
Leveraging Parallelism for Multi-dimensional Packet
Classification on Software Routers

Yadi Ma
University of Wisconsin

Madison, WI, USA
yadi@cs.wisc.edu

Suman Banerjee
University of Wisconsin

Madison, WI, USA
suman@cs.wisc.edu

Shan Lu
University of Wisconsin

Madison, WI, USA
shanlu@cs.wisc.edu

Cristian Estan
∗

NetLogic Microsystems
Mountain View, CA, USA

cestan@netlogicmicro.com

ABSTRACT

We present a software-based solution to the multi-dimensional
packet classification problem which can operate at high line
speeds, e.g., in excess of 10 Gbps, using high-end multi-
core desktop platforms available today. Our solution, called
Storm, leverages a common notion that a subset of rules are
likely to be popular over short durations of time. By iden-
tifying a suitable set of popular rules one can significantly
speed up existing software-based classification algorithms. A
key aspect of our design is in partitioning processor resources
into various relevant tasks, such as continuously computing
the popular rules based on a sampled subset of traffic, fast
classification for traffic that matches popular rules, dealing
with packets that do not match the most popular rules, and
traffic sampling. Our results show that by using a single
8-core Xeon processor desktop platform, it is possible to
sustain classification rates of more than 15 Gbps for rep-
resentative rule sets of size in excess of 5-dimensional 9000
rules, with no packet losses. This performance is signifi-
cantly superior to a 8-way implementation of a state-of-the-
art packet classification software system running on the same
8-core machine. Therefore, we believe that our design of
packet classification functions can be a useful classification
building block for RouteBricks-style designs, where a core
router might be constructed as a mesh of regular desktop
machines.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-
working—Routers

∗Work done while this author was at UW-Madison.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’10, June 14–18, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0038-4/10/06 ...$10.00.

General Terms

Algorithm, Design, Performance

Keywords

Packet classification, Storm, parallelism

1. INTRODUCTION
The problem of packet classification has a significant role

in many important networking functions, both at the edge
and in the core. Data packets received at a router’s input
port are classified to determine an action to be performed
for each such packet. The action may include forwarding
the packet, routing the packet to a particular application,
providing expedited delivery of the packet, discarding the
packet, etc. Packet classification is needed for services that
require network traffic (i.e., packets) to be distinguished and
isolated into different flows for suitable processing. There
are many examples of such services: packet filtering, to deny
all packets from a known source; policy routing, to route all
VoIP traffic over a separate network; and traffic shaping,
to ensure that no one source overloads the network. To
implement these services, a packet classifier is provided with
a set of rules along with associated actions to be taken for
a packet that matches these rules.

Many common packet classification techniques utilize mul-
tiple packet header fields. Firewalls and NATs, for example,
define rules based on the 5-tuple of IP addresses, port num-
bers, and protocol fields. The time or storage complexity of
multi-dimensional packet classification grows exponentially
with the number of fields [11] and makes it challenging to
develop a fast-performing solution in software. To alleviate
this problem, many classification systems rely on specialized
hardware, such as Ternary Content Addressable Memory
(TCAMs), that allow simultaneous match of a single packet
against a large number of rules within a fixed number of
clock cycles.

In this paper, we ask a complementary question. Given
the emerging capabilities of the desktop platforms today,
with multiple cores and large memory banks, what kind
of packet classification speeds would be achievable by such
platforms? Our question is partially motivated by the re-
cent work in the RouteBricks project [4], where the au-
thors have explored the feasibility of building high-speed

227



software routers using a mesh of off-the-shelf desktop-based
servers that parallelize router functionality both across mul-
tiple servers and across multiple cores within a single server.

In particular, we ask the following question: If we were
to implement classification using state-of-the-arts desktops,
given that it may find applications in router design (e.g.,
RouteBricks), then what classification speeds can be achieved
on it, by designing a fully software-based classification sys-
tem that can exploit the degree of parallelism provided by
this particular platform? In answering this question, we do
not define a new classification algorithm that would out-
perform prior best known examples, e.g. HyperCuts [13].
Instead, our approach is to design a new software system
for classification that takes existing classification algorithms
and partitions critical tasks into multiple threads that ef-
fectively leverage desktop platforms to meet various com-
putation and memory access needs. Our approach utilizes
a common idea of caching — an idea that has been widely
adopted by the networking and systems community. Tech-
niques such as packet caches identify popular packet headers
and their corresponding actions for faster IP lookups and
packet classification, while techniques such as Smart Rule
Cache (SRC) [5] cache popular rules in small amounts of
TCAMs that are assumed to be present in router linecards.
In this paper, we build upon the basic observation of SRC,
and design a Software-only rule cache for multi-core desk-
top platforms, or Storm.

1.1 Design overview of Storm
In designing Storm, we leverage the prior observation [5],

that in any ruleset, there often exists a relatively small sub-
set of popular rules. 1 SRC as a possible classification system
based on this observation is shown in Figure 1, in which
a small number of popular rules are stored in a TCAM.
Each incoming packet is first classified against all rules in
the TCAM. If the packet does not match any of the rules
in the TCAM, it is forwarded to the network processor that
compares the packet in software against all rules in the rule-
set. The performance gains in SRC are achieved when a
large fraction of packets are classified in the TCAM itself.

Incoming 

packets

Popular rules 

in TCAM

Packets classified

 by TCAM

Instantaneous

update of 

popular rules 
Original 

ruleset

Packets not 

classified by TCAM

Software process

(classification 

using entire ruleset)

Packets classified 

in software

Figure 1: Framework of SRC, its use of TCAMs,
and simplifying assumptions.

The SRC work assumes that the TCAM can be updated
with the new set of rules instantaneously, and so the newly
updated popular rules can be applied to the very next packet.
Since the work was based on packet level simulations, the

1The number of popular rules can be reduced even further
through a set of operations that can optionally merge, add,
or split existing rules in a manner that the semantics of
classification is left unchanged.

real impact of these issues on end-to-end performance met-
rics such as realizable traffic throughput was not investi-
gated.

The goal of this work is to design an overall system that
can make a rule caching system practical and usable in
a state-of-the-art multi-core desktop platform, a platform
that does not carry any specialized matching hardware like
TCAMs. We do this by leveraging the availability of multi-
ple cores in the system to partition various tasks of a rule
caching system.

In particular, the overall approach in Storm has been to
design a multi-threaded software-only design of the system
that balances the throughput of multiple constituent compo-
nents, such that the overall throughput of the entire system
is maximized.

While our design of Storm is implemented and evaluated
for a popular multi-core desktop platform, this software-only
solution can be embedded in any other platform, including
existing multi-core routing substrates, e.g. Cavium’s family
of Octeon-based network processor boards [10].

1.2 Use of parallelism in Storm
As mentioned, Storm is not a new packet classification

algorithm, but rather is a parallelized software system that
uses some best-known packet classification algorithm as one
of its software components. Other components of Storm use
the approach of matching packets against a small number of
popular rules to significantly improve upon the classification
speed provided by the chosen packet classification algorithm.
In our work, we use HyperCuts [13] as an example of such
a packet classification algorithm within Storm. The design
of Storm has been able to improve the performance of Hy-
perCuts by a factor of two or more.

