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ABSTRACTA reversible jump Markov chain Monte Carlo (MCMC) algorithm is illustrated toinfer the number of quantitative trait loci (QTL) a�ecting a phenotypic trait, theirchromosomal locations, and their e�ects. A multi-loci model is �t to quantitative traitand molecular marker data, with the trait response modeled as a linear function of theadditive and dominance e�ects of the unknown QTL genotypes. The number of QTLis unknown and must be estimated as well. Inference summaries for the number ofloci, their locations and e�ects are obtained from the corresponding marginal posteriordensities obtained by integrating the likelihood using reversible jump MCMC, ratherthan by optimizing the joint likelihood surface. Using simulated data and oweringtime data from Brassica napus we observe that the choice of prior distribution playsan important role in inference. This prior distribution greatly inuences how wellthe chain mixes as well as the posterior distribution of the number of loci. However,the posterior mode of the number of loci is not a�ected by the choice of its prior.Further, neither the choice of prior nor the starting value for the number of loci a�ectthe estimated chromosomal locations and their e�ects.Keywords: Reversible jump Markov chain Monte Carlo; Metropolis-Hastings algo-rithm; Brassica napus.
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1. INTRODUCTIONGreen (1995) described a reversible jump Markov chain Monte Carlo (MCMC)approach to sample from a distribution of interest when the dimension of the param-eter vector is not �xed. Here we demonstrate the utility of this approach to a speci�cproblem of estimating the number of quantitative trait loci (QTL) a�ecting a trait,a problem of increased research among plant breeders and molecular biologists.Consider a trait Y = fyigni=1 from n individuals, a�ected by an unknown numberof QTL, say s. The e�ect of the genotypes at these loci on the ith trait value can bedescribed by the following simple linear model:yi = � + sXj=1�jQij + �i; (1)where � is the model mean, Qi = fQijgsj are the genotypes at the s loci for the ithindividual, � = f�jgsj=1 are the e�ects of these s loci, and �i is a zero mean randomdeviation with variance �2. Specifying a distribution, such as Normal, for the errorterms induces a probability distribution on the trait values. In practice, the numberof loci (s) and their chromosomal locations are unknown, and the goal of any QTLlinkage analysis is to estimate these unknowns. Further, the genotypes at the loci areunobserved. Typically, molecularmarkers are genotyped and a linkage map is created,providing estimated chromosomal location of these markers and inter-maker geneticdistances. Given such molecular marker information, the probability distribution ofthe unobserved QTL genotypes can be determined easily.Various statistical methods have been used to estimate s and the chromosomallocations of the QTL. These include EM algorithm to estimate a single locus alsoknown as interval mapping (Lander and Botstein 1989),and multiple regression meth-ods combined with interval mapping to identify multiple loci (Haley and Knott 1992;Zeng 1993, 1994; Jansen 1993; Jansen and Stam 1994) by scanning the region be-tween contiguous pairs of molecular markers along the genome of interest. In all these2



methods, the logarithm of odds (LOD) score is examined for any signi�cant evidencefor the presence of a QTL in the scanned region. The LOD score is the logarithm(base 10) of likelihood ratios when comparing a null hypothesis of no QTL a�ectingthe trait, versus an alternative hypothesis of one or many loci a�ecting the trait. Theappropriate signi�cance threshold is approximated by the asymptotic distribution ofthe LOD statistic under the null hypothesis, which is not very easy to obtain. Per-mutation tests can be used to obtain the appropriate threshold values (Churchill andDoerge 1994; Doerge and Churchill 1996).Alternatively, Bayesian methods have been used to obtain posterior inferenceabout the location of the putative loci (Thomas and Cortessis 1992; Hoeschele andVanRanden 1993a, 1993b). Recently, Markov chain Monte Carlo (MCMC) methodswere used to determine the chromosomal locations of the QTL for a �xed s (Satagopanet al. 1996). After �tting various models with di�erent values of s, Bayes factors (Kassand Raftery 1995) were used to compare these models in order to estimate the num-ber of QTL a�ecting the trait. However, Bayes factors must be estimated carefullyin order to ensure its stability (Newton and Raftery 1994).Rather than �tting di�erent models by varying s, an alternative approach wouldbe to consider s as a further unknown paramter to be estimated. Satagopan andYandell (1996) used reversible jump MCMC to �t multiple loci on a single linkagegroup and to estimate the probability distribution of the number of loci a�ecting thetrait of interest. Sillanp�a�a and Arjas (1998) and Stephens and Fisch (1998) used asimilar approach and �t a multi{locus model to F2 and backcross breeding schemes.The later two approaches considered �tting multiple loci on several chromosomes ofthe genome of interest.In this paper, we illustrate a reversible jump MCMC algorithm which uses someof the regression methods of Seber (1977) such as including additional covariates ina regression model. We �rst propose a stochastic model describing the distributionof the data conditional on the unknown number of QTL and the unknown multiple3



