Consistent Query Answering for Primary Keys on Path Queries

Paris Koutris ¹ Xiating Ouyang ¹ Jef Wijsen ²

University of Wisconsin–Madison ¹

University of Mons 2

PODS, Xi'an Shaanxi, China, June 20-25 2021

Data model

- Primary key constraint as the only integrity constraint
- Inconsistent relational databases violating the primary constraint
- A repair is an inclusion-maximal consistent subinstance

Univ	Acronym	City	Weather	City	Weather
	UW	Madison		Madison	Snow
	UW	Seattle		Seattle	Rain
	UMONS	Mons		Mons	Sunny

Q: Is there a university snowing today?

$$Q() : -\mathsf{Univ}(\underline{x}, y), \mathsf{Weather}(\underline{y}, \mathsf{`Snow'})$$

Consistent query answering – CERTAINTY(q)

INPUT: an inconsistent database db

$$q_2(): -R(\underline{x}, z), S(\underline{y}, z)$$

$$q_1(): -R(\underline{x}, y), S(\underline{y}, z)$$

$$\mathsf{CERTAINTY}(q_1) \Longleftrightarrow \exists x (\exists y R(\underline{x}, y) \land \forall y R(\underline{x}, y) \to \exists z S(y, z))$$

Consistent query answering – CERTAINTY(q)

INPUT: an inconsistent database db

$$q_2(): -R(\underline{x}, z), S(\underline{y}, z)$$

$$q_1(): -R(\underline{x}, y), S(\underline{y}, z)$$

$$\mathsf{CERTAINTY}(q_1) \Longleftrightarrow \exists x (\exists y R(\underline{x}, y) \land \forall y R(\underline{x}, y) \to \exists z S(\underline{y}, z))$$

Consistent query answering – CERTAINTY(q)

INPUT: an inconsistent database db

$$q_2(): -R(\underline{x},z), S(\underline{y},z)$$

$$q_1(): -R(\underline{x}, y), S(y, z)$$

$$\mathsf{CERTAINTY}(q_1) \Longleftrightarrow \exists x (\exists y R(\underline{x}, y) \land \forall y R(\underline{x}, y) \to \exists z S(y, z))$$

Consistent query answering – CERTAINTY(q)

INPUT: an inconsistent database db

$$q_2(): -R(\underline{x}, z), S(\underline{y}, z)$$

$$q_1(): -R(\underline{x}, y), S(\underline{y}, z)$$

$$\mathsf{CERTAINTY}(q_1) \Longleftrightarrow \exists x (\exists y R(\underline{x},y) \land \forall y R(\underline{x},y) \to \exists z S(\underline{y},z))$$

Consistent query answering – CERTAINTY(q)

INPUT: an inconsistent database db

$$q_2(): -R(\underline{x},z), S(\underline{y},z)$$

$$q_1(): -R(\underline{x}, y), S(\underline{y}, z)$$

$$\mathsf{CERTAINTY}(q_1) \Longleftrightarrow \exists x (\exists y R(\underline{x},y) \land \forall y R(\underline{x},y) \to \exists z S(\underline{y},z))$$

Conjecture

Conjecture

Classification	BCQ Class	Result
FO, non-FO	C_{forest} (SJF _(self-join-free))	[Fuxman and Miller, ICDT'05]
FO, non-FO	SJF α -acyclic queries	[Wijsen, PODS'10]
P, coNP-comp.	SJF two atoms	[Kolaitis and Pema, 12]
P, coNP-comp.	SJF simple keys	[Koutris and Suciu, ICDT'14]
FO, $P \setminus FO$, coNP-comp.	SJF	[Koutris and Wijsen, PODS'15]
FO , L -comp., coNP -comp. ★	SJF	[Koutris and Wijsen, ICDT'19]
FO	SJF path	(implied by [KW, PODS'15])

Conjecture

Classification	BCQ Class	Result
FO, non-FO	C_{forest} (SJF _(self-join-free))	[Fuxman and Miller, ICDT'05]
FO, non-FO	SJF α -acyclic queries	[Wijsen, PODS'10]
P, coNP-comp.	SJF two atoms	[Kolaitis and Pema, 12]
P, coNP-comp.	SJF simple keys	[Koutris and Suciu, ICDT'14]
FO , P \setminus FO , coNP -comp.	SJF	[Koutris and Wijsen, PODS'15]
FO, L-comp., coNP-comp. *	SJF	[Koutris and Wijsen, ICDT'19]
FO ←	SJF path	(implied by [KW, PODS'15])

$$q(): -R_1(\underline{x_1}, x_2), R_2(\underline{x_2}, x_3), \cdots, R_n(\underline{x_n}, x_{n+1}) \implies R_1R_2 \cdots R_n$$
distinct variables x_i , relation names R_i