Given a multi-core system, there are multiple natural ways
of implementing an efficient multi-dimensional packet clas-
sification system — data parallelism, task parallelism, and
pipeline parallelism. A simple form of parallelism is the data
parallel approach, where each core executes an identical ver-
sion of the same packet classification algorithm, e.g. Hyper-
Cuts. Incoming packets are sent to different cores in a round
robin fashion. Such an approach can provide a throughput
gain (over a single core system) that is proportional to the
number of cores in the system. Storm, however, effectively
combines all three forms of parallelism and performs signif-
icantly better than the data parallelism approach alone.

Storm is based on the idea that only a small subset of
rules are likely to be popular, although the subset of popu-
lar rules can change frequently over time. Hence, it parti-
tions the classification problem into four tasks: a) identify
and cache rules that are deemed to be popular at the cur-
rent instant, b) match incoming packets against these pop-
ular rules, c) perform continuous traffic sampling for con-
tinued re-computation of rule popularity, and d) perform a
full-software classification using the entire set of rules, for
those packets that cannot be classified using the popular
rules alone.

While the SRC approach also involves the above set of
tasks, its simplifying assumptions imply that tasks a) and
c) are of zero cost, and task b) is implemented in specialized
hardware (TCAM). Thus in SRC, task d) is the only software
component, making multi-core systems somewhat irrelevant.

We now describe how different forms of parallelism are
applied in Storm to achieve the various performance gains.

228



• Task parallelism. In task parallelism, we identify cer-
tain software components that are completely indepen-
dent of each other. In the case of Storm, the full soft-
ware classifier is completely independent of the rule
cache updater, and can be executed in parallel.

• Data parallelism. As described, this is a natural form
of parallelism for many networking tasks, where differ-
ent packets may be processed by identical task mod-
ules independently and in parallel. Given that tasks
in Storm take different amounts of time and have var-
ious dependencies on other tasks, it is advantageous
to dedicate additional computation resources to tasks
that form a bottleneck. Hence, in some cases we dedi-
cate multiple cores to execute the same identical task
in parallel (e.g., multiple threads for the cache up-
date task and multiple threads that perform match-
ing against the rule cache). The number of cores for a
given task is sometimes also adjusted dynamically to
match throughput requirements of that task. This ap-
proach to data parallelism helps alleviate bottlenecks
that might otherwise occur in the system.

• Pipeline parallelism. This is a third form of parallelism
in which multiple tasks need to be executed in a spe-
cific pre-defined order for each incoming packet. For
Storm, packets that cannot be matched by the rule
cache, need to be then classified by the full software
classifier. In such a structure, parallelism is exploited
following a simple producer-consumer pattern between
the two classification stages, each operating as a sepa-
rate task.

Thus, Storm uses a combination of these parallelism al-
ternatives to achieve its performance gains.

In summary, the following are the main contributions of
this work:

• A practical, multi-threaded, software-only packet clas-
sification system: We present a software-only packet
classification system that can take advantage of ex-
isting multi-core platforms. The implementation has
been evaluated using real traffic traces and large real
rulesets and on 8-core desktop platforms. For a rule-
set consisting of more than 9000 5-dimensional rules,
Storm achieves a sustained throughput of more than 15
Gbps, while a 8 simultaneous instances of HyperCuts
on the same platform achieves a sustained throughput
of less than 4 Gbps.

• Design of dynamic balancing of computation resources
to tasks: A system typically has a bottleneck that de-
termines the throughput limit. Storm has multiple
tasks, and the task that is the bottleneck might be
different depending on the traffic pattern and rule-
set. Hence, to be continuously efficient, Storm tries
to dynamically balance the amount of computation re-
sources (threads) dedicated to each task.

2. PROBLEM STATEMENT OF PACKET

CLASSIFICATION
Given a set of strictly ordered rules, the packet classifica-

tion problem is to find out the first (highest priority) rule in
the rule set that matches each incoming packet at a router.

Table 1: A simple example with 8 rules on 5 fields
Rule F1 F2 F3 F4 F5 Action
R0 000* 111* 10 * UDP action0

R1 000* 10* 01 10 TCP action1

R2 000* 01* * 11 TCP action0

R3 0* 1* * 01 UDP action2

R4 0* 0* 10 * UDP action1

R5 000* 0* * 01 UDP action1

R6 * * * * UDP action3

R7 * * * * TCP action4

Table 2: A range based representation of rules in
Table 1

Rule F1 F2 F3 F4 F5 Action
R0 0-1 14-15 2 0-3 0 action0

R1 0-1 8-11 1 2 1 action1

R2 0-1 4-7 0-3 3 1 action0

R3 0-7 8-15 0-3 1 0 action2

R4 0-7 0-7 2 0-3 0 action1

R5 0-1 0-7 0-3 1 0 action1

R6 0-15 0-15 0-3 0-3 0 action3

R7 0-15 0-15 0-3 0-3 1 action4

Each rule is associated with an action. After classification,
the corresponding action will be performed for each packet.

Suppose the rule database in a router contains a rule set
of N rules, and each rule contains K fields. We consider
the case where K = 5. The five fields are source IP ad-
dress, destination IP address, source port, destination port
and protocol type, respectively. There are three types of
matches a field can have: exact match (protocol type), pre-
fix match (source/destination IP address), or range match
(source/destination port).

Table 1 shows a simple example with eight rules on five
fields. In exact match, the header field of a packet should
match the rule field exactly. For example, protocol type
could be TCP or UDP. In a prefix match, the rule field
should be a prefix of the header field. Suppose header field
2 of a packet is 1010. In Table 1, it matches the second field,
F2, of rule R1. In a range match, the header value should
lie in the range specified by the rule.

If each of the header fields of a packet P matches each
of the corresponding fields in a rule R, the packet P is said
to match rule R. If P matches multiple rules, the first rule
(with the minimum index) is returned.

Table 2 is a range representation for the set of rules in
Table 1. Suppose the entire space for F1 through F5 is [0,
15], [0, 15], [0, 3], [0, 3], [0, 1], respectively.

3. STORM
Storm is a software-based solution of the multi-dimensional

packet classification problem using multi-core desktop plat-
forms. Although hardware implementation traditionally has
a performance advantage, a pure-software implementation
has the potential to become more appealing, because it is
hardware-independent and thus provides better extensibil-
ity. In addition, the increasing amount of parallel compu-
tation resources available in desktop platforms provides an
opportunity for software implementation to catch the line
speed requirement (e.g., in excess of 10 Gbps).

229



3.1 Storm Design
Our design (shown in Figure 2) is guided by the three

types of parallelism opportunities in Storm packet classifi-
cation. The whole system includes three sets of working
threads. They are:

• Rule cache threads: that match incoming packets against
popular rules using a simple, software-based linear search
(Task b). A linear search is sufficient since there are
only a small number of popular rules at any time (<
30).

• Full software classifier threads: that carry out full software-
based classification (with the HyperCuts algorithm)
using the entire ruleset (Task d). These threads act
on the packets that could not be classified by the pop-
ular rules.

• Sampling and rule cache updater threads: that con-
tinuously sample incoming traffic, attempt to identify
the evolving set of popular rules, and update the rule
caches which are used by the rule cache threads (Tasks
a and c).

The specific algorithms used to identify popular rules in
the rule cache and how to evolve these rules (rule cache
update task) is presented in section 3.2.

