

IEEE Copyright Notice
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are
retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of
the copyright holder.

For more details, see the IEEE Copyright Policy.

SQL-SA for Big Data Discovery
Polymorphic and Parallelizable SQL User-Defined Scalar and Aggregate Infrastructure

in Teradata Aster 6.20

Xin Tang*, Robert Wehrmeister*, James Shau*, Abhirup Chakraborty*, Daley Alex*, Awny Al Omari*,
Feven Atnafu*, Jeff Davis*, Litao Deng*, Deepak Jaiswal*, Chittaranjan Keswani*, Yafeng Lu†, Chao Ren*,

 Tom Reyes*, Kashif Siddiqui*, David Simmen§, Devendra Vidhani*, Ling Wang*, Shuai Yang‡,	
 	
 	
 Daniel Yu*
 Teradata Aster* Splunk Inc.§ Arizona State University†	
 Fuzzy Logix‡
 San Carlos, CA, USA San Francisco, CA, USA Tempe, AZ, USA Charlotte, NC, USA

Abstract — There is increasing demand to integrate big data
analytic systems using SQL. Given the vast ecosystem of SQL
applications, enabling SQL capabilities allows big data platforms
to expose their analytic potential to a wide variety of end users,
accelerating discovery processes and providing significant
business value. Most existing big data frameworks are based on
one particular programming model such as MapReduce or Graph.
However, data scientists are often forced to manually create ad-
hoc data pipelines to connect various big data tools and platforms
to serve their analytic needs. When the analytic tasks change,
these data pipelines may be costly to modify and maintain.

In this paper we present SQL-SA, a polymorphic and
parallelizable SQL scalar and aggregate infrastructure in Aster
6.20. This infrastructure extends Aster 6’s MapReduce and Graph
capabilities to support polymorphic user-defined scalar and
aggregate functions using flexible SQL syntax. The
implementation enhances main Aster components including query
syntax, API, planning and execution extensively. Integrating these
new user-defined scalar and aggregate functions with Aster
MapReduce and Graph functions, Aster 6.20 enables data
scientists to integrate diverse programming models in a single
SQL statement. The statement is automatically converted to an
optimal data pipeline and executed in parallel. Using a real world
business problem and data, Aster 6.20 demonstrates a significant
performance advantage (25%+) over Hadoop Pig and Hive.

I. INTRODUCTION
Big data analytics provide advanced methods to mine

nuggets of value from massive datasets in various formats. They
enable discovery of correlations and patterns hidden inside the
data. Information from analyzing big data can assist executives
in managing business more successfully, by performing tasks
such as accurately predicting user loyalty, identifying the root
causes of manufacturing defects and recommending highly
interesting products to customers.

The discovery procedure often exercises multi-genres of data
processing and analytics techniques, e.g. MapReduce, Graph
analysis, statistics, data mining and machine learning. To unveil
hidden insights into business processes, data scientists need to
analyze data from diverse sources collectively, such as
analyzing well-structured transactional data along with multi-
structured data like sensor outputs, application logs, call center
records and social network connections. Solving a single

discovery problem may require applying diverse analytic
techniques to many different data types.

In the last decade, numerous diverse big data processing
frameworks have emerged. Because of the unique volume,
velocity and variety of big data [15], these frameworks develop
three common features: 1) an extensible, scalable, distributed,
highly fault-tolerant data store [22, 6]; 2) a parallel architecture
optimized to support user-defined analytic functions as first-
class citizens [6, 8]; 3) a query language based on a high level
algebra that offers simple abstractions to query and manipulate
data and provide logical independence of applications [7, 8].

Although these frameworks are adept at solving big data
problems, many of them have key limitations. One limitation is
their inability to combine executions of different analytic
computations. Analytic function interfaces are usually designed
for one programming paradigm such as MapReduce or Graph.
Data scientists often have to build data processing pipelines
between frameworks to address problems that involve different
analytic techniques. This implies extra development costs and
fragility. Another limitation is their inability to optimize for
global data movements. When different frameworks are
pipelined, their internal details remain unknown to each other
and data movements may be highly sub-optimal even though
they share the same distributed storage. This can result in high
I/O costs and bad overall performance, especially when the data
volume is large. A third limitation is that some SQL
implementations have constraints in how functions can be used.
Functions cannot be used in the various SQL clauses and their
input and output schemas are statically determined at compile
time. This restricts connecting their capability to the rich
ecosystems of business applications which use SQL.

This paper describes SQL user-defined scalar and aggregate
analytic function support in Teradata Aster 6.20 (SQL-SA). The
solution exposes a parallel architecture that tightly integrates
relational user-defined functions with MapReduce and Graph
computation models. The system composes multiple analytic
functions using SQL, implements a global planner to generate
execution plans and optimizes overall data movements. It offers
flexible SQL expression syntax to invoke user-defined scalar
functions, aggregate functions, MapReduce table functions and
Graph table functions within a single SQL statement. The
functions are dynamic polymorphic and their input and output

Copyright © IEEE. ICDE 2016, Finland.

schemas are determined at runtime. Our specific contributions in
this paper are as follows:

1) We design an analytic architecture in which polymorphic
user-defined scalar and aggregate functions can be combined
with MapReduce and Graph programming models in a single
SQL query.

2) We provide a full production-quality implementation of
dynamic polymorphic programming interfaces and multi-
compute execution engines for user-defined scalar and
aggregate functions in Java and C.

3) We extend the Aster planner to optimize global data flows
for combined execution of user-defined scalar functions,
aggregate functions, MapReduce functions and Graph functions.

4) We enable user-defined scalar and aggregate functions in
different SQL clauses and extend the Aster SQL capability to
connect with business applications.

5) We create elaborate Java and C SDKs for users to develop
and test user-defined scalar and aggregate functions to meet
diverse analytic needs.

6) We conduct a use case study using real world datasets and
queries and show that Aster performs 25% to 552% better than
Pig and Hive. Multi-compute, a key mechanism in our design,
improves the function performance by more than 40%.

The rest of the paper is organized as follows. Section II gives
an overview of the Aster system. Section III outlines the SQL
syntax and externals of the scalar and aggregate function APIs.
Section IV details the design and implementation in Aster 6.20.
Section V discusses a use scenario. Section VI compares related
works. Conclusions are drawn in section VII.

II. ASTER OVERVIEW
Teradata Aster is a shared-nothing, massively-parallel

processing database designed for online analytical processing
(OLAP), data warehouse and big data tasks. It manages a cluster
of commodity servers which can be scaled up to hundreds of
nodes and analyze petabytes of data.

Figure 1: Aster Components – Queen, Loaders and Workers.

An Aster cluster contains a set of servers that play specific
roles in query processing. Figure 1 shows the interactions
between different components when data are processed. A
queen node is responsible for query planning and metadata
management. A loader node moves data into or out of the
cluster. A worker node stores data and processes query
execution plans.

A typical Teradata Aster big data analytics appliance cabinet
consists of 2 queen nodes (one as backup), 2 loader nodes and 2
to 16 worker nodes. A queen node or worker node is typically
configured with two 2.5GHz 10 core processors, 256 GB RAM
and 6 x 900 GB drives disk capacity [31]. Nodes are connected
with 40 Gb/s interconnect InfiniBand. An appliance cluster can
be scaled to petabytes with expansion cabinets and network
switches. Other configurations are allowed [10].