Conjecture

Classification		BCQ Class	Result		
	FO, non-FO	C_{forest} (SJF _(self-join-free))	[Fuxman and Miller, ICDT'05]		
	FO, non-FO	SJF α -acyclic queries	[Wijsen, PODS'10]		
	P, coNP-comp.	SJF two atoms	[Kolaitis and Pema, 12]		
	P, coNP-comp.	SJF simple keys	[Koutris and Suciu, ICDT'14]		
	FO , P \setminus FO , coNP -comp.	SJF	[Koutris and Wijsen, PODS'15]		
	FO, L-comp., coNP-comp. *	SJF	[Koutris and Wijsen, ICDT'19]		
	FO ←	SJF path	(implied by [KW, PODS'15])		
	FO, NL-comp., P-comp., coNP-comp.	SJF path	(Our result)		
$q():-R_1(\underline{x_1},x_2),R_2(\underline{x_2},x_3),\cdots,R_n(\underline{x_n},x_{n+1}) \implies R_1R_2\cdots R_n$					
distinct variables x_i , relation names R_i					
g(): -R(x, y), R(y, z), X(z, w)			\implies RRX		

The curse of self-joins

Theorem (Deletion Propagation, TODS 2012)

For every CQ without self-joins, deletion propagation is either APX-hard or solvable (in polynomial time) by the unidimensional algorithm.

Theorem (Pricing, JACM 2015)

Let Q be a CQ without self-joins. The data complexity for $\mathsf{PRICE}(Q)$ is either in PTIME or $\mathsf{NP}\text{-}\mathsf{complete}.$

Theorem (Query resilience, PODS 2020)

Let q be a single-self-join-CQ with at most two occurrences of the self-join relation. The problem RES(q) is either in PTIME or NP-complete.

Theorem (Our result)

Let q be a path query. The problem CERTAINTY(q) is either in FO, NL-complete, PTIME-complete or coNP-complete.

The curse of self-joins

Theorem (Deletion Propagation, TODS 2012)

For every CQ without self-joins, deletion propagation is either APX-hard or solvable (in polynomial time) by the unidimensional algorithm.

Theorem (Pricing, JACM 2015)

Let Q be a CQ without self-joins. The data complexity for $\mathsf{PRICE}(Q)$ is either in PTIME or $\mathsf{NP}\text{-}\mathsf{complete}.$

Theorem (Query resilience, PODS 2020)

Let q be a single-self-join-CQ with at most two occurrences of the self-join relation. The problem RES(q) is either in PTIME or NP-complete.

Theorem (Our result)

Let q be a path query. The problem CERTAINTY(q) is either in FO, NL-complete, PTIME-complete or coNP-complete.

Outline

• Handling self-joins

Classification result

3 Proof sketch

Outline

• Handling self-joins

Classification result

3 Proof sketch

INPUT to CERTAINTY(RRX):

The notion of "rewinding" (cont.)

Proposition

The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(RRX); and
- 2. $\exists c$ such that in all repairs, there exists a path of $RR \cdot R^* \cdot X$ starting at c.

"Reachability", "NL-complete"

How to find the regular expression?

The notion of "rewinding" (cont.)

Proposition

The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(RRX); and
- 2. $\exists c$ such that in all repairs, there exists a path of $RR \cdot R^* \cdot X$ starting at c.

"Reachability", "NL-complete"

How to find the regular expression?

The notion of "rewinding" (cont.)

Proposition

The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(RRX); and
- 2. $\exists c$ such that in all repairs, there exists a path of $RR \cdot R^* \cdot X$ starting at c.

"Reachability", "NL-complete"

How to find the regular expression?

NFA(RRX)

NFA(RRX)

From path query to NFA (cont.)

Outline

Handling self-joins

Classification result

3 Proof sketch

Our result

NL-hard

$$q_2 = RXRY$$

 $RXRXRY \in \mathsf{NFA}(q_2)$

 C_1 : q is a prefix of every word in NFA(q)

FO-rewritable

$$q_1 = RXRX$$

 $RXRXRX \in \mathsf{NFA}(q_1)$

Our result

coNP-complete

$$q_4 = RXRXRYRY$$

 $RXRXRYRXRYRY \in NFA(q_4)$

 C_3 : q is a factor of every word in NFA(q)

PTIME

NL-hard

$$q_2 = RXRY$$

 $RXRXRY \in NFA(q_2)$

 C_1 : q is a prefix of every word in NFA(q)

FO-rewritable

$$q_1 = RXRX$$

 $RXRXRX \in \mathsf{NFA}(q_1)$

Our result

coNP-complete

 $q_4 = RXRXRYRY$

 $RXRXRYRXRYRY \in \mathsf{NFA}(q_4)$

 C_3 : q is a factor of every word in NFA(q)

PTIME

 $q_3 = RXRYRY$

C₂: Whenever q = uRvRw, q is a factor of uRvRvRw; and whenever $q = uRv_1Rv_2Rw$ for consecutive occurrences of R, $v_1 = v_2$ or Rw is a prefix of Rv_1 .