Data parallelism is leveraged by creating multiple instances
of each of these threads and allowing them to operate on dif-
ferent incoming packets. Different threads are connected by
shared queues in order to exploit the pipeline parallelism
between them, e.g., the rule cache updater and the full soft-
ware classification threads. The task of traffic sampling is
relatively simple and is closely tied to the rule cache update
component. After careful experimentation, we found it ad-
vantageous to fold it within the rule cache updater thread.L i s t s o f p o p u l a r r u l e s O r i g i n a lS a m p l e dp a c k e t sL i s t s o f p o p u l a r r u l e so v e r t i m e gr u l e s e tR u l e C a c h e U p d a t e r( c o m p u t e p o p u l a r r u l e s ) D a t as t r u c t u r e si n H R CP a c k e t s n o t c l a s s i f i e db y p o p u l a r r u l e s F u l l s o f t w a r ec l a s s i f i e r( l i f i i t h r e a d sR u l e C a c h e( c l a s s i f i c a t i o n u s i n gp o p u l a r r u l e s ) ( c l a s s i f i c a t i o nu s i n g e n t i r e r u l e s e t )

Figure 2: Architecture of Storm.

We also considered other design choices. One alternative
design is shown in Figure 3. This design follows the data
parallelism idea used by previous software router implemen-
tations [4, 9]. In this alternate design, we could take all the
different task components of Storm, and fold them into a
serial sequence of tasks. Each core implements a full version
of Storm that acts on separate sets of incoming packets for
data parallelism.

We prefer our design (Figure 2) for several reasons. First
of all, this simple data-parallelism design does not take full
advantage of Storm’s three types of inherent parallelism.
Second, it causes longer delay in cache-based packet clas-
sification. Under Storm, packets that miss the rule cache

need a much longer processing time than packets that hit
the cache. Our design leverages pipeline parallelism to guar-
antee short processing time for cache-hit packets. However,
in the alternative design, every queuing packets will suffer a
long delay and thus a high packet drop rate whenever there
is a small burst of cache-miss packets. Third, some tasks
are not suitable for parallelism. The sampler module that is
responsible for calculating evolving rules and updating the
rule cache is actually very difficult to parallel, which is not
an issue in our design, but is a problem in the alternative
design. Finally, our design also provides better extensibility
by separating different tasks into different threads.

Figure 3: An alternate architecture that only exploit
data parallelism.

3.1.1 Thread Assignment

The immediate question following our architecture design
is how many threads should be assigned for the three differ-
ent tasks: rule-cache-lookup, full-software-classification and
rule-cache-updating. To answer this question we need to
consider the underlying hardware configuration, the through-
put and packet drop rate, and the implementation complex-
ity. In the following, we present a theoretical model, followed
by our static thread assignment and dynamic adjustment al-
gorithms.

Theoretical Model.
We formalize this thread assignment problem into an op-

timization question with the system throughput as the opti-
mization target. Specifically, the inverse of system through-
put T can be approximated by:

1

T
=

d1

t1
× r +

d2

t2
× (1 − r) + C,

where d1 and d2 are average delays of fast classification
by rule cache and slow classification by the full software
classifier. t1 is the number of rule cache threads and t2 is
the number of full software classifier threads. N is the to-
tal number of threads available for these two stages (i.e.,
t1 + t2 = N). r is the average rule cache hit ratio and C is
a constant number representing queuing delay, synchroniza-
tion overhead, etc.

To maximize the system throughput and decide the op-
timal number of threads for each task, we take the partial
derivative of t1 on both sides and make it equal to 0:

∂ 1
T

∂t1
= −d1r

t21
+

d2(1 − r)

(N − t1)2
= 0.

Solving the above equation, we get

230



t1 = N

√
d1r

p

d2(1 − r) +
√

d1r
(1)

This formula provides us with a theoretical guideline on
thread assignment. Here, N is affected by the number of
cores in the machine as well as the number of threads that
are assigned for the rule cache updater. The cache hit ratio
r is normally a stable value under our Storm algorithm. Its
exact number can be affected by the rule cache updating
task and the incoming packets.

We decided to use only one thread to carry out the sam-
pling and rule cache updating task, because it is difficult
to coordinate multiple threads in calculating evolving rules.
We illustrate this point by an example. Suppose we have
two rule cache updater threads and each of them keeps a
separate copy of the evolving rules. After an update, each
rule cache updater thread copies its own evolving rules to
the rule cache. Initially, at time t0, each rule cache updater
thread starts with an empty evolving rule list. Suppose at
time t1, the first rule cache updater thread finishes its first
update and creates an evolving rule r1, which is copied to the
rule cache. Shortly after, at time t2, the second rule cache
updater thread finishes its update and creates an evolving
rule r′1. At this point, if we copy r′1 to the rule cache, we
lose the result from the first update, i.e., r1. Trying to merge
the results will become complicated, since we may need to
compare each evolving rule in a rule cache updater thread’s
evolving rule list to the rules in the rule cache to decide
which rules are expanded and how to merge the rules. Ex-
perimental results show that using more than one rule cache
updater threads does not improve cache hit ratio, rather it
slows down the classification because of the rule cache up-
dating and synchronization overhead. Since using only one
rule cache updater thread already gives a cache hit ratio of
above 95%, we decide to keep one rule cache updater thread.

Static thread assignments on 8-core machines.
Guided by the above theoretically analysis, we explore

thread assignment on 8-core desktop platforms.
Our first decision is to control the total number of threads

to be around 8 in order to avoid context switch overhead.
We have decided to use only 1 thread to carry out the rule
cache updating task. This gives N to be around 7.

Next, we measured the average delay for rule cache lookup,
d1, and the average delay of full software classification (Hy-
perCuts), d2, in our sequential implementation. They are
about 200 ns and 2000 ns, respectively. We also measured
the cache hit ratio for multiple rulesets and find it to be
around 0.95. Plug these numbers into the above equation,

we get t1 = 7
√

200r√
2000(1−r)+

√
200r

, between 3 and 4.

Another consideration we had is the synchronization over-
head, a big component of the constant delay (C) in our for-
mula. The queues between rule cache lookup and the full
software classification are the main synchronization spots in
Storm. As we will explain later, in order to minimize the
synchronization overhead, we decide to make the number of
cache threads an exact multiple of the number of full soft-
ware classifiers, or the other way around.

Putting all these together, we get a few potential thread
partitions for the three tasks in Storm: 3-3-1, 4-2-1, and 2-4-
1 (the format is RuleCacheThread–FullSoftwareClassifierThread–
RuleCacheUpdaterThread). As we will see in our experi-

ments, our partitions have successfully achieved high through-
put, low packet drop rates, and are overall much better than
other partitions.

Dynamic thread assignment.
One concern with our static thread assignment is that it

assumes stable total number of threads, N , and stable cache
hit ratio, r, in our thread assignment equation 1. Although
a stable N can be assumed when the machine is dedicated
for routing, a stable cache hit ratio may not always be true
depending on the packet workload. Therefore, we need to
consider dynamically changing our thread assignment to ac-
commodate the changing cache hit ratio.