Figure 2: Aster Architecture – Function, Process and Store.

The Aster architecture consists of three layers as shown in
Figure 2. The Function layer provides a rich library to perform
various analytic tasks through simple SQL queries and handy UI
tools. The Store layer enables data storage in multiple formats.
The Process layer is the core of the Aster architecture. Query
processing is managed by an executor process in the queen
node. The executor parses each client query and decomposes it
to a sequence of atomic subtasks, driving worker processes in
worker nodes running them. All relations are hash partitioned
across the worker nodes to enable intra-query parallel
processing. The executor optimizes the execution plan to
minimize data movements. When required, a data movement
fabric moves data between worker nodes and across the cluster.

Besides query processing, Aster provides easy-to-use and
interactive tools to monitor system statuses, add or remove
nodes, load balance queries, split partitions, retry queries, and
restore replication levels. These functions are essential to
manage a large cluster of commodity servers where node
failures occur regularly.

A. Table Functions
User-defined table functions are the defining feature in Aster

to enable rich analytics in SQL [17, 16, 2]. The syntax of such
functions is as follows:

1. SELECT …
2. FROM table-function (
3. ON table-or-query
4. clause-name(arg, …)) …

The table function is treated as a table in the SQL query
therefore appears in the FROM clause. Its input can be tables or
sub-queries, appearing as multiple ON clauses. Arguments
needed for the computation can be provided using additional
custom key-value clauses [11]. Invocation of the table functions
is flexible. The function can be nested or joined with other SQL
functions and queries like a SQL table.

Aster table functions encapsulate MapReduce and Graph
processing models to support different styles of massively-
parallel processing via easy-to-implement APIs. The
MapReduce table functions implement the row-based map
operator through the RowFunction API or the partition-based
reduce operator through the PartitionFunction API [17]. The
Graph table functions implement the vertex-based Graph
operator through the GraphFunction API [16].

Built on top of the MapReduce and Graph APIs, Aster
provides more than 120 pre-built table functions to support
pattern matching, text analysis, statistical analysis, data mining,
machine learning and other analytics in scale [9].

III. EXTERNALS
This section provides an external overview of Aster user-

defined scalar and aggregate functions. It describes the function
definitions, the SQL interfaces, the programming interfaces and
SDKs. A few SQL examples and a rich set of pre-built analytic
functions are also discussed to illustrate the use cases.

A. Scalar and Aggregate Functions
User-defined scalar and aggregate functions are intuitive

programming constructs that enable custom and non-typical
operations in SQL. Both scalar and aggregate functions input
and output tabular data. A user-defined scalar function is a
SQL function with custom logic called once per row. Each time
it is called, it takes a value or set of values from the row input
data and returns one value. A user-defined aggregate function
is a SQL function with custom logic called once per partition or
group. Each time it is called, it takes all input rows and
generates a single result. The user-defined aggregate and scalar
functions are widely used in SQL queries. For example 95 out of
99 queries in the TPC-DS benchmark [32] contain aggregate
operations.

Although other modern data management systems may have
implemented similar features, Aster’s user-defined scalar and
aggregate functions are unique in the following ways: 1)
implemented in a distributed environment, Aster scalar and
aggregate functions are executed in parallel to support large
volumes of data; 2) Aster scalar and aggregate functions allow
flexible input schema definition [17]. Input types are determined
dynamically through contract negotiation, a mechanism that
enables the system and the function to negotiate the output
schemas at runtime; 3) Aster scalar and aggregate functions are
seamlessly integrated with existing Aster MapReduce and
Graph table functions.

B. SQL Interfaces
A key benefit of user-defined scalar and aggregate functions

is the flexible SQL interfaces. Unlike table functions which have
to be invoked in the FROM clause, user-defined scalar and
aggregate functions can be placed in SELECT, HAVING,
WHERE, ORDER BY and GROUP BY clauses.

For both scalar and aggregate functions, two styles of input
arguments are provided: positional and key-value arguments.
Positional arguments are arguments labeled by their order. For
example, argument 1 is passed at position 1, argument 2 at

position 2 and so on. The arguments can be typed and would be
provided to the function strictly at runtime. Key-value
arguments are arguments labeled by keywords. They can only
be literals and would be evaluated at planning time. Users are
free to choose the style they feel convenient to pass arguments.

1. -- SQL Positional Syntax for Scalar Function.
2. SELECT … scalar-function (
3. [expression] [, …] [, arg1] [, arg2] [, …])
4.
5. -- SQL Key-Value Syntax for Scalar Function.
6. SELECT … scalar-function (
7. ON ([expression] [, …])
8. [argument-clause-name (literal [, …])]
9. […])
10.
11. -- SQL Positional Syntax for Aggregate Function.
12. SELECT … aggregate-function (
13. [ALL | DISTINCT] [expression] [, …]
14. [, arg1] [, arg2] [, …]))
15.
16. -- SQL Key-Value Syntax for Aggregate Function.
17. SELECT … aggregate-function (
18. [ALL | DISTINCT]
19. ON ([expression] [, …])
20. [argument-clause-name (literal [, …])]
21. […])

Figure 3: SQL positional and key-value syntax to invoke scalar and
aggregate functions.

Figure 3 shows the syntax for invoking user-defined scalar
and aggregate functions by position and key-value. The function
may take a column name, set of column names or an arbitrary
expression formed from column values as inputs. The optional
ALL or DISTINCT qualifiers apply only to aggregate function
calls and not to scalar functions. When the DISTINCT qualifier
is specified, only rows with distinct values would be passed to
the function. The ALL qualifier is the default choice for
aggregate functions. When it is used or no qualifier is present,
all rows in the expression would be passed to the function.

The flexibility of user-defined scalar and aggregate functions
is also shown in multi-compute and nested functions. Multi-
compute is a mechanism to allow the engine to execute more
than one function in a single data path. Its details are introduced
in Section V B. Nested functions means a function may be called
inside another function. These features enable users to invoke
multiple functions in a single statement and the system provides
full support to optimize the performance. SQL use cases of
scalar and aggregate functions are presented in Section III D.

Usually, user-defined scalar and aggregate functions can
appear anywhere their corresponding native scalar and
aggregate expressions can appear. However, the first release of
the feature has several limitations. Expressions in MERGE,
UPDATE and DELETE statements are not supported. We
provide programming APIs in Java and C. Functions written in
different languages cannot be used in a single statement. We
hope to remove these restrictions and enable more use cases in
upcoming releases.

C. Programming Interfaces
Three programming interfaces are provided to developers to

compose user-defined scalar and aggregate functions in C and
Java.

Figure 4: Java programming interface for scalar, non-decomposable
aggregate and decomposable aggregate functions.