NL-hard

 $q_2 = RXRY$

 $RXRXRY \in NFA(q_2)$

 C_1 : q is a prefix of every word in NFA(q)

FO-rewritable

 $q_1 = RXRX$

 $RXRXRX \in \mathsf{NFA}(q_1)$

Our result

coNP-complete

$$q_4 = RXRXRYRY$$

 $RXRXRYRXRYRY \in \mathsf{NFA}(q_4)$

 C_3 : q is a factor of every word in NFA(q)

PTIME-complete

$$q_3 = RXRYRY$$

C₂: Whenever q = uRvRw, q is a factor of uRvRvRw; and whenever $q = uRv_1Rv_2Rw$ for consecutive occurrences of R, $v_1 = v_2$ or Rw is a prefix of Rv_1 .

NL-complete

$$q_2 = RXRY$$

 $RXRXRY \in NFA(q_2)$

 C_1 : q is a prefix of every word in NFA(q)

FO-rewritable

$$q_1 = RXRX$$

 $RXRXRX \in \mathsf{NFA}(q_1)$

C_1 , C_2 and C_3 are decidable

 C_1 : q is a prefix of every word in NFA(q)

 \iff Whenever $q = u \cdot Rv \cdot Rw$, q is a prefix of $u \cdot Rv \cdot Rv \cdot Rw$.

 C_3 : q is a factor of every word in NFA(q)

 \iff Whenever $q = u \cdot Rv \cdot Rw$, q is a factor of $u \cdot Rv \cdot Rv \cdot Rw$.

Outline

Handling self-joins

Classification result

3 Proof sketch

Let q be a path query satisfying C_3 . The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(q); and
- 2. $\exists c$ such that in all repairs, there exists a path accepted by NFA(q) starting at c.

Moreover, item 2 can be decided in **PTIME** using dynamic programming/least fixedpoint logic.

Let q be a path query satisfying C_3 . The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(q); and
- 2. $\exists c$ such that in all repairs, there exists a path accepted by NFA(q) starting at c.

Moreover, item 2 can be decided in $\mbox{\bf PTIME}$ using dynamic programming/least fixedpoint logic.

 C_3 : q is a factor of every word in NFA(q)

Let q be a path query satisfying C_3 . The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(q); and
- 2. $\exists c$ such that in all repairs, there exists a path accepted by NFA(q) starting at c.

Moreover, item 2 can be decided in $\mbox{\bf PTIME}$ using dynamic programming/least fixedpoint logic.

 C_3 : q is a factor of every word in NFA(q)

Let q be a path query satisfying C_3 . The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(q); and
- 2. $\exists c$ such that in all repairs, there exists a path accepted by NFA(q) starting at c.

Moreover, item 2 can be decided in $\mbox{\bf PTIME}$ using dynamic programming/least fixedpoint logic.

 C_3 : q is a factor of every word in NFA(q)

Let q be a path query satisfying C_3 . The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(q); and
- 2. $\exists c$ such that in all repairs, there exists a path accepted by NFA(q) starting at c.

Moreover, item 2 can be decided in **PTIME** using dynamic programming/least fixedpoint logic.

 C_3 : q is a factor of every word in NFA(q)

Let q be a path query satisfying C_3 . The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(q); and
- 2. $\exists c$ such that in all repairs, there exists a path accepted by NFA(q) starting at c.

Moreover, item 2 can be decided in **PTIME** using dynamic programming/least fixedpoint logic.

 C_3 : q is a factor of every word in NFA(q)

FO-rewritability

 C_1 : q is a prefix of every word in NFA(q)

FO-rewritability

 C_1 : q is a prefix of every word in NFA(q)

FO-rewritability

 C_1 : q is a prefix of every word in NFA(q)

Lemma (FO)

Let q be a path query satisfying C_1 . The following statements are equivalent:

- 1. db is a "yes"-instance for CERTAINTY(q); and
- 2. $\exists c$ such that in all repairs, there exists a path of q starting at c.

Moreover, item 2 can be decided in FO.

Hardness results

Lemma

Let q be a path query. Then we have

- if q does not satisfy C_1 , then CERTAINTY(q) is **NL**-hard (via Reachability);
- if q does not satisfy C₂, then CERTAINTY(q) is PTIME-hard (via Monotone Circuit Value); and
- if q does not satisfy C_3 , then CERTAINTY(q) is **coNP**-hard (via Satisfiability).

Future works

Conjecture

Let q be a CQ. Then we have

- CERTAINTY(q) is either in PTIME or coNP-complete, and it is decidable which of the two cases applies; and
- it is decidable whether or not CERTAINTY(q) is in FO.
- Acyclic queries with self-joins
- Multiple key constraints, negated atom, aggregation etc.

Conclusion

coNP-complete	$q_4 = RXRXRYRY$	$RXRXRYRXRYRY \in NFA(q_4)$
	C_3 : q is a factor of every word in NFA (q)	
PTIME-complete	$q_3 = RXRYRY$	
	C ₂ : Whenever $q=uRvRw$, q is a factor of $uRvRvRw$; and whenever $q=uRv_1Rv_2Rw$ for consecutive occurrences of R , $v_1=v_2$ or Rw is a prefix of Rv_1 .	
NL -complete	$q_2 = RXRY$	$RXRXRY \in NFA(q_2)$
C_1 : q is a prefix of every word in $NFA(q)$		
FO-rewritable	$q_1 = RXRX$	$RXRXRX \in NFA(q_1)$