We implement a simple dynamic thread assignment algo-
rithm on a 8-core machine. Initially, we create 4 rule cache
threads, 4 full software classification threads and 1 rule cache
updating thread, and then switch between 4-2-1 and 2-4-1
accordingly. Depending on the available buffer size in the
shared queues between rule cache threads and full software
classifier threads, we decide to idle either 2 of the cache
threads or 2 of the full software classifier threads ( these
threads are blocked without taking CPU resources). After
each cache update, the rule cache updater thread will check
the available buffer size. We choose to use the rule cache
updater thread to do the check because it is independent
of other threads. If we do this in a rule cache thread or a
software classifier thread, it will slow down the job of the
thread, which is unfair to the traffic of that thread. We de-
fine two thresholds, r1 and r2, where 0 ≤ r1 < r2 ≤ 1. We
also define the total buffer size in the shared queues to be B.
If the currently available buffer size is larger than r2 × B,
we decide to switch to 2-4-1 by idling 2 of the rule cache
threads and waking up 2 of the previously idled software
classifier threads; otherwise, if the currently available buffer
size is smaller than r1 × B, we decide to switch to 4-2-1 by
idling 2 of the software classifier threads and waking up 2
previously idled rule cache threads.

Thread assignments on other multi-core machines.
It is not difficult to extend our system to 16-core, 64-

core, or other multi-core machines. Take 16-core machine
for an example, according to the above equation 1, we get

t1 = 15
√

200r√
2000(1−r)+

√
200r

, around 8. Considering the syn-

chronization overhead, a potential thread partition for the
three tasks in Storm is 8-8-1. Similar to the dynamic thread
assignment algorithm, we can idle either 4 of the cache
threads or 4 of the full software classifier threads and switch
between 4-8-1 and 8-4-1 on a 16-core machine.

3.2 Rule Cache Updater

3.2.1 Overview of rule cache updater

The Storm packet classification occurs in two stages. The
first stage occurs in the small rule cache, which is composed
of a small number of rules, and the second stage occurs in a
full software classifier. This high level approach is similar to
SRC as shown in Figure 1. However, SRC uses a TCAM in
the first stage, where the rule cache in Storm is implemented
fully in software. Each entry in the rule cache stores an
evolving rule. An evolving rule is a rule that is constructed
based on sampled incoming traffic and updated over time.

231



Table 3: A simple ruleset on 2 fields.
Rule F ield1 Field2 Action
R0 1-9 4-10 action0

R1 7-14 3-8 action1

R2 3-11 1-6 action2

R3 0-15 0-11 action3

Linear search is used to match packets against the stored
rules. No extra hardware is needed.

A rule cache updater thread is responsible for periodically
sampling the incoming packets and updating the rules in the
rule cache. While the SRC approach also needs a rule cache
updater, the authors in [5] had assumed that rule cache up-
date can occur instantaneously. The pruned packet decision
diagram (PPDD) data structure used by the SRC approach
turns out to be slower than adequate to keep the rule cache
current. In Storm, our rule cache updater uses a mechanism
that is loosely based on the HyperCuts packet classification
algorithm [13]. 2 In our experiments, our new rule cache
updater reduces the time for rule cache computation by two
orders of magnitude when compared to the use of PPDD.

In this section, we present how to construct evolving rules
and how to update the rules.

3.2.2 Construct evolving rules

To provide an example of how rule evolution is imple-
mented, Table 3 is an illustrative example of an original
ruleset having 4 rules to identify a packet based on two
header fields. Each rule is associated with an action. Sup-
pose action0, action1, action2 and action3 are 4 different
actions. Figure 4 is a graphical representation of the orig-
inal 4 rules. The two fields, Field1 and Field2 are repre-
sented along X- and Y-axes, respectively. The rectangles
delineate the ranges of rules R0, R1, R2 and R3, respec-
tively. Figure 4(a)-(f) illustrate an example of evolving rule
generation, with each subfigure representing a newly sam-
pled packet and the corresponding changes to the evolving
rules, where P1 through P6 represent sampled packets and
each evolving rule is represented by a dashed rectangle.

As shown in Figure 4(a), when the first packet P1 arrives,
there is no evolving rule existing and P1 becomes the first
evolving rule. Referring to Figure 4(b), the second packet
P2 is sampled, having the same action as the first evolv-
ing rule. Accordingly, the rule cache updater attempts to
expand the first evolving rule. Since the expanded evolv-
ing rule does not conflict with the semantics of the original
rule set, the evolving rule expansion is successful as shown.
When the third packet P3 arrives, the rule cache updater
attempts to expand the first evolving. However, the pro-
posed rule conflicts with the original ruleset. Thus, the first
evolving rule can not be expanded and the second evolving
rule is formed as shown in Figure 4(c). When the fourth
packet P4 is received, the rule cache updater first attempts
to expand the first evolving rule, which turns out to conflict
with the original rule set. Then the second evolving rule is
successfully expanded as shown in Figure 4(d). Similarly,

2In particular, we use HyperCuts decision tree data struc-
ture in this rule cache updater design. This is a specific de-
sign choice in our system, but is independent of the choice of
the algorithm used for full software classification (which can
be any efficient algorithm, e.g., HiCuts [7], HyperCuts [13],
or HyperSplit [12]).

Figure 4: Constructing evolving rules, rule priority:
R0 > R1 > R2 > R3, action0 6= action1 6= action2 6=
action3.

when P5 arrives, the first two evolving can not be expanded
and it forms the third evolving rule as shown in Figure 4(e).
When P6 is sampled, the first two evolving rules can not be
expanded while the third evolving rule is expanded success-
fully as shown in Figure 4(f).

The evolving rules in the rule cache are required to satisfy
five properties:

Each evolving rule represents a d-dimensional hyper-
cube.

For the rules shown in Table 3, each evolving rule is shown
and described as a 2-dimensional hypercube.

Each evolving rule is associated with a single action
that is semantically consistent with the original rule-
set.

By semantically consistent, we mean a packet being classi-
fied using rule cache will be associated with the same action
as the packet would be matched with the full packet classifier
and original ruleset.

Each sample packet in the sliding window is assigned
to one evolving rule that matches it.

The weight of each evolving rule, stored in an evolving
rule data structure, is defined to be its number of assigned
sample packets.

Evolving rules either have the same action or are non-
overlapping.

If two evolving rules overlap but have different actions, we
can not decide what action should be assigned to a packet
which falls in the overlapping range.

Each evolving rule lies entirely inside one of the rules
in the original ruleset.

Define a d-dimensional evolving rule r to be:

{[l1, h1], [l2, h2], . . . , [ld, hd]},
where li and hi are lower and higher bounds on field i,

1 ≤ i ≤ d. Define an original rule R to be:

{[L1, H1], [L2, H2], . . . , [Ld, Hd]}.

232



Similarly, Li and Hi are lower and higher bounds on field
i, 1 ≤ i ≤ d. We say r lies entirely inside R, if for each i,
1 ≤ i ≤ d,

Li ≤ li ≤ hi ≤ Hi.

If an evolving rule overlaps with multiple rules in the orig-
inal ruleset, and these rules have the same action, the evolv-
ing rule should lie entirely inside any one of these rules.
Otherwise, if these rules have different actions, the evolving
rule should lie entirely inside the highest priority rule that
it matches.