Figure 4 shows the programming interfaces in Java. To
create a Java scalar function, the developer writes a class
implementing the ScalarFunction interface. The class must
implement a constructor handling contract negotiation and the
computeValue method with the scalar computation logic.
1. public class Concatenate implements ScalarFunction {
2. private SqlType outputSqlType_;
3. private ValueHolder outputValue_;
4.
5. public Concatenate(ScalarRuntimeContract contract) {
6. if (contract.getInputInfo().getColumnCount()<=1)
7. throw new IllegalUsageException(
8. "Requires at least one input column ");
9.
10. outputSqlType_ = SqlType.getType(
11. "character varying");
12. ArrayList<ColumnDefinition> outputColumns =
13. new ArrayList<ColumnDefinition>();
14. outputColumns.add(
15. new ColumnDefinition("concat", outputSqlType_));
16. contract.setOutputInfo(
17. new OutputInfo(outputColumns));
18. outputValue_ = new ValueHolder(outputSqlType_);
19.
20. contract.complete();
21. } // constructor
22.
23. public ValueHolder computeValue(RowView arg0) {
24. String ret = "";
25. for (int i=0; i<arg0.getColumnCount(); i++) {
26. if (!arg0.isNullAt(i)) ret += arg0.getStringAt(i);
27. }
28. outputValue_.setString(ret);
29. return outputValue_;
30. }
31. }

Figure 5: Function Concatenate implements the Java scalar function
programming interface.

Figure 5 gives an example to compose a Concatenate
function using the Java Scalar function interface. The
constructor specifies that the function requires at least one input
column (lines 6-8). It sets the output column name as concat and
the output column type as character varying (lines 10-18). Since
the constructor does not define the input type, the function
accepts inputs with arbitrary data types. The computeValue

method concatenates all the not null values (lines 25-27) and
sets the concatenated string as the function output value (lines
28 and 29) for each input row.

There are two choices for composing aggregate functions:
NonDecomposableAggregatorFunction and Decomposable-
AggregatorFunction. An aggregate function is decomposable if
it can be divided into smaller operations, at least some of which
can be run independently for data in the same group or partition.
An aggregate function is non-decomposable if it is not
decomposable. These two interfaces are introduced to enable
different level of parallelism and may only impact how the
function is executed. From the user perspective, there is no
difference in SQL invocations. From the function development
perspective, a decomposable aggregate function can be
implemented using either the DecomposableAggregator-
Function interface or the NonDecomposableAggregator-
Function interface where the decomposable implementation
may perform better. A non-decomposable aggregate function
can only be implemented using the NonDecomposable-
AggregatorFunction interface.

1. public class Count implements
2. DecomposableAggregatorFunction {
3.
4. private RowHolder partialCountRow_;
5. private ValueHolder finalCountValue_;
6. private long count_;
7. private SqlType outputSqlType_;
8. private ArrayList<SqlType> partialSchema_ = null;
9.
10. public Count(DecomposableAggregatorRuntimeContract
11. contract) {
12. reset();

13.
14. outputSqlType_ = SqlType.bigint();
15. finalCountValue_ = new ValueHolder(outputSqlType_);
16. ArrayList<ColumnDefinition> outputColumns =
17. new ArrayList<ColumnDefinition>();
18. outputColumns.add(
19. new ColumnDefinition("count", outputSqlType_));
20. contract.setOutputInfo(
21. new OutputInfo(outputColumns));
22.
23. partialSchema_ = new ArrayList<SqlType>();
24. partialSchema_.add(outputSqlType_);
25. contract.setPartialResultSchema(
26. ImmutableList.elementsOf(partialSchema_));
27. partialCountRow_ = new RowHolder(partialSchema_);
28.
29. contract.complete();
30. } // constructor
31.
32. public void reset() { count_ = 0; }
33. public void aggregateRow(RowView row) { count_++; }
34. public void aggregatePartialRow(RowView partialRow) {
35. count_ += partialRow.getLongAt(0);
36. }
37.
38. public ValueHolder getFinalValue() {
39. finalCountValue_.setLong(count_);
40. return finalCountValue_.clone();
41. }
42.
43. public RowView getPartialRow() {
44. partialCountRow_.setLongAt(0, count_);
45. return partialCountRow_.clone();
46. }
47. }

Figure 6: Function Count implements the Java decomposable
aggregate function programming interface.

Both DecomposableAggregatorFunction and Non-Decom-
posableAggregatorFunction interfaces inherit from the same

parent interface and contain three methods: aggregateRow
updates the aggregator state for each input row; getFinalValue
returns the final form of the aggregated value at the end of a data
partition and reset resets the aggregator to its initial state for a
new data partition. To create an aggregator function, the
developer must write an aggregator class implementing these
three methods and a constructor which handles contract
negotiation.

As it supports a higher level of parallelism, Decomposable-
AggregatorFunction interface demands a little more imple-
mentation efforts compared to the non-decomposable case. Two
additional methods, aggregatePartialRow and getPartialRow,
must be implemented. AggregatePartialRow updates the
aggregator partial state for each row input; getPartialRow
returns the partial form of the aggregated value. To connect the
partial and final operations, the constructor is required to set a
partial schema, which is the output schema of the partial
aggregate operation and the input schema of the final aggregate
operation. Similar to the input schema, a partial schema may
contain one or more columns.

Figure 6 gives an example of a Count function that uses the
Java decomposable aggregate function interface. The
constructor defines both the partial and final output schema as
one column in type bigint (lines 14-29). reset sets the counter to
0 when the aggregator is called (lines 12 and 32). aggregateRow
counts the number of rows when the aggregator is running
independently at each worker (line 33). aggregatePartialRow
sums the results of aggregateRow (lines 34-36). getPartialRow
(lines 38-41) and getFinalValue (lines 43-46) return the partial
and final count, respectively. This sample function can be easily
converted to a non-decomposable aggregate function if we omit
the partial fields and methods.

SDKs are provided to develop user-defined scalar and
aggregate functions. The Aster Developer Environment (ADE)
[12] is extended to support Java scalar and aggregate functions.
It provides design templates and test environments to develop
Java scalar and aggregate functions. For instance, both functions
of Figure 5 and Figure 6 are written using ADE templates. A
SDK in C is also available to help write, build and test scalar
and aggregate functions in C. Once the functions are completed,
they are packaged into a ZIP file and deployed to the Aster
cluster using the standard Aster INSTALL command.

D. SQL Examples
In this section, we present the basic features and usage of

cluster-level user-defined scalar and aggregate functions,
highlighting their implications on global optimization of the
system performance. Unlike the MapReduce or Graph table
functions, the scalar and aggregate functions allow multi-
compute SQL queries, allow in-place updates and loading of
tuples from the output of scalar and aggregate functions, and
allow scalar and aggregator functions within HAVING, WHERE,
ORDER BY and GROUP BY clauses along with the SELECT
clause. Similar to the Map and Reduce functions, the scalar and
aggregate functions can be nested in a more efficient way,
increasing the expressiveness and capabilities of SQL queries.
We consider the following simple database schema from a retail
sales application, and use it as the basis for the examples

provided in the subsequent part of this section. Unless otherwise
specified, all the functions used in the section are cluster-wide
user-defined scalar and aggregate functions and should not be
confused with Aster built-in functions.

1. Sales (productId, storeId, quantity, price, discount,
 grossProfit)
2. Products (productId, storeId, retailPrice, unitCost,
 rating)
3. Promotion (productId, storeId, discount)
4. Inventory (storeId, productId, quantity)
5. Store (storeId, storeName, state, country)

1) Multi-Compute SQL Queries
The executor for scalar and aggregate functions allows,

within a single SQL query, multiple functions over the attributes
of the base relations. Such a multi-compute mechanism enables
multiple functions to be processed over a relation without
incurring additional scan overhead for the relation and data
transfer (data shuffling) across the worker nodes. In an
optimistic scenario, the scan and data transfer overhead are
amortized over N functions, resulting in an almost N-fold
performance gain (assuming that CPU cost for a function is
negligible compared to the network transfer cost).