QTL genotypes. Standard genetic theory is used to describe the distribution of suchunobserved genotypes given genetic parameters and the existence of multipleQTL. Aspart of our Bayesian analysis, a third level in the hierarchy is a probability distributionover the unknown number of QTL and the genetic parameters. Reversible jumpMCMC is used to estimate the marginal posterior distribution of the unknown numberof loci, and the marginal posterior distributions of the model parameters conditionalupon the number of loci a�ecting the trait. The number of QTL, their locationsand other model parameters are estimated from the respective marginal posteriordistributions. Simulated data and owering time data for Brassica napus are used toillustrate the proposed method. 2. QTL MODELConsider the simple linear model given by equation (1). At each marker locusand the putative QTL, associate 1 with one homozygous parent type, {1 with theother homozygous parent type and 0 with the heterozygote. In general, the relationbetween the trait and putative QTL genotypes would be determined by a conditionaldistribution �(yijs;Qi; �) with � = (�; �; �2) the unknowns. The model could includedominance and epistasis (interaction), and need not be linear nor rely on normality.In practice, we observe the phenotypic trait Y and a set of marker genotypes M ibut not the QTL genotypes Qi. Assume that a linkage map has been developed basedon m markers with genotypes M i = fMikgmk=1 for the ith individual, with orderedmarkers f1; 2; � � � ;mg . For convenience, suppose this map consists of exactly onelinkage group. The markers are assumed to be at known distances D = fDkgmk=1along the map, with Dk the genetic map distance between markers 1 and k andD1 = 0. Figure 1 illustrates 10 markers on linkage group 9 of Brassica napus and theinter{marker distances. Let �j be the (unknown) distance of the jth QTL from oneend of the linkage group, and � = f�jgsj=1 .4



The conditional probability distribution of the QTL genotypes, �(Qijs;�) =�(Qijs;�;M i;D) , given the number of QTL, their location, the marker genotypesand the distance between the markers, can be modeled in terms of recombinationbetween the loci and the markers. From now on we suppress the notation for condi-tioning on markersM i and intermarker distances D . Under the Haldane assumptionof independence of recombination events (Ott 1991, pp. 14{19), each QTL genotypeQij is conditionally independent of nonanking marker and other QTL genotypesgiven the anking marker genotypes. For example, suppose the jth QTL is betweenmarkers k and k + 1. The conditional distribution �(Qijs;�) can be written as:�(Qijs;�) = �(Qijs;�;M i;D)= sYj=1 �(Qijj�;M i;D)(assuming the loci segregate independently)= sYj=1 �(Qijj�j;Mi;k;Mi;k+1;Dk;Dk+1):(under Haldane assumption of independent recombinations)(2)The marginal likelihood of the parameters s, � and � for the ith individual maybe obtained from the joint distribution of traits and QTL genotypes�(yi; Qijs;�; �) = �(yijs;Qi; �) �(Qijs;�) (3)by summing over the set of all possible QTL genotypes for the ith individual, qi =fqijgsj=1 2 f�1; 0; 1gs. Therefore,L(s;�; �jyi) =Xqi �(yi; Qi = qijs;�; �) : (4)When the data Y are n independent observations, the marginal likelihood for thetrait data is the product over individuals, a familiar mixture model likelihood,L(s;�; �jY ) =Yi L(s;�; �jyi) : (5)5



