfying assignment. Let C be any positive clause and assume

Cz ⊆ r. Then the repair must choose the path SSY starting in z (or otherwise r satisfies q rooted

at the clause constant C), and consequently the path RX starting in z (or otherwise r satisfies q

rooted at the variable constant z). Hence z+ ⊆ r, and we set σ(z) = 1. Hence every positive clause
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C is satisfied. Let C be any positive clause and assume Cz ⊆ r. Then the repair must similarly

choose the path RRX and SY starting in z, or otherwise r satisfies q. Then z− ⊆ r, and we set

σ(z) = 0. Hence every negative clause C is satisfied.

Cz

z

Cz

z−

z+

RRX

S

SSY

R

RX

RRX

SY

SSY

Figure 5.7: The gadget used in Lemma 5.22

The restrictions that no atom contains repeated variables, and that no constant occurs at a

primary-key position ease the technical treatment, but it is likely that they can be dropped at the

price of some technical involvement. On the other hand, all our techniques fundamentally rely on

the restriction that primary keys are simple.

5.9 Conclusion

We established a complexity classification in consistent query answering for primary keys on

rooted tree queries that can have self-joins: for every rooted tree query q, the problem CERTAINTY(q)

is in FO, LFPL∩NL-hard, or coNP-complete, and it is decidable in polynomial time in the size

of q which of the three cases applies. With some minor effort, this complexity classification can be

lifted to DAG queries.

For singleton primary keys, an intriguing open problem is to generalize the form of the queries,

from rooted trees to a more general class of conjunctive query. The ultimate open problem is

Conjecture 1.1, which conjectures that for every Boolean conjunctive query q, CERTAINTY(q) is

either in PTIME or coNP-complete.
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Chapter 6

Future Directions and Preliminary Results

“Wir müssen wissen. Wir werden wissen.”

—David Hilbert

In this Chapter, we identify some open challenges in additional to the possible future work

already discussed in previous chapters.

6.1 CQA Systems

From a system perspective, an easy extension is to develop a system that unifies the first-order

rewriting techniques and the generic solver methods. Specifically, such a system would first decide,

upon receiving an input query q, the complexity of CERTAINTY(q). If CERTAINTY(q) is FO-

rewritable, it runs the best known rewriting possible; or otherwise, default to the solver approach.

It has also been discovered that CERTAINTY(q) can sometimes be expressible in stratified Datalog.

Hence systems that use Datalog engines as the backend are potentially valuable.

6.2 CQA for Data Cleaning

We also argue that CQA systems can in turn support data cleaning systems with the help of

provenance. Consider an inconsistent database db, Σ the integrity constraint imposed on db, and

a given CQ q. Assume that r∗ is the correct repair of db with respect to Σ. Since r ⊆ db for every

repair r ∈ repairs(db,Σ) and every CQ q is monotone, it follows that⋂
r∈repairs(db,Σ)

q(db) ⊆ q(r∗) ⊆ q(db). (6.1)
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Equation 6.1 reveals that it suffices for data cleaning to resolve the portion of inconsistent data

that result in the answers in the set difference

q(db) \
⋂

r∈repairs(db,Σ)

q(db), (6.2)

with the help of provenance. This is because if the set difference (6.2) becomes empty, Equation 6.1

immediately yields that q(db) = q(r∗). This has also been observed in our experiments in Chapter 3,

Table 3.3: for the StackOverflow dataset, data cleaning is unnecessary for queries Q1, Q2, Q3 and

Q4, because the set difference is empty! For other queries, the set difference is in fact rather

small, which could potentially drastically reduce the workload of data cleaning systems. We refer

to [DFAA23] for related techniques.

6.3 Complexity Classification

From a theoretical perspective, the complexity classification beyond rooted tree queries remains

largely open. Note that rooted tree queries are still “acyclic” in nature, and thus any result on

CQA over “cyclic” queries would be very inspiring. We remark that a PTIME/coNP-complete

dichotomy for CQA on CQs with two self-joining atoms is recently established [PSS23], which

provides some insights on how to handle primary keys of arbitrary arities.

In the remainder of this section, we report some preliminary progress towards classifying

CERTAINTY(q) for Boolean conjunctive queries with binary atoms, which we call graph queries.

6.3.1 Cycle queries

A cycle query is a Boolean conjunctive query of the form

q = ∃x0, x1, . . . , xn−1 : R0(x0, x1) ∧R1(x1, x2) ∧ · · · ∧Rn−1(xn−1, x0).

Consider the following syntactic condition Creg:

• Creg: whenever Ri = Rj , we have Ri+1 mod n = Rj+1 mod n.