The following query computes seven aggregate functions
over the relation Sales. Such a query is common in an OLAP
(Online Analytic Processing), a DS (Decision Support) or a DW
(Data Warehouse) system.

1. SELECT productId, AVG(quantity),
2. MIN(quantity), MAX(quantity),
3. MIN(price), MAX(price),
4. AVG(discount), SUM(grossProfit)

5. FROM Sales
6. GROUP BY ProductId

The next query processes scalar functions (ADJUST_PRICE and
FINAL_TAX) over the join between two relations (Products and
Store). The function ADJUST_PRICE takes as input four
attributes (unitCost, rating, state and country) and one clause
(V) giving the percentage value for the change (10%). The
function returns a new value for the retailPrice using the proper
business logic or rules inherent within the function. The
FINAL_TAX function calculates the tax for a product using the
three input attribute values (retailPrice, state and country) and a
clause value (RATE).

1. SELECT productId,
2. ADJUST_PRICE(ON(unitCost, rating,
3. state, country) V(0.1)),
4. FINAL_TAX(ON(retailPrice, state,
5. country) RATE(0.2))
6. FROM Products, Store
7. WHERE Products.storeId = Store.storeId

2) Increased Usability
The scalar and aggregator functions can be used within the

expressions in WHERE and HAVING clauses in the query. The
query below shows the usage of an scalar function in the
WHERE clause and an aggregator in the HAVING clause. The
query returns, for all the stores, the total profit from products
with a tax greater than 100, and shows only the stores with an
average discount value of 10. Note that the first input column in
the FINAL_TAX comes from Sales relation. The Scalar and
Aggregator functions are polymorphic and work irrespective of

their types as long as the input columns are semantically
consistent, e.g., the first input column should be any taxable
price value and can have any numeric type: INT, FLOAT,
DOUBLE, etc.

1. SELECT storeId, SUM(grossProfit)
2. FROM Sales, Store
3. WHERE Products.storeId = Store.storeId and
4. FINAL_TAX(ON(price, state, country)
5. RATE(0.2)) > 100.00
6. GROUP BY storeId
7. HAVING AVG(discount)>10

3) Nested Execution
The following query invokes three functions in a nested

fashion. The query gives the total tax values for the stores,
normalized to a common currency type, US dollars (USD). The
scalar function CONVERT transforms the price to a common
currency (USD); the aggregator function SUM finds the total for
each group (i.e., storeId); the scalar function FINAL_TAX
computes the tax value on the total price value.

1. SELECT FINAL_TAX(ON(SUM(CONVERT(price, country)),
2. state, country) RATE(0.15))
3. FROM Products, Store
4. WHERE Products.storeId = Store.storeId
5. GROUP BY storeId

4) In-Place Updates or Loading
Unlike the MapReduce table functions, that logically

represent tables, the user-defined scalar and aggregate functions
represent a finer granularity at attribute levels; so, the latter ones
can be used to initialize or update attribute values, and compose
rows directly from the function output, simplifying the query.
With MapReduce table functions, we need to write the output in
a temporary table and then merge the temporary table with the
target one. The following query updates the retailPrice in-place
using the same ADJUST_PRICE scalar function used earlier.
Note that the function takes the input attributes values from the
output rows of a join operator (between Store and Products).

1. UPDATE Products
2. SET retailPrice=ADJUST_PRICE(ON(unitCost,
3. rating, state, country), V(0.2))
4. FROM Store
5. WHERE Products.storeId = Store.storeId

The following query computes the discount values for the
products in the table Products, and loads the newly computed
tuples to the Promotion table. The scalar function DISCOUNT
produces a discount value taking the retailPrice, unitCost and
rating as input attributes. If the Promotion table already has a
tuple with the key (storeId, productId), the first part of the
WHEN clause updates the discount value for the tuple.
Otherwise, the second part (not matched) of the clause inserts
the modified tuple.

1. MERGE Promotion Pm
2. USING Products Pd
3. ON Pm.productId=Pd.productId and
4. Pm.storeId=Pd.storeId
5. WHEN matched THEN
6. UPDATE SET Pm.discount=DISCOUNT(
7. ON(retailPrice, unitCost, rating))
8. WHEN not matched THEN
9. INSERT(Pm.productId, Pm.storeId,Pm.discount)
10. VALUES(Pd.productId,Pm.storeId,
11. DISCOUNT(ON(retailPrice,unitCost,rating)))

This feature is not supported in Aster 6.20 but is in our
development roadmap.

E. Pre-Built Analytic Functions
Teradata partners with Fuzzy Logix to offer a rich set of

pre-built analytic functions using the Aster user-defined scalar
and aggregate programming interfaces. DBLytix, a
comprehensive library of over 800 mathematical and statistical
functions, is provided for a variety of analytic applications [18].
More than 50 financial scalar functions focus on options, fixed
income and corporate finance. More than 300 user-defined
scalar and aggregate functions are for descriptive statistics,
probability density, cumulative distribution, inverse cumulative
distribution, univariate simulation, hypothesis testing and
advanced mathematical and time computations.

IV. IMPLEMENTATION
We implemented a production-quality distributed infra-

structure to execute user-defined scalar and aggregate functions.
The implementation is fully integrated with previous Aster
infrastructure, achieving our design goal to support scalar and
aggregate functions as first-class citizens in the Aster
environment. In this section we provide an end-to-end overview
of the infrastructure, including query planning and execution.
We also describe details of the key features such as dynamic
polymorphism, multi-compute and parallel execution.

A. Query Planning
Query planning of user-defined scalar functions and user-

defined aggregate functions are managed by an executor process
in the queen node, following similar control flow for user-
defined table functions in Aster. The executor parses all client
queries to abstract syntax trees. Each scalar or aggregate
function is converted to a tree node as an atomic operator. Scalar
and aggregate functions are both dynamically polymorphic.
This means that its input and output schemas are determined by
the output schemas of its child operators at runtime. This
dynamic polymorphism is an Aster feature for user-defined table
functions [17, 16], which we extend to support both scalar and
aggregate functions. The implementation is described in more
detailed in Section IV A1.

To minimize data movements, the executor passes the query
parse tree to an optimizer sub-routine to generate and optimize
logical execution plans. The optimizer is a heuristic-based
progressive optimization engine written in OCaml. Each node of
the parse tree is an atomic operator such as a SQL operation,
data transfer, user-defined table function, scalar function or
aggregate function. The optimizer applies heuristic rules like
column projection and limit pushdown to perform top-down and
bottom up node transformations. When all the rules complete, it
produces the final logical plans. Different from other existing
Aster operators, scalar or aggregate functions have their unique
opportunities in optimization. Some functions can be combined
into one operator and executed in one local data path. Some
embedded functions can be computed only through an
additional join operation. The special handling and optimization
are described in Section IV A2.

After the optimizer produces the final logical plans, the
executor concretizes them to physical plans which can be
executed directly in worker processes. The existing executor
contains a concretization routine for aggregators generated by
the Graph table operator in Aster. To support user-defined scalar
and aggregate functions, we create a new scalar concretization
routine and extend the current aggregate routine to support
aggregate functions from SQL directly. Additional setup and
cleanup operations are added to the physical plans. After
concretization, the scalar and aggregator functions are ready for
execution in workers.