Our aim is to make joint inference about the number of QTL, their positions(loci) and the sizes of their e�ects. The joint likelihood is a mixture of densities,and hence, is di�cult to evaluate when there are multiple QTL. Rather than attemptoptimization of the likelihood surface, we apply Bayesian analysis and integrate thislikelihood, modi�ed by a prior, to produce inference summaries for all the componentsin the model.In a Bayesian approach as discussed here we infer the parameters based on theirmarginal posterior distribution, which can be obtained from the joint posterior givenbelow by integrating over the other unknowns. Exact solution to such high{dimensionalintegrals are di�cult, but Markov chain Monte Carlo (MCMC) approximation is quitefeasible. The joint posterior distribution of all the unknowns (s;�; Q; �) is propor-tional to �(s;�; Q; �jY ) / �(s;�; �) Yi �(yi; Qijs;�; �) (6)with Q = fQigni=1 the s QTL genotypes for all the n individuals and �(s;�; �) a priordensity for the model and genetic parameters. We construct a Markov chain withthis target distribution resulting in a random sequence of states(s0;�0; Q0; �0); (s1;�1; Q1; �1); � � � (sN ;�N ; QN ; �N )starting at an arbitrary point (s0;�0; Q0; �0) having positive posterior density, andproceeding by simple rules that modify the unknowns s, �, Q, and �. This has to bedone carefully since the dimension of (6) changes when s is changed, and standardMCMC theory does not hold in this case. In Section 3, we illustrate the applicationof reversible jump MCMC to move between models with di�erent number of loci.6



2.1 Reversible jump MCMCThis is a random{sweep Metropolis{Hastings algorithm for general state spaces(Richardson and Green 1997) and proceeds as follows. Suppose xs = (s;�; Q; �) isthe current state of the chain indexed by s, the current number of loci. The chain caneither move to a \birth" step (where the number of loci increases to s+1 from s), orto a \death" step (where the number of loci decreases to s � 1 from s), or continuewith the \current" number (s) of loci. Green (1995) describes these moves and theacceptance probabilities of the \birth" and \death" steps. Suppose the chain movesfrom a parameter space indexed by s1 to a space indexed by s2 (for example, s1 = s,and s2 = s + 1). The acceptance probability for the Metropolis{Hastings move isgiven by the following: min(1; �(xs1jy)p(xs2 jy) �2(u2)�1(u1) ����������@(xs2; u2)@(xs1; u1) ����������) : (7)where u1 and u2 are random vectors of dimensions d1 and d2 with densities �1 and�2, respectively, such that s1 + d1 = s2 + d2. The last term in the above acceptanceprobability is the Jacobian of transformation from the space of dimension s1 to aspace of dimension s2.3. A REVERSIBLE JUMP ALGORITHM FOR MULTIPLE QTLLet smax be the maximum allowed value for s, the number of loci. The abovereversible jump algorithm can be readily adapted to MCMC inference for multipleQTL by considering moves between di�erent models, updating s as in the followingsteps:1. a birth step which can increase the number of QTL from s to s + 1, withprobability bs = c � minf1; �(s+ 1)=�(s)g;7



2. a death step which can decrease the number of QTL from s + 1 to s, withprobability ds = c � minf1; �(s)=�(s+ 1)g; and3. updating the genetic and model parameters, and the QTL genotypes withoutchanging s, with probability 1� bs � ds;where c is a uniform random number from (0; 0:5). Hence, bs + ds < 1 so that step3 does not have a zero probability. The probabilities bs and ds are constrained suchthat d0 = 0 and bsmax = 0. Steps 1 and 2 can change the dimension of the parameterspace. We use a hybrid sampler (Tierney 1994) to randomly choose one of the abovethree steps at each transition of the chain.Assume prior independence of � and � given s. Therefore,�(s;�; �) = �(�js)�(�js)�(s):A natural choice for prior of � (given s), when no information regarding the locationsis available, is the uniform distribution for s ordered variables on [0;Dm]. Specifyinga conjugate prior for �, �, and �2 makes its form simple while increasing di�usenessmakes the prior objective. The prior on s, �(s), could be Poisson or Uniform(0; smax),for some suitable Poisson mean or smax.The steps updating �, Q and � for a given s are described in detail in Satagopanet al. (1996). In this section we focus on birth and death type moves for updating thenumber of QTL (s). More speci�cally, given the current state (s;�; Q; �), we proceedto sample s for the next state as follows.The birth and death steps involve adding a locus (s! s+ 1) or dropping a locus(s ! s � 1), with subsequent rescaling of the QTL e�ects. The model given byequation (1) for a �xed s can be rewritten in matrix form asY = 1 �+ sXj=1Qj �j + �= X� + � ; (8)8