Restricting evolving rules to lie entirely within one rule of
the original ruleset makes checking expanded rule for con-
flicts using HyperCuts decision tree much faster. By prop-
erty 5, it greatly reduces the number of nodes to be checked
in the HyperCuts decision tree. Besides, each leaf node in
the HyperCuts tree contains a small and ordered list of orig-
inal rules, but we usually do not need to check the complete
list of rules. For example, if an expanded rule conflicts with
an original rule R, then other original rules that have lower
priority than R do not need to be checked. Using the five
properties allows faster cache updating and hence higher
cache hit ratio.

3.2.3 Checking expanded rules for conflicts

To implement evolving rule generation and updating, a
rule cache updater thread samples and stores sampled pack-
ets which are used to update the evolving rules in rule cache.
Further, the rule cache updater thread generates and stores
proposed evolving rules pending determination of whether
the proposed evolving rules would conflict with the five prop-
erties described above.

A sliding window, organized as a a First-In-First-Out(FIFO)
queue, stores a number of recently sampled packets. The
evolving rule list is a list of proposed evolving rules.

Each evolving rule stored in the evolving rule list that has
been checked for conflicts will be transferred into rule cache
during a cache update. Each evolving rule includes a weight
field, which are updated according to incoming traffic. The
rule cache updater thread uses the weight field to order a
list of evolving rules in rule cache and to switch the most
popular rules into rule cache, in order to maximize cache hit
ratio.

The number of packets stored in sliding window is re-
ferred to as the sliding window size. Generally, the larger
the sliding window size, the more the number of evolving
rules. From our experiments, a sliding window size of 1024
generally result in around 20 evolving rules.

HyperCuts decision trees are constructed as stated in [13]
on original rulesets. Readers familiar with HyperCuts may
skip the following 3-4 paragraphs and move on to Algorithm
1. At each node in a HyperCuts tree, the set of current
rules is split based on information from one or more fields
in the rules. Each time a packet arrives, the decision tree
is traversed based on information in the packet header to
find a leaf node. A small number of matching rules that
are stored in the leaf node are linearly traversed to find the
highest priority rule that matches the packet.

Choosing cutting fields. HyperCuts chooses the set of
fields for which the number of unique elements is greater
than the mean of the number of unique elements for all the
fields under consideration.

Picking number of cuts. For each of the cutting dimen-

sions i, HyperCuts keeps track of information such as the
mean and max number of rules in the child nodes, and the
number of empty child nodes. A set of iterations are exe-
cuted; at each step the current value of number of cuts nc(i)
is multiplied by two, until there is no significant change in
the the mean or max number of rules in the child nodes,
or there is a significant increase in the number of empty
nodes. Then the last known best value is used as the cho-
sen number of splits to be made along the dimension under
consideration.

Figure 5 shows an example of building a HyperCuts deci-
sion tree for the rule set containing 8 rules as shown in table
1. The number of unique elements in fields F1 through F5

is 3, 6, 3, 4 and 2 respectively. The mean of 3, 6, 3, 4 and
2 is 3.2. Thus, the root node is split on F2 and F4, and 8
children nodes are formed as shown in the figure.

We implement a conflict checking algorithm (Algorithm
1), to determine whether a proposed evolving rule conflicts
with the semantics of the original ruleset or the five proper-
ties.

Algorithm 1 CheckConflict(Cnode, ExpandedRule,
MatchID, ConflictID)

1: if Cnode is a leaf node then
2: for each rule r in the rule list of Cnode do
3: if r.ID > min(MatchID, ConflictID) then
4: return
5: end if
6: if r overlaps with ExpandedRule then
7: if r.action 6= ExpandedRule.action then
8: ConflictID = r.ID

9: return
10: end if
11: if ExpandedRule lies entirely inside r then
12: MatchID = r.ID

13: return
14: end if
15: end if
16: end for
17: end if
18: if Cnode is not a leaf node then
19: for each child c of Cnode that overlaps with Expand-

edRule do
20: CheckConflict(c, ExpandedRule, MatchID, Conflic-

tID);
21: end for
22: end if

Algorithm 1 is a recursive method, starting with an exam-
ination of the root node in HyperCuts tree to identify child
nodes having rules that overlap with the proposed evolving
rule. The algorithm runs recursively on each overlapping
child node until a leaf node is identified. Each leaf node in
a HyperCuts tree contains a small number of original rules,
and the rules are ordered by priority. When a leaf node is
reached, each rule in the leaf node is checked until a match
or a conflict is found. By match we mean the expanded rule
lies in the rule and they have the same action. While if the
rule overlaps with the expanded rule but they have different
actions, we say there is a conflict. When a match or conflict
is found, we terminate from the current node and check the
next overlapping leaf node for higher priority match rule
or conflict rule. When all the overlapping leaf nodes are

233



checked, we compare the highest priority match rule and
conflict rule. If the priority of the match rule is higher than
that of the conflict rule, the proposed evolving rule is ap-
proved and expanded. Otherwise, the proposed expanded
rule is not permitted and the next rule in the evolving list is
expanded and checked, or a new evolving rule is constructed
if this is the last evolving rule in the evolving rule list.

Figure 5 shows an example of searching an evolving rule
r = (01∗, 01∗, 10, ∗, ∗, action1) for conflicts with the ruleset
shown in Table 1 and five evolving rule properties. The
function is called with Cnode set to root node, and MatchID
and ConflictID both initialized to be ruleset size, 8 in this
case. r overlaps with children 2 and 3 of the root node.
Then 2 and 3 are checked recursively. When the algorithm
returns, the match rule ID is 4, which is smaller than the
conflict rule ID, the algorithm approves the expansion and
terminates.

F2

F4

Cut

Cut

nc(F2)=4

nc(F4)=2

R4

R5

R6

R7

R4

R6

R7

R4

R5

R6

R7

R4

R6

R7

R2

R6

R7

R3

R6

R7

R1

R6

R7

R0

R3 R6

R7

R0

0-3

0-1

0-3

2-3

4-7

0-1
4-7

2-3

8-11

0-1

8-11

2-3

12-15

0-1
12-15

2-3

(01*, 01*, 10, *, *, action1)

Sample rule

Figure 5: Check an expanded rule for conflicts using
HyperCuts decision tree.

4. IMPLEMENTATION ISSUESANDLESSONS
We encountered many challenges in turning Storm design

(Figure 2) into a high-performance implementation. In the
following, we discuss some major challenges and our solu-
tions.

How many queues shall we use between different
threads? Our principle is to make sure that each queue
only has one producer and one consumer. Our experience
has shown that this can greatly decrease the contention and
ease the coding.

How to split incoming packets to multiple queues?
Consider a 8-core server handling two 10Gbps ports. If a
port is tied to a single core, then each packet is necessarily
touched by the core that polls in and splits the traffic, and
then a core that actually processes the packet (our rule cache
thread), which increases contention and hence increase de-
lay. Fortunately, this problem can be addressed by exploit-
ing a feature now available in most modern NICs and OS:
multiple receive and transmit queues [4], which allows mul-
tiple queues of incoming traffic. We simulate this behavior
by loading incoming packets to multiple queues.

How to avoid the conflict between rule cache lookup
and update? Our solution is to have two copies of the rule
cache: one for look up during classification and one for up-
dating with more recent popular rules. The rule cache up-
dater thread is responsible for calculating the evolving rules
and updating the second rule cache copy with the new pop-
ular rules. It will atomically switch the pointers to these
two rule cache copies after each cache update. This strategy

avoids almost all contention, and improves the throughput
by 55%-316%.