Figure 7: Planning a SQL statement with user-defined scalar or
aggregate functions.

1) Dynamic Polymorphism
User-defined scalar and aggregate functions extend the

dynamic polymorphic feature of Aster table functions. This
feature allows the input and output schemas of functions to be
determined during runtime, providing more flexible invocation.
We enable it through a metaphor called contract negotiation
during query planning. Every user-defined scalar or aggregate
function has a mandatory construct called the runtime contract.
It specifies the input types this function may support and the
corresponding output type for each input choice. During
planning, the user query is transformed to a parse tree. A scalar
or aggregate function is represented by a tree node and its input
schema is the output schemas of its child nodes. When it has
identified the input schemas, the planner calls the function to
obtain the output schema based on the contract. With a small
overhead of the runtime contract, dynamic polymorphism has
made the management and use of user-defined scalar and
aggregate functions easy. Schemas are taken care of by the
system automatically.

2) Normalization and Optimization
Generating an optimal execution plan is a key design goal of

query planning in a distributed system. There are two
fundamental approaches to implementing a query optimizer in
such environment:

• Heuristic-based optimization applies a set of heuristic
optimization rules to determine an efficient execution plan.

• Cost-based optimization collects statistics about the tables,
indexes and data distribution, computes execution costs of
alternative plans and selects the cheapest one.

Aster global optimizer is a heuristic-based progressive
optimizer as it is straightforward to maintain and extend. During
query pre-processing, the optimizer normalizes the query syntax
tree to an executable logical plan and optimizes it based on a set
of heuristic rules. To support user-defined scalar and aggregate
functions in different SQL constructs with high performance, we
apply a rich set of rules in normalization and optimization,
summarized below:

a) Separate built-in functions: Aster supports more than 160
built-in functions, including some scalar and aggregate
functions. When the query contains a mix of built-in and user-
defined functions, we separate built-in functions and user-
defined functions to ensure that the built-in and user-defined
functions are executed in the appropriate engine. For user-
defined scalar functions, the built-in functions are either pulled
above or pushed below the scalar operator (the operator that
represents the scalar execution engine). For user-defined
aggregate functions, the built-in and user-defined functions are
placed into separate query plan fragments and then they are
joined back together.

b) Unnest: Nested user-defined functions are unnested and
written into consecutive executable plan fragments.

c) Consolidate: User-defined functions are merged to one
plan fragment when they implement the same scalar or
aggregate interface and share the same data input. This rule
enables the multi-compute feature we describe in details in
Section IV B3.

d) Normalize: User-defined functions that appear in SQL
clauses other than SELECT are rewritten to be in the SELECT
clause to normalize the plan fragment for subsequent rules.

e) Distinct support: When a user-defined aggregate contains
the DISTINCT keyword, the optimizer adds a GROUP BY
clause to ensure that the input rows are distinct.

f) Multiple Distinct support: When there are multiple user-
defined aggregate functions that contain differing distinct
columns, the optimizer separates each distinct column into
separate query plan fragments, adds a GROUP BY clause to
each fragment and then joins the fragments back together.

g) Decomposable Aggregates: User-defined aggregates that
support the decomposable interface are rewritten into two
separate aggregates: partial and final. This minimizes data
movements and improves parallelism by performing eager
aggregation. Details are introduced in Section IV B3.

h) Minimize transfer: We utilize existing rules to push down
and pull up operators to minimize data movements between
workers. For example, aggregate functions are pushed down to
be executed first when possible to reduce data movements.

i) Parallel execution: We enable parallel execution of user-
defined function for both scalar and aggregate functions. Details
are introduced in Section IV B3.

B. Query Execution
Execution of user-defined scalar and aggregate functions is

controlled by a routine called bridge in every worker. Bridge is a
set returning function (SRF) implemented in the local database.

The database acts as a relational engine for standard relational
operations and the bridge controls highly specialized engines for
user-defined computation. There are previously provided
MapReduce engines for C and Java MapReduce functions, a
Graph engine and an aggregate engine for Java Graph functions.
We add a new C scalar engine, a new C aggregate engine, a new
Java scalar engine and extend the Java aggregate engine to
support scalar and aggregate functions in both C and Java
invoked from SQL.

Bridge executes user-defined scalar and aggregate engines in
a separated process from the local database instance. This
implementation provides a sandbox to effectively execute and
control user-written functions. With low development costs, we
utilize operating system mechanisms to provide resource
allocation, task control, security, and so on. In Aster we have
seen that this model of isolating user-code from system code is a
key mechanism to protect the system health and manage server
resources.

Figure 8: Execution of user-defined scalar or aggregate functions.

In addition to controlling their life cycles, bridge also
manages scalar and aggregate engines’ data input and output. It
fetches input data described in the physical execution plan from
the local database and provides them to the engine and function
through partition and row iterators. When the scalar or aggregate
functions complete, bridge flushes the output to the database.

Bridge also acts as data fabric end points and transfers data
between workers. When external data are required to execute a
scalar or aggregate function, the bridge at the data source
worker connects with the bridge at the data destination worker
to move data from source to destination. All data movements
between nodes are completed in separated physical plan
fragments before bridges invoke scalar or aggregate engines to
execute user functions.

1) Scalar Engine and Aggregate Engine
Scalar and aggregate execution engines directly control

invocations of user-defined functions and manage their data I/O.
To support both query planning and execution, we provide a
planning mode and one or more execution modes in each
engine. In planning mode, the engine interacts with the planner
and determines the output schema according to the input schema
and the function runtime contract. In execution mode, the engine
executes user functions. Each execution mode represents one
procedure of scalar or aggregate functions. Based on the
execution mode specified in the query physical plan, the engine
executes user-defined functions corresponding to that procedure

and manages the data input and output. The design of scalar and
aggregate engine is highly extensible. For example, we can
easily add a new mode to support collaborative planning which
is an Aster optimization for query planning [2].

Figure 9: Scalar Engine Execution. An input iterator provides data to
scalar functions to perform custom computation.

Scalar Engine A scalar engine instance provides source data
to scalar functions through a row iterator at runtime. It caches
the function return value for each row, calling bridge services to
flush the outputs to the local storage when the buffer is full or
the computation is completed. As there is only one scalar
procedure, computeValue, we support one execution mode in
the scalar engine.

1. // Nondecomposable Aggregate
2. case RowToFinal:
3. aggFn.reset();
4. while (inputIterator.advanceToNextRow()) {
5. aggFn.aggregateRow(inputIterator);
6. }
7. ret = aggFn.getFinalValue();
8. break;
9. // Decomposable Aggregate
10. case RowToPartial:
11. aggFn.reset();
12. while (inputIterator.advanceToNextRow()) {
13. aggFn.aggregateRow(inputIterator);
14. }
15. ret = aggFn.getPartialValue();
16. break;
17. // Decomposable Aggregate
18. case PartialToFinal:
19. aggFn.reset();
20. while (inputIterator.advanceToNextRow()) {
21. aggFn.aggregatePartialRow(inputIterator);
22. }
23. ret = aggFn.getFinalValue();
24. break;

Figure 10: Aggregate engine control flows for RowToFinal,
RowToPartial and PartialToFinal procedures.