We have the following conjecture.

Conjecture 6.1. Let q be a cycle query. If q satisfies Creg, then CERTAINTY(q) is L-complete; or

otherwise PTIME-complete.

6.3.2 Query-Agnostic Polynomial-time Algorithms

We remark that a simple polynomial-time algorithm that is agnostic to the syntactic structure

of queries for CQA is discovered in [FPSS23], which is shown to be correct for the tractable cases
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of self-join-free BCQs and path queries. The dichotomy in [PSS23] also relies on that simple

algorithm, as well as a new matching-based polynomial-time algorithm. The extent to which these

two algorithms correctly capture the PTIME/coNP-complete boundary is also intriguingly open.
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Chapter 7

Conclusions

“It’s all about the journey.”

—Dane County Regional Airport Parking Ticket

This dissertation primarily focuses on methods to answer queries in the presence of inconsistent

data. Specifically, we consider data that could possibly violate the primary-key constraints and

methods to support answering selection-projection-join queries over it. We study consistent query

answering (CQA), with the goal of returning the answers that are guaranteed to be returned,

regardless of which repair the query is executed on.

We investigate the system aspect of the problem. For the self-join-free selection-projection-

join queries that admit a pair-pruning join tree, their consistent answers can be computed by

running another SQL query directly on the inconsistent data. We show that these rewritings are

guaranteed to run in linear time (Theorem 1.2), exhibiting no asymptotic overhead to the classical

Yannakakis’ algorithm on consistent data. We also implemented LinCQA, which will produce a

first-order rewriting, available in both SQL and Datalog, for every query with a pair-pruning join

tree. Our experiments show that LinCQA outperforms existing CQA systems, sometimes by orders

of magnitudes.

From a theoretical perspective, we obtain fine-grained complexity classifications of CQA on

conjunctive queries possibly with self-joins, namely path queries and rooted tree queries. For

every path query q, we show that CERTAINTY(q) is in FO, NL-complete, PTIME-complete,

or coNP-complete (Theorem 1.3); and for every rooted tree query q, CERTAINTY(q) is in FO,

NL-hard ∩ LFPL, or coNP-complete (Theorem 1.4). The complexity classification for rooted

tree queries can also be extended to other class of queries (Theorem 5.2 and 5.3). These endeavors

reveal that homomorphisms among a set of queries obtained by copying subqueries that are related

by self-joins may play a critical role in the ultimate complexity classification of CQA.
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[Fon15] Gaëlle Fontaine. Why is it hard to obtain a dichotomy for consistent query answering?

ACM Trans. Comput. Log., 16(1):7:1–7:24, 2015.

[FPSS23] Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo. A simple

algorithm for consistent query answering under primary keys. In ICDT, volume 255

of LIPIcs, pages 24:1–24:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Fux07] Ariel Damian Fuxman. Efficient Query Processing Over Inconsistent Databases. PhD

thesis, University of Toronto, 2007.

[FZZ+19] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris, and

Jignesh M. Patel. Scaling-up in-memory datalog processing: Observations and tech-

niques. Proc. VLDB Endow., 12(6):695–708, 2019.

[GGM+21] Congcong Ge, Yunjun Gao, Xiaoye Miao, Bin Yao, and Haobo Wang. A hybrid data

cleaning framework using markov logic networks (extended abstract). In ICDE, pages

2344–2345. IEEE, 2021.

[GGZ03] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework for querying

and repairing inconsistent databases. IEEE Trans. Knowl. Data Eng., 15(6):1389–

1408, 2003.

[GMPS13] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. The LLU-

NATIC data-cleaning framework. Proc. VLDB Endow., 6(9):625–636, 2013.

[Gol77] Leslie M. Goldschlager. The monotone and planar circuit value problems are log space

complete for P. SIGACT News, 9(2):25–29, July 1977.

[GWYY21] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. Releasing locks as early as you

can: Reducing contention of hotspots by violating two-phase locking. In Guoliang Li,

Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21: Interna-

tional Conference on Management of Data, Virtual Event, China, June 20-25, 2021,

pages 658–670. ACM, 2021.

[HCG+18] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek R. Narasayya, and Surajit

Chaudhuri. Transform-data-by-example (TDE): an extensible search engine for data

transformations. Proc. VLDB Endow., 11(10):1165–1177, 2018.

[Hsi60] Harrison Hsia. Economic Decision Making in Hog Feeding - A New Approach. PhD

thesis, University of Wisconsin - Madison, 1960.