How to accommodate the speed difference between
packet classification and rule cache updater? How
to maintain the quality of the rule cache? In order to
achieve high cache hit rate, it is critical to update the rule
cache based on recent packet history. This is challenged by
the fact that calculating evolving rules and packet classifica-
tion are carried out independently in different threads, and
the former is much slower than the latter. As a result, the
queue between the rule cache classifier and the rule cache
updater frequently gets full. In our initial design, when the
queue is full, the more recent packets are discarded. As a re-
sult, the rule cache evolves based on relatively old packets,
which severely hurts the quality of the rule cache. Mak-
ing the queue larger does not solve the problem. Finally, we
found a simple solution: instead of having a queue, just have
one entry and always have the rule cache updater thread to
use the latest packet to calculate the evolving rules. This
design is very effective: our experiments show that the rule
cache hit rate is generally higher than 95%.

Other implementation issues and data structure
adjustment. Our initial implementation used link-lists to
represent rules in cache. This turns out to be a bad choice in
multi-threaded setting. We changed them to arrays instead
to speedup the searching of rules. We also tried to select
between blocking-lock, non-blocking spin-lock, and several
non-lock data structures. It turned out pthread spin lock
provides the best and most stable performance.

Platform impact. We evaluated Storm using Intel Xeon
X5550 Gainestown, which is based on Nehalem architecture,
and Intel Xeon X5440 Harpertown. We found from our
experiments that Nehalem speed up the average through-
put by 29%-53%. According to Intel, the performance im-
provements of Nehalem over previous Xeon processors are
based mainly on: integrated memory controller supporting
two or three memory channels of DDR3 SDRAM or four
FB-DIMM channels; a new point-to-point processor inter-
connect QuickPath, replacing the legacy front side bus; and
Hyper-threading. By hyper-threading, a processor is treated
by the operating system as two processors instead of one.

We considered several parallel language and libraries, such
as CILK, Intel Thread Building Block, shared-memory map-
reduce, StreamIt. At the end, we still decide to stick to C
language and POSIX pthread-library, because of their sim-
plicity and portability.

We expect that future OS, hardware and parallel language
progress can make future multi-threaded software router de-
velopment easier. Advanced OS threading support, like Mac
OS’ recent Grand Central Dispatch, could make our dynamic
thread assignment easier. Our design assumes homogeneous
multi-core systems. We expect that future heterogeneous
multi-core system would bring new opportunities.

5. EXPERIMENTAL RESULTS
In this section, we implement Storm and evaluate its per-

formance. We use five real rulesets and real traffic traces
obtained from a tier-1 ISP backbone network. The five rule-
sets R1, R2, R3, R4 and R5 contain 460, 711, 852, 1036 and

234



Table 4: A summary of the seven rulesets.
Rule set Type Size

R1 real 460
R2 real 711
R3 real 852
R4 real 1036
R5 real 1802
R6 synthetic 4415
R7 synthetic 9603

1802 rules, respectively. Since we do not have larger real
rulesets, we also evaluate Storm using two synthetic large
rulesets R6 and R7, which contains 4415 and 9603 rules,
respectively. These synthetic rulesets are generated using
the ClassBench ruleset generator [17]. All the rules in the
rulesets are 5 dimensional tuples composed of source and
destination IP addresses, source and destination port num-
bers and protocol type. Besides, each rule is associated with
an action. The action of a rule is either permit or deny. All
the seven rulesets are summarized in table 4. The five traces
(T1, T2, T3, T4, and T5) each contain about 7 million pack-
ets. To generate different incoming traffic rates using these
traces, we decrease the time separation between consecutive
packets. We experimented with all rulesets and all traffic
traces, and in different plots and tables below, present re-
sults from all of them. However, when unstated, the trace
used for the corresponding experiment was a a single repre-
sentative trace, T1.

We evaluated Storm using Intel Xeon X5550 Gainestown,
which is a 8-core Nehalem desktop platform. The packet
size is assumed to be 128 bytes (1024 bits). The total buffer
size in the shared queues between rule cache threads is set
to 1000 packets.

To evaluate the throughput of Storm, we use HyperCuts-1
and HyperCuts-8 as baselines for comparison. HyperCuts-1
utilizes a single core and executes a single version of Hy-
perCuts. It does not exploit any parallelism opportunity.
HyperCuts-8 leverages data parallelism, where each of the
8 cores executes an identical version of the HyperCuts soft-
ware classifier.

The throughput we measure is the maximum through-
put achievable by each scheme without packet loss, beyond
which packet drops will occur. For HyperCuts and Storm,
the packet loss occurs when the incoming packet queue fills
up. For Storm, drops could also happen when the software
classifier is overloaded. In our experiments, we demonstrate
that the packet drops for each approach occur at a differ-
ent incoming rate, with Storm significantly outperforming
HyperCuts-8.

5.1 Maximum Achievable Throughput
We define the maximum achievable throughput of a par-

ticular scheme as the maximum incoming traffic rate that
leads to no packet losses for that particular scheme. Any
higher incoming rate will lead to packet losses due to the in-
ability of the software to keep classify packets fast enough.

Figure 6 shows the throughput achieved by Storm us-
ing static thread partitions 2-4-1, 4-2-1, 3-3-1 and dynamic
thread assignment, and HyperCuts, where the x-axis rep-
resents the seven rulesets R1 through R7, and y-axis is the

 0

 5

 10

 15

 20

 25

R1 R2 R3 R4 R5 R6 R7

T
h

ro
u

g
p

u
t 

(G
b

p
s

)

HyperCuts 1
HyperCuts 8
Storm 2-4-1
Storm 4-2-1
Storm 3-3-1

Storm dynamic

Figure 6: Router throughput and threads partition-
ing on rulesets R1 through R7.

packet classification throughput achieved by the correspond-
ing ruleset.

The throughput gain of HyperCuts-8 over HyperCuts 1
ranges from 5 to 7, roughly proportional to the number of
cores (8). This gain comes from data parallelism.

Storm combines the three forms of parallelism, namely
task parallelism, data parallelism, and pipeline parallelism.
As we can see, the maximum achievable throughput of Storm
is generally 2-3 times that of HyperCuts-8. This figure con-
firms that 2-4-1, 4-2-1 and 3-3-1 are good thread partitions,
among which thread partition 4-2-1 gives the best perfor-
mance overall. The throughput of thread partition 4-2-1 for
every ruleset is higher than 12Gbps. For the rule set consist-
ing of more than 9000 rules (R7), Storm achieves a sustained
throughput of more than 15Gbps with both static 4-2-1 and
dynamic thread assignment.

In the figure, Storm dynamic represents the results from
dynamic thread assignment with the lower and upper thresh-
olds set to 0.2 and 0.8 respectively. We can see the through-
put of dynamic thread assignment is close to 4-2-1 thread
partition. This is because dynamic thread assignment usu-
ally switch between 2-4-1 and 4-2-1 at the beginning of each
run, and when the system enters a steady state where the hit
ratio remains high, it stays in 4-2-1. The actual throughput
of dynamic thread assignment is generally a little bit lower
than 4-2-1 because of its checking (check the available buffer
size in shared queues) and switching overhead.