Aggregate Engine The aggregate engine operates similar to
the scalar engine and its execution choices are richer. An
aggregate engine instance manages local data through data
caches, partition iterators and other bridge services. To fully
utilize Aster distributed environment, we separate aggregate
functions into decomposable and non-decomposable aggregate
functions, providing different execution modes and parallelism
for each. Decomposable aggregate functions are decomposable
tasks which we can separate into partial and final aggregations,
enabling parallel computation for each source data partition. For
example, sum is a decomposable aggregate that we can compute
the partial sums at each worker in parallel and then aggregate

the final result. Nondecomposable aggregate functions are tasks
whose source data cannot be separated, such as finding the
median. We call the decomposable procedures RowToPartial
and PartialToFinal and the non-decomposable one RowToFinal,
implementing the three corresponding execution modes in the
engine. Each procedure is executed independently in a separated
physical plan fragment. Their source data are moved to the
destination worker in a different plan fragment in advance as
described in previous sections. When a procedure is invoked,
the engine executes the user aggregate functions accordingly.

2) Multi-Compute
Multi-compute is a mechanism which enables the engine to

execute more than one function in each execution plan fragment
and local input path. This is a key difference between the
execution of user-defined scalar/aggregate functions and
previous user-defined table function. For user-defined Map,
Reduce or Graph table functions, a single function is executed.
Different functions are in separate execution plan fragments and
do not share input iterators even if their source data are the
same. To improve the usage of local input, we support multi-
compute in both scalar and aggregate engines. This means the
engines allow computing multiple functions in an iteration of
source data, which may effectively reduce local I/O costs.

1. SELECT productId, adjustPrice, tax
2. FROM FINAL_TAX_TABLE_FN (
3. on (
4. ADJUST_PRICE_TABLE_FN (
5. on (
6. SELECT productId, retailPrice, unitCost,
7. rating, state, country
8. FROM Products, Store
9. WHERE Products.storeid = Store.storedId)
10. PERCENTAGEVALUE(0.1)
11. RESULT(‘adjustPrice’))
12. RATE(0.2)
13. RESULT(‘tax’));

Figure 11: Tables functions that compute adjust price and tax.

The query in Figure 11 illustrates the power of multi-
compute. It is modified from the scalar function example in
Section III D1, outputting the same result. This query processes
table function (ADJUST_PRICE_TABLE_FN) over the join
between two relations (Products and Store). It then processes
another table function (FINAL_TAX_TABLE_FN) over the
previous output. Its table functions ADJUST_PRICE_
TABLE_FN and FINAL_TAX_TABLE_FN are executed in two
separate plan fragments and the output of ADJUST_PRICE_
TABLE_FN is the input of FINAL_TAX_TABLE_FN. In
contrast, scalar functions ADJUST_PRICE and FINAL_TAX in
Section III D1 are executed in the same plan fragment and share
input iterators. As a result, the local I/O cost for the scalar
computations is 1/2 of the table computations. The benefit of
multi-compute is more significant when there are more user
functions in the query. For instance, the aggregate example in
Section III D1 has 7 user functions and its local I/O cost is 1/7 of
the equivalent table functions.

3) Parallel Execution
Execution of scalar functions is fully parallel. Scalar

functions are row functions and have no input dependency
between source data. This freedom allows the scalar engine
instances at each worker to execute them independently.

User-defined aggregate functions are executed in parallel
when possible. When the aggregate functions implement the
decomposable interface, their physical execution plans consist
of row-to-partial and partial-to-final aggregate plan fragments.
In the first plan fragment aggregate engines at each worker of
the cluster execute the function instances in parallel to compute
the partial results. The second plan fragment can be executed in
parallel if there are grouping columns, otherwise it will be done
serially. The partial results from the first plan fragment are
aggregated to compute the final results. Execution of non-
decomposable aggregate functions is similar to the partial-to-
final case. The system repartitions source data based on
grouping columns and executes functions in parallel when there
is more than one group.

V. USE CASE AND RESULT
In this section we examine a real world use case which

combines the new user-defined function feature with existing
Aster infrastructure to address a complex business analytic
problem in a single Aster query. The business scenario is that a
movie producer would like to conduct a marketing survey about
audiences’ impression on their latest movie XYZ based on
geography location in the United States. They collect large
number of tweets with comments about the movie and the users’
locations. The survey is converted to solving an analytic
problem containing four tasks: extract relevant data, perform
sentiment analysis, perform geographic analysis and compute
simple statistics based on the analysis results. Figure 12 shows
an elegant solution that completes these analytic tasks in a single
Aster SQL query.

1. SELECT state,
2. AVG(sentiment_score) AS average,
3. COUNT(sentiment_score) AS count,
4. STDDEV(sentiment_score) as stddev,
5. MAX(sentiment_score) AS max,
6. MIN(sentiment_score) AS min
7. FROM (
8. SELECT tweet_id,
9. PointInPolygonScalarUDF(
10. on(coordinates_latitude,
11. coordinates_longitude)
12. Reference('stateCoordinates.csv')
13. Boundary('state_coordinates')
14. Tag('state_full_name')
15.) AS state,
16. ExtractSentimentScalarUDF(
17. on(tweet_text)
18. Model('dictionary:dictionary.csv')
19. Type('integer')
20. Range(-2, 2)
21.) AS sentiment_score,
22. tweet_text,
23. coordinates_latitude,
24. coordinates_longitude
25. FROM (
26. SELECT *
27. FROM JsonTweetParserMapReduceTableUDF(
28. on tb_raw_tweets
29. Fields('id:tweet_id',
30. 'text:tweet_text',
31. 'latitude:coordinates_latitude',
32. 'longitude:coordinates_longitude'
33.))
34.) AS tweets
35.) AS sentiment_geo
36. GROUP BY state
37. ORDER BY state;

Figure 12: Aster query performs sentiment and geo analyses on tweets.

JsonTweetParserMapReduceTableUDF (lines 27-33) is a
custom MapReduce function that pulls the target fields, id, text,
latitude and longitude from the JSON tweets and assigns the
values into columns tweet_id, tweet_text, coordinates_latitude
and coordinates_longitude in the output table, respectively.

PointInPolygonScalarUDF (lines 9-15) and Extract-
SentimentScalarUDF (lines 16-21) are user-defined scalar
functions. PointInPolygonScalarUDF finds the geographic
region of the coordinates. It inputs coordinates_latitude and
coordinates_longitude and outputs the full name of the state to
which the coordinates belong. File stateCoordinates.csv is the
geographic reference which outlines the boundary of each state
in the United States. state_coordinates and state_full_name are
key names in stateCoordinates.csv. state_coordinates marks the
coordinates of the geographic region and state_full_name
indicates what name to output. ExtractSentimentScalarUDF
computes sentiment scores based on dictionary.csv, a sentiment
dictionary containing common English words with positive and
negative scores. Argument Type and Range set the function
output to be integer and be in the adjusted range of [-2, 2].
PointInPolygonScalarUDF and ExtractSentimentScalarUDF
are in the same statement so multi-compute is applied.

After geo and sentiment analyses, built-in aggregate
functions are applied to compute simple statistics such as
average, count, standard deviation, maximum and minimum.
We do not write user-defined aggregate functions because they
are to complement aggregate computation when built-in
functions are not available. Another reason is that built-in
functions are native functions running inside the worker
database and perform better than out-of-process user-defined
aggregate functions. Finally and more importantly, we would
like to show in the solution that the new user-defined functions
are seamlessly integrated with existing Aster features such
MapReduce table functions, database built-in functions and any
SQL operations.