[HW23] Xiao Hu and Qichen Wang. Computing the difference of conjunctive queries efficiently.

Proc. ACM Manag. Data, 1(2):153:1–153:26, 2023.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J.

Comput., 17(5):935–938, oct 1988.



141

[KIJ+15] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani, Paolo
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[VV21] Daniël Vos and Sicco Verwer. Efficient training of robust decision trees against adver-

sarial examples. In ICML, 2021.

[Wij10] Jef Wijsen. On the first-order expressibility of computing certain answers to conjunc-

tive queries over uncertain databases. In Jan Paredaens and Dirk Van Gucht, editors,

Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana,

USA, pages 179–190. ACM, 2010.

[Wij12] Jef Wijsen. Certain conjunctive query answering in first-order logic. ACM Trans.

Database Syst., 37(2):9:1–9:35, 2012.

[Wij19a] Jef Wijsen. Corrigendum to ”counting database repairs that satisfy conjunctive queries

with self-joins”. CoRR, abs/1903.12469, 2019.

[Wij19b] Jef Wijsen. Foundations of query answering on inconsistent databases. SIGMOD Rec.,

48(3):6–16, 2019.

[WWS23] Yisu Remy Wang, Max Willsey, and Dan Suciu. Free join: Unifying worst-case optimal

and traditional joins. Proc. ACM Manag. Data, 1(2):150:1–150:23, 2023.

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data

Bases, 7th International Conference, September 9-11, 1981, Cannes, France, Proceed-

ings, pages 82–94. IEEE Computer Society, 1981.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In Erich M. Nahum and Dongyan

Xu, editors, 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10,

Boston, MA, USA, June 22, 2010. USENIX Association, 2010.

[ZCT23] Cheng Zhen, Amandeep Singh Chabada, and Arash Termehchy. When can we ignore

missing data in model training? In Proceedings of the Seventh Workshop on Data

Management for End-to-End Machine Learning, DEEM 2023, Seattle, WA, USA, 18

June 2023, pages 4:1–4:4. ACM, 2023.



146

[ZDK23] Hangdong Zhao, Shaleen Deep, and Paraschos Koutris. Space-time tradeoffs for con-

junctive queries with access patterns. In Floris Geerts, Hung Q. Ngo, and Stavros

Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023,

pages 59–68. ACM, 2023.

[ZFOK23] Hangdong Zhao, Austen Z. Fan, Xiating Ouyang, and Paraschos Koutris. Conjunc-

tive queries with negation and aggregation: A linear time characterization. CoRR,

abs/2310.05385, 2023.

[Zhu20] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78,

2020.


	ABSTRACT
	 Introduction
	Motivations
	Current Progress
	Contributions
	Related Work
	Organization

	 Background
	Databases and Queries
	Integrity Constraints and Primary Keys
	Computational Complexity
	Consistent Query Answering (CQA)
	Datalog

	 LinCQA: Linear Time Rewritings for CQA
	Background
	A Linear-Time Rewriting
	Pair-pruning Join Tree
	The Rewriting Rules
	Extension to Non-Boolean Queries

	Implementation
	LinCQA: Rewriting in Datalog/SQL
	Improvements upon existing CQA systems

	Experiments
	Experimental Setup
	Databases and Queries
	Experimental Results
	Worst-Case Study

	Open Problems
	Conclusion

	 A Tetrachotomy for CQA on Path Queries with Self-joins
	The Complexity Classification
	Regexes for C1, C2, and C3
	Automaton-Based Perspective
	From Path Queries to Finite Automata
	Reification Lemma
	Proof of Lemma 4.6

	Complexity Upper Bounds
	A PTIME Algorithm for C3
	FO-Rewritability for C1
	An NL Algorithm for C2

	Complexity Lower Bounds
	NL-Hardness
	coNP-Hardness
	PTIME-Hardness

	Path Queries with Constants
	Upper bounds in Theorem 4.3
	Lower bounds in Theorem 4.3

	Conclusion

	 A Trichotomy for CQA on Rooted Tree Queries and Beyond
	Preliminaries
	The Complexity Classification
	Context-Free Grammar
	Membership of CERTAINtr(q) in LFPL
	Frugal repairs
	Expressibility in LFPL and FO

	Complexity Upper Bounds
	Complexity Lower Bounds
	Extending the Trichotomy
	Open Problems
	Conclusion

	 Future Directions and Preliminary Results
	CQA Systems
	CQA for Data Cleaning
	Complexity Classification
	Cycle queries
	Query-Agnostic Polynomial-time Algorithms


	 Conclusions
	LIST OF REFERENCES