5.1.1 Understanding the gains of Storm

In this section, we attempt to intuitively understand the
gains and performance tradeoffs of Storm, when compared
to the alternate and simpler data parallel approach (using
HyperCuts-8, which executes an identical instance of Hyper-
Cuts in each of the 8 cores of the system).

In HyperCuts-8, the classification time for each packet is
about 2000 ns. Given the availability of 8 cores, the average
packet classification latency of the system is about 200-300
ns. Hence, if packets arrive at a rate faster than this fre-
quency, then packet losses will happen at the input port of
the system. In our experiments, we examine the fastest rate

235



at which HyperCuts can accept incoming packets such that
packet losses do not occur.

Storm is a system that uses the rule cache system with
the central goal being to identify a small set of rules that
are likely to match the largest number of incoming pack-
ets. Given a small set of such popular rules, the average
time required for a packet to be matched against this rule-
set is around 200 ns. Clearly, the rule cache can accept and
process packets at a faster rate, given that we can have mul-
tiple rule cache threads. For example, 4 rule cache threads
will bring the average rule cache lookup delay to 50 (200/4)
ns. However, if the packets fail to match against rules in
the cache, then they get buffered for classification using the
software classifier. So long as the rule cache can classify a
significant fraction of incoming packets correctly, the load
on the full software classifier would be relatively low lead-
ing to no additional packet losses. However, if the success
rate of the rule cache falls, then there would be an overload
experienced by the full software classifier leading to packet
losses. In our experiments, we use an incoming traffic rate
that would not cause such packet losses for Storm. As our
experiments indicate, Storm can handle an incoming rate
which is about 2-3 times that of a data parallel version of
HyperCuts (HyperCuts-8).

5.2 Scalability of Storm
We next study the scalability of Storm by varying the

number of cores available in the system. Since our sys-
tem has 8 cores, we used the pthread setaffinity np function
to bind all threads to a fixed number of cores. We varied
the number of cores between 2 and 8. Figure 7 shows the
throughput on the seven rulesets using thread partition 1-
1-1 with 2 core, 2-2-1 with 4 cores, and 4-4-1 with 8 cores.
Figure 7 shows near linear scalability. We expect that this
linear growth in performance can continue for a much larger
number of cores, using our optimization design approach
that selects an efficient partitioning of tasks to threads and
cores.

 0

 5

 10

 15

 20

 25

2 cores 4 cores 8 cores

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

R1
R2
R3
R4
R5
R6
R7

Figure 7: Storm’s scalability with number of cores.

5.3 Cache hit ratio
We next study the performance of the rule cache, in par-

ticular, the fraction of packets that are classified by the rule
cache, which is called the cache hit ratio. To understand
how cache hit ratio changes, we show the results from a
randomly chosen ruleset (R3). We run the experiment for

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
a
c
h

e
 h

it
 r

a
ti

o
 (

%
)

Time (s)

Figure 8: Storm’s rule cache hit ratio ramps up
quickly (example uses ruleset R3).

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

R1 R2 R3 R4 R5 R6 R7

C
a
c
h

e
 h

it
 r

a
ti

o
(%

)

T1
T2
T3
T4
T5

Figure 9: Cumulative rule cache hit ratios of rulesets
R1 through R7 with traces T1 through T5 (Y-axis
starts at 90%).

7.5 million packets, which takes about 1 second. Figure 8
shows how the hit ratios ramps up. It can be seen that after
a short warmup period (about 30 milliseconds) the system
arrives at a steady state where the cache hit ratio exceeds
90%. The cache hit ratio constantly improves and stabilizes
at 98% soon after.

To further understand the rule cache hit ratio of each rule-
set, we perform an experiment to evaluate the cumulative
hit ratios of rulesets R1 through R7 on five different traces
each of size about 5 million packets.

Figure 9 shows the cumulative hit ratios of rulesets R1
through R7 on trace files T1, T2, T3, T4 and T5. The
rule cache hit ratio shown is the average cache hit ratio in
steady state. The thread partition scheme we use is static
4-2-1. The rule cache hit ratio is in excess of 98% for most
of the trace and ruleset combinations.

There is also a trend of decreasing cache hit ratio with
increase in ruleset sizes. This is expected as the compu-
tation time to identify popular rule sets increases with in-
crease in rule set size. As popular rule computation time
increases, the cache update frequency goes down, leading to
the cached rules being less current. Overall, this leads to
a lower cache hit ratio, a factor that contributes to lower
achievable throughputs for larger rule sets.

236



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

F
ra

c
ti

o
n

 o
f 

p
a
c
k
e
ts

Number of rules searched

Figure 10: Cumulative distribution of number of en-
tries searched in Storm’s rule cache for 1000 ran-
domly sampled packets (using ruleset R2).

5.4 Micro benchmarks

5.4.1 Rule Cache

In this section, we present how we make some design
choices on rule cache. Specifically, we answer two questions:
how to lookup rules in rule cache (why we use linear search)
and what the rule cache size should be.

Rule cache lookup.
We use linear search to search the rules in the rule cache to

find a match or a cache miss. As we discuss before, the rules
in the rule cache are ordered by its popularity (weight). We
run a trace file of 5 million packets on ruleset R2. Figure 10
shows the number of rules searched in the rule cache for
1000 randomly sampled incoming packets. As shown in the
figure, for cache hit packets, most searches only take a small
number or rules, like 1 or 2. If cache miss happens, all the
rules in the cache are searched. Since our cache size is set to
20, we can see in the figure that for a small portion (around
5%) of incoming packets, all the 20 rules are searched. Our
experiments show the cache hit ratio is generally above 95%,
so this does not happen often. Since the rules are ordered
by weights, we found that linear search of the cached rules
is sufficient to ensure that only a small number of rules are
searched.

Rule cache size.
In our experiments, we choose cache size to be 20. Our

experiments show that for a sliding window size of 1024, gen-
erally 20-30 evolving rules are formed with incoming packet
rate 10Gbps. In our experiments, we only switch the first
20 rules to the rule cache.

Table 5 shows the average classification delay per packet
and cache hit ratio with different number of cache sizes on
ruleset R3 using thread partition 4-2-1. As the cache sizes
getting larger, the average classification delay first decreases
with the increase of cache hit ratio, since higher cache hit
ratio means more packets take the faster path so that the
average delay is smaller. Then as the cache size gets larger
(25 and 30), the average delay starts to increase. As we can
see, when the cache size is 20, the hit ratio is 96.55% (re-
maining packets are classified by the full software classifier).

Table 5: Performance with different cache sizes on
ruleset R3

Cache size Delay(ns/p) Hit ratio(%)
10 95.21 93.92
15 93.27 95.31
20 82.01 96.55
25 83.28 95.92
30 96.52 96.52

Table 6: Warmup time (in ms) of the seven rulesets
using thread partition 2-4-1 and 4-2-1 for Storm.

Rule set Storm 2-4-1 Storm 4-2-1
R1 3 ms 5 ms
R2 2 ms 4 ms
R3 10 ms 13 ms
R4 6 ms 12 ms
R5 1 ms 1 ms
R6 8 ms 26 ms
R7 36 ms 79 ms

Larger size of cache beyond 20 does not give much perfor-
mance improvement, it rather slows down the classification
because more rules need to be checked. Hence, we picked a
cache size of 20 for Storm.