Figure 13: Visualization of the sentiment and geo analyses.

A visual representation of the insights gained in big data
discovery is important to help draw conclusions and make
decisions. We apply Aster 6’s free visualizations to visualize our
analytic results (Figure 13). The results can also be easily
visualized by 3rd party visualization tools because Aster supports
standard SQL.

A. Results
The Aster query is evaluated in a commodity cluster using

different sizes of input tweets and the results are compared with

open source solution Hadoop Pig and Hive. The commodity
cluster consists of 6 nodes, each of which has 12 2.8GHz cores
and 94 GB RAM. The cluster is configured as 1 queen node and
5 worker nodes for Aster and is reconfigured as 1 namenode and
5 datanodes when running Hadoop. The numbers of input tweets
are 1 million, 2 million, 4 million, 8 million, 16 million, 32
million, 65 million, 131 million, 262 million, 524 million and 1
billion. As the average size of a tweet is 2.7 KB, the data
volumes we examine are 2.7 GB, 5.4 GB, 10.8 GB, 21.6 GB,
43.2 GB, 86.4 GB, 172.8 GB, 345.6 GB, 691.2 GB, 1.35 TB and
2.7 TB, respectively.

In the Hadoop approach, we implement the same algorithms
in Pig UDF to extract data and perform sentiment and geo
analyses. Hive queries the average, count, standard deviation,
maximum and minimum of the analysis results and sorts them
by geographic locations. The code size and the development
cost are both more than twice as Aster’s. The queries are about
100 lines while the Aster SQL is 37. Changing languages and
platforms introduces additional development costs. The Pig
scripts are written in Pig Latin and tested in Pig. The Hive
scripts are composed using HiveQL and examined in Hive.
When completed, they are assembled in another script and being
tested again as a complete data pipeline. The Aster script is
developed in SQL and on a single platform, easier than the
Hadoop ones.

Table 1: Aster vs. Pig and Hive (in seconds)

Tweet Num A P H PH PH/A

1024000 10 105 52 157 15.700

2048000 13 106 55 161 12.385

4096000 25 111 52 163 6.520

8192000 53 127 53 180 3.962

16384000 77 172 55 227 2.948

32768000 164 254 57 311 1.896

65536000 319 429 62 491 1.539

131072000 611 750 73 823 1.347

262144000 1155 1414 126 1540 1.333

524288000 2279 2750 199 2949 1.294

1048576000 4594 5372 373 5745 1.251

Table 1 shows the results of the experiments. The number of
input tweets is shown in the leftmost column. Execution time in
seconds for Aster 6.20 (A), Pig (P), Hive (H) and the sum of the
Pig and Hive time (PH) are shown in the other columns. The
rightmost column shows the ratio of the combined Pig and Hive
times to the Aster 6.20 query time. Aster performs more than 5.5
times faster than Pig and Hive when the workload is 4 million
records or less, 1.9 times faster when the workload is 4-16
million records, 25% faster when the workload is more than 16
million records.

The experiment results demonstrate that Aster performs
better than Pig and Hive for all tested input data sizes. However,
the performance advantage is less significant as the size of input
data increases. One possible reason is that Hadoop engines are
not good at processing small and medium data volumes. For
example, Pig and Hive suffers from fixed overheads for inputs
less than 16 million records or 43.2 GB data in this use case. In
contrast, Aster’s fixed overhead is small and the system scales
linearly from small to large workloads.

It is also observed that Aster does not utilize data replicas in
different workers like Hadoop MapReduce does. When the data
size increases significantly, intra-cluster data transfers become
the performance bottleneck. This shows us a potential
opportunity that utilizing intra-cluster data replicas may further
raise Aster’s performance advantage.

1) Multi-Compute
Multi-compute is a differentiating feature in the user-defined

scalar and aggregate infrastructure. In this section we examine
its impact on performance. We rewrite the scalar query (lines 8-
35) in Figure 12 to two embedded queries in Figure 14 and
executed them using the same data and on the same hardware.

1. SELECT tweet_id,
2. PointInPolygonScalarUDF(
3. on(coordinates_latitude,
4. coordinates_longitude)
5. Reference('stateCoordinates.txt')
6. Boundary('state_coordinates')
7. Tag('state_full_name')
8.) AS state,
9. sentiment_score,
10. tweet_text,
11. coordinates_latitude,
12. coordinates_longitude
13. FROM (
14. SELECT tweet_id,
15. ExtractSentimentScalarUDF(
16. on(tweet_text)
17. Model('dictionary:dictionary.txt')
18. Type('integer')
19. Range(-2, 2)
20.) AS sentiment_score,
21. tweet_text,
22. coordinates_latitude,
23. coordinates_longitude
24. FROM (
25. -- Aster MapReduce json parser
26.) AS tweets
27.) AS tweets_sentiment

Figure 14: Rewrite the multi-compute sentiment and geo query to two
embedded queries.

Figure 15: Comparison of multi-compute and embedded queries.
Horizontal axis is the size of source data in million tweets. Vertical
axis shows the ratio of multi-compute runtime vs. embedded query
runtime in percentage. Multi-compute brings in 40% or more
performance improvement for all tested input sizes.

Table 2 shows the results of the experiments. The number of
input tweets is shown in the leftmost column. Execution times in
seconds for the multi-compute query (MC), the sentiment
analysis query (S), the point-in-polygon analysis query (P) and
the embedded queries (EQ) are shown in the other columns.
Figure 15 compares the runtime of multi-compute and
embedded queries in bar charts. Multi-compute brings in 40% or
more performance improvement for all tested input sizes.

Table 2: Multi-compute vs. Embedded queries (in second)

Tweet Num MC S P EQ

1024000 3 3 3 6

2048000 4 3 4 7

4096000 6 4 5 9

8192000 10 7 9 16

16384000 18 12 16 28

32768000 34 21 30 51

65536000 66 39 56 95

131072000 128 79 111 190

262144000 254 151 208 359

524288000 492 302 417 719

1048576000 997 574 870 1444

VI. RELATED WORK
User-defined scalar and aggregate functions are lasting

database features. They extend the database capability through
allowing customization of data processing [25, 24, 26]. Popular
standalone relational database management systems (RDBMS)
often offer extensive support to scalar and aggregate functions.
E.g. MySQL [26] and PostgreSQL [24] both support static user-
defined scalar and aggregate functions in multiple programming
languages. As the functions are static functions, the input and
output schemas are pre-defined when they are composed.

User-defined scalar and aggregate functions are also widely
supported in parallel RDBMS’s [14, 3, 23, 33, 20, 21, 27, 28,
29, 30, 1]. Many parallel RDBMS’s derived from MySQL or
PostgreSQL support user-defined scalar and aggregate functions
in the same static fashion in a distributed environment, e.g. [28,
1]. Other widely used commercial parallel RDMBS’s such as
Oracle [27], Microsoft SQL Server [30], IBM DB2 [21] and
SAP Sybase [29], offer different level of support for user-
defined functions in different programming languages on
parallel planning and execution. Aster 6.20 is unique from these
systems in that the scalar and aggregate functions are
polymorphic. The function schemas are determined at runtime
instead of function composition time hence providing more
flexibility. Furthermore, Aster 6.20 can integrate functions of
multiple programming paradigms.