5.4.2 Warmup behavior

When a Storm system boots up, the rule cache is empty.
The system needs some time to construct an initial set of
popular rules in rule cache and improve cache hit ratio (as
shown in Figure 8). During this time if the incoming traffic
rate is greater than the rate at which the software classifier
can process packets (say, less than 4 Gbps for R7), the shared
queues between rule cache threads and full software classifier
threads might encounter some packet loss. After a short
period of time, the rule cache hit ratio ramps up, and the
system can operate at the much higher incoming traffic rate
(around 17 Gbps for R7) without any packet loss. Then the
system continues to operate in a steady state after this point
with the cache hit ratio staying high. We define this short
period of time during which packet losses can occur at the
higher speeds, the warmup period.

Table 6 shows that the warmup period for each of the
seven rulesets on one of the tracefiles (T1) using thread par-
titions 2-4-1 and 4-2-1 is no more than 79 milliseconds. The
packet classification rate during this warmup period (just
after bootup) is limited by the full software classifier’s clas-
sification rate, and increases to Storm’s full classification
rate after the short warmup period ends.

6. RELATED WORK
The simplest packet classification algorithm is a linear

search through all the rules in a rule set. However, for a
large number of rules, this implies a large search time.

The general problem of packet classification on multiple
fields was first studied in [16]. In general, there are two main
threads of research on packet classification: algorithmic and
hardware architectural.

A lot of intelligent algorithmic solutions are proposed to
code with packet classification [3, 13, 2, 18, 7, 16, 15], and
many original ideas have been investigated for improvement.

237



Prior work has also proposed software-based classifica-
tion algorithms, e.g., HiCuts [7], HyperCuts [13], and Hy-
perSplit [12]. Both HiCuts and HyperCuts are decision
tree based schemes. Each node in the HyperCuts decision
tree represents a multi-dimensional hypercube, while in Hi-
Cuts, each node represents a hyperplane. Another algo-
rithm, called HyperSplit [12], is a simple variation of the
basic HyperCuts algorithm.

One common feature of algorithms employing the decision
tree approach is memory access dependency, that is, the
decision tree searches are inherently serial; a matching rule
is found by traversing the tree from root to leaf. The serial
nature of the decision tree approach precludes fully parallel
implementations. The core issue of algorithmic approaches
centers on the tradeoff between memory usage and speed.

Our work is complementary to all algorithmic approaches,
as we propose a rule cache based system that can use any
of these algorithmic approaches as one software component
(the full software classifier). In this paper, we utilize Hyper-
Cuts as one such algorithmic approach whose throughput
was improved by a factor of two to three in our experiments.

Wire speed packet classification has also motivated the
development of hardware-based solutions. Ternary Con-
tent Addressable Memory (TCAM), the most widely-used
packet classification technique, has been studied and em-
ployed in industry [6, 5, 1]. TCAMs perform a parallel
single-clock-cycle search for an incoming packet in all stored
rules. TCAMs do suffer from four primary deficiencies: (1)
high cost per bit relative to other memory technologies, (2)
storage inefficiency, (3) high power consumption, and (4)
limited scalability to long inputs. To compress space in
TCAM, [8] proposes a new approaches to range reencoding
by taking into account classifier semantics. Some new archi-
tectural research combines intelligent algorithms and novel
architectures to eliminate many of the unfavorable charac-
teristics of current TCAMs [14]. However, all such solutions
still depend on specialized hardware, which is avoided by
Storm. The key difference between Storm and such prior
approaches is its software-only nature that can be mapped
into any multi-core platform available today.

7. CONCLUSION
We present a detailed design, implementation, and mea-

surement study of a system, called Storm, for packet classifi-
cation in multi-core platforms. Our system does not propose
a new packet classification algorithm. Its design is based on
the common notion that a small subset of rules are likely to
be more popular than others. Hence, if we can identify these
popular rules and match all incoming traffic against them,
we can get significant speed-up in classification performance.
When packets fail to be matched against the cached popular
rules, full software classification is required, for which any
existing packet classification algorithm can be used. Storm
uses a combination of task, data, and pipeline parallelism
to significantly outperform a naive data parallel approach
(using multiple instances of a single packet classification al-
gorithm, one on each core). Further, our intuition and initial
experiments indicate that the proposed approach can scale
with increase in number of cores in the system. We believe
that such an approach can find direct use in emerging router
systems that are based on desktop-based components, e.g.,
RouteBricks.

8. ACKNOWLEDGMENTS
The authors would like to thank our shepherd Neil Spring

and other anonymous reviewers for their comments and sug-
gestions which helped bring this paper to its final form. Yadi
Ma and Suman Banerjee were partially supported by the
US NSF through awards CNS-0916955, CNS-0855201, CNS-
0751127, CNS-0627589, CNS-0627102, and CNS-0747177.

9. REFERENCES
[1] A.J.McAulay and P. Francis. Fast routing table

lookup using cams. In IEEE INFOCOM, 1993.

[2] F. Chang, W. C. Feng, and K. Li. Approximate caches
for packet classification. In IEEE INFOCOM, 2004.

[3] E. Cohen and C. Lund. Packet classification in large
isps: Design and evaluation of decision tree classifiers.
In ACM SIGMETRICS, 2005.

[4] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, and
K. Fall. Routebricks: Exploiting parallelism to scale
software routers. In SOSP, 2009.

[5] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal. Wire
speed packet classification without tcams: a few more
registers (and a bit of logic) are enough. In ACM
SIGMETRICS, pages 253–264, June 2007.

[6] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and
A. Shukla. Packet classifiers in ternary cams can be
smaller. In ACM SIGMETRICS, 2006.

[7] P. Gupta and N. Mckeown. Packet classification using
hierarchical intelligent cuttings. IEEE Micro,
20(1):34–41, January 2000.

[8] C. R. Meiners, A. X. Liu, and E. Torng. Topological
transformation approaches to optimizing tcam-based
packet classification systems. In ACM SIGMETRICS,
pages 73–84, 2009.

[9] R. Morris, E. Kohler, J. Jannotti, and M. F.
Kaashoek. The click modular router. In SOSP, pages
217–231, 1999.

[10] C. Networks. Octeon network service processors.
http://www.cavium.com/octeon software develop kit.html.

[11] M. H. Overmars and A. F. van der Stappen. Range
searching and point location among fat objects.
Journal of Algorithms, 21:629–656, 1994.

[12] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. Packet
classification algorithms: From theory to practice. In
IEEE INFOCOM, 2009.

[13] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional cutting.
In ACM SIGCOMM, pages 213–224, August 2003.

[14] E. Spitznagel, D. Taylor, and J. Turner. Packet
classification using extended tcams. In ICNP, 2003.

[15] V. Srinivasan, S. Suri, and G. Varghese. Packet
classification using tuple space search. In ACM
SIGCOMM, pages 135–146, 1999.

[16] V. Srinivasan, S. Suri, G. Varghese, and
M. Waldvogel. Fast and scalable layer four switching.
In ACM SIGCOMM, 1998.

[17] D. Taylor and J. Turner. Classbench: A packet
classification benchmark.
http://www.arl.wustl.edu/∼ det3/ClassBench/index.htm.

[18] T. Y. Woo. A modular approach to packet
classification: algorithms and results. In IEEE
INFOCOM, pages 1213–1222, 2000.

238