In recent years, there has been widespread interest in the
MapReduce and Graph processing frameworks [22, 6, 13, 8, 4,
7, 18, 5]. Pig [13, 8] and Hive [4, 7] are platforms in the Hadoop

[6] ecosystem that translate SQL-like high level algebras to
MapReduce jobs executed in parallel. Like Aster 6.20, they
provide a user-defined function interface for custom data
processing. The advantage of these two systems is that they
provide an access to the parallel MapReduce framework
capability with the option to focus only on custom low level
programming logic. The disadvantage is that their high level
abstractions are not compatible with SQL hence it is hard to
directly integrate them with SQL based applications.

Graph analytics is another important big data discovery
technique. Graph capabilities in Aster 6.20 are similar to
distributed Graph processing frameworks like Pregel [19] and
Giraph [5]. Aster 6.20 and these systems all employ bulk
synchronous processing (BSP) execution and provide vertex-
oriented programming interfaces. Aster 6.20 differs from these
MapReduce and Graph systems in that it abstracts scalar,
aggregate, MapReduce and Graph programming paradigms in
the standard SQL interface. This enables a general support of
dataflow between different programming paradigms and
seamless integrations with SQL application ecosystems.

VII. CONCLUSIONS
In this paper we have presented SQL-SA, Aster’s SQL user-

defined scalar and aggregate infrastructure for big data
discovery. It extends existing Aster database’s capability to
support polymorphic and parallelizable user-defined scalar and
aggregate functions. The solution is tightly integrated with
Aster’s MapReduce, Graph and SQL features. The users can
easily perform diverse analytic tasks in SQL without switching
between big data tools and platforms. Furthermore, the tight
integration between user-defined scalar functions, aggregate
functions, MapReduce functions, Graph functions and other
SQL operations offer a complete global view to optimize and
execute the analytic tasks and achieve better performance.

ACKNOWLEDGMENTS
We would like to thank Raghu Chakravarthi, Michael McIntire,
Carson Schmidt, Jane Blanchard and Partha Sen for their
leadership and support for this project. We would also like to
thank Derrick Kondo, Yingjie He, Sangeet Lohariwala,
Mingfeng Tan, Milind Joshi, Shardool Shardool, Karl
Schnaitter, Lin Shao, Aditi Pandit, Anjali Betawadakar-
Norwood, Vrishal Kulkarni and Priya Govindarajan for helpful
discussions about Aster SQL, MapReduce and Graph. Manohar
Dodballapur, Gregg Lefevre, Phil Tep, Hal Lee and Aaron
Dummer set up the development environment for Aster and
Fuzzy Logix teams. John Pfuntner and Mark Gilkey tested the
infrastructure functionality. Rosanne Shiriwastaw and Theresa
McKay documented the developer guides. Eugene Tuan, Lin
He, Xiao Pu, Sabrina Xu and Wenjie Wu gave suggestions to
the use case and the algorithm designs. Tan Boon and Luan
Tran provided an evaluation cluster. Jeff Naughton, Robert Hou
and John Beresniewicz reviewed the paper. Final thanks to the
rest of the Aster engineering team with whom we build an
excellent big data discovery platform and engineering team
together.

REFERENCES
[1] Amazon Redshift Documentation. https://aws.amazon.com/documenta

tion/redshift/
[2] A. Pandit, D. Kondo, D. Simmen, A. Norwood and T. Bai. Accelerating

big data analytics with collaborative planning in Teradata Aster 6. In
ICDE, 2015.

[3] A. Shatdal and J.F. Naughton. Adaptive parallel aggregation algorithms.
In SIGMOD, pp. 104-114, 1995.

[4] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. In VLDB, 2009.

[5] Apache Giraph 1.1.0. http://giraph.apache.org/
[6] Apache Hadoop 2.7. https://hadoop.apache.org/docs/stable/
[7] Apache Hive 1.2.1. https://hive.apache.org/
[8] Apache Pig 0.15.0. https://pig.apache.org/
[9] Aster Analytics Foundation User Guide 6.20.
[10] Aster Database Server Platform Matrix 6.20.
[11] Aster Developer Guide 6.20.
[12] Aster Development Environment User Guide 6.20.
[13] C. Olston, B. Reed, U. Srivastava, R. Kumar and A. Tomkins. Pig latin: a

not-so-foreign language for data processing. In SIGMOD, 2008.
[14] D. DeWitt and J. Gray. Parallel database systems: the future of high

performance database systems. Commun. ACM, vol 35, 6, June 1992.
[15] D. Laney. 3D data management: controlling data volume, velocity and

variety. Gartner. Retrieved 6, February 2001.
[16] D. Simmen, K. Schnaitter, J. Davis, Y. He, S. Lohariwala, A. Mysore, V.

Shenoi, M. Tan and Y. Xiao. Large-scale graph analytics in Aster 6:
bringing context to big data discovery. In VLDB, 2014.

[17] E. Friedman, P. Pawlowski and J. Cieslewicz. SQL/MapReduce: A
practical approach to self-describing, polymorphic, and parallelizable
user-defined functions. In VLDB, 2009.

[18] Fuzzy Logix DB Lytix on Aster User Manual.
[19] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, I. Horn, N. Leiser

and G. Czajkowski. Pregel: a system for large-scale graph processing. In
SIGMOD, 2010.

[20] HP Vertica Analytics Platform Version 7.1.x Documentation.
http://my.vertica.com/docs/7.1.x/HTML/index.htm

[21] IBM DB2 10.5 for Linux, UNIX, and Windows Developing User-defined
Routines (SQL and External). IBM Corp., 2013.

[22] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Commun. ACM, vol 51, 1, pp. 107-113, January 2008.

[23] M. Jaedicke and B. Mitschang. On parallel processing of aggregate and
scalar functions in object-relational DBMS. In SIGMOD, 1998.

[24] M. Stonebraker and G. Kemnitz. The POSTGRES next generation
database management system. Commun. ACM, vol. 34, 10, Oct. 1991.

[25] M. Stonebraker, J. Anton and E. Hanson. Extending a database system
with procedures. TODS, vol. 12, 3, pp. 350-376, Sept. 1987.

[26] MySQL 5.6 Reference Manual. https://dev.mysql.com/doc/refman/5.6/en
[27] Oracle Database Online Documentation 12c Release 1. https://docs.

oracle. com/database/121/index.html
[28] Pivotal Greenplum Database Documentation v4.3.6. http://gpdb.docs.

pivotal.io/gpdb-436.html
[29] SAP Sybase IQ 16. http://infocenter.sybase.com/help/topic/com.

sybase.infocenter.dc01034.1603/doc/pdf/iqudf.pdf
[30] SQL Server 2014 Database Engine. https://msdn.microsoft.com/en-

us/library/ms187875
[31] Teradata Aster Big Analytics Appliance: An Industry First.

http://assets.teradata.com/resourceCenter/downloads/Brochures/EB6434_
rev.pdf?processed=1

[32] TPC. TPC Benchmark™ DS (Decision Support). Version 2.1.0,
Transaction Processing Performance Council, Nov. 2015.

[33] Y. Ye, K. A. Ross, Kenneth and N. Vesdapunt. Scalable aggregation on
multicore processors. In DaMoN. Pp. 1-9, 2011.