where �T = (� �1 �2 � � � �s) is a column vector of model mean and QTL e�ects, andhence the model parameters are � = (�; �2). X = (1 Q1 � � � Qs) is the n�(s+1) designmatrix with the �rst column all ones, corresponding to the model mean �, and theother columns correspond to the s QTL genotypes. It is computationally convenientto set up the Cholesky decomposition (Anderson et al. 1995) for the design matrixX = FG in which F = (F 1 : F 2) is orthogonal and G is upper triangular.3.1 Birth StepThe birth step involves proposing a new QTL, its genotype and the correspondinge�ect. Denote the proposed parameters of the birth step as (s+ 1; �s+1; Qs+1; �s+1).Hence, the birth step considers the following model:Y = X�� + �s+1Qs+1 + � ; (9)when the current model is given by equation (8).B1. Choose an interval for birth not containing any other QTL, with probability1=(m� 1� s). Here, m� 1 is the total number of intermarker intervals, and sis the number of QTL in the model before the birth step.B2. Suppose we choose the interval between markers k and k + 1. Choose a locus�s+1 in this interval uniformly between (Dk;Dk+1) with probability1=(Dk+1 �Dk).B3. Sample the QTL genotypes for this new locus according to�(Qi;s+1j�s+1;Mik;Mi;k+1;Dk;Dk+1); i = 1; � � � ; n :Mik and Mi;k+1 are the anking marker genotypes for the new QTL. Theseprobabilities can be obtained in terms of recombinations between the QTL andthe anking markers (Knapp, Bridges, and Birkes 1990).9



B4. In order to sample the new QTL e�ect �s+1, �rst obtain U , a random num-ber from a standard normal distribution. The scalar V = QTs+1F 1FT1Qs+1 =jjFT1Qs+1jj2 is used to reweight the new QTL e�ect as�s+1 = V �1QTs+1F 1FT1 Y + �V �1=2U :B5. Modify the regression parameters � to get new parameters �� as�� = � �G�1FT1Qs+1�s+1 :If we allow for multiple QTL to be present between a pair of anking markers,the QTL probability distribution in step B3 can be calculated conditional upon thegenotypes of other QTL in that marker interval (details are not presented here). Theproposal probability for the birth step based on the above updating scheme is givenby qb = 1m� s� 1 � 1Dk+1 �Dk � �(Qs+1j�s+1)� �(U) : (10)3.2 Death StepFor notational convenience, assume that the death step attempts to move from amodel with s + 1 loci to s loci. (If necessary, renumber the loci so this is the case).The death step considers the model given by equation (8), when the current modelis as in equation (9). The proposal for the death step is uniform over all s+ 1 loci,qd = 1=(s + 1) : (11)The death step to move from s+ 1 to s loci proceeds as follows:D1. Choose one of the s + 1 loci with probability qd . This reduces the numberof loci from s + 1 to s. Let �s+1 and Qs+1 correspond to the e�ect and QTLgenotypes of the locus to be dropped.10



D2. Drop the e�ect �s+1. Modify the regression parameters � of the smaller modelto � +G�1F T1Qs+1�s+1 ;with X = F 1G for the design matrix of the remaining s QTL genotypes.D3. Drop the corresponding QTL genotypes Qs+1.The idea for updating the modelmean and QTL e�ects in the birth and death steps(B4, B5, and D2) is similar to that of introducing additional regression parameters(Seber 1977, section 3.7; Mallick 1995). This adjustment to the model parameters isdone to obtain the best �t in the new model subspace.3.3 Acceptance ProbabilityThe acceptance probability for the birth and death steps are min(1; A) and min(1; A�1),respectively whereA = �(s+ 1; f�; �s+1g; fQ;Qs+1g; (�; �s+1)jY )�(s;�; Q; �jY ) � ds+1bs qdqb V 1=2� : (12)The �rst term on the right hand side corresponds to the ratio of the posteriors in thelarger model (9) with s + 1 QTL and the smaller model (8) with s QTL. The otherterms are the ratio of the probability of death and birth moves, the ratio of death andbirth proposals, and the Jacobian of transformation from smaller to larger models.This Jacobian is derived in the Appendix. For a move which does not involve thechange of parameter dimension, the acceptance probability is a Metropolis{Hastingsacceptance probability based simply on the ratio of densities.11



3.4 InferenceThe sampled states of the reversible jump Markov chain can be used to obtaininference summaries about the parameters of interest. The frequencies of the sampledvalues of s gives an estimate of its marginal posterior density. An estimate of s, suchas mode, can be obtained from this marginal posterior density. Inference for otherparamerers can be obtained conditional upon a given value of s. For example, theempirical averages of the sampled values of � for a given s is an estimate of the QTLlocations. Con�dence intervals can be given by high posterior density (HPD) regionsobtained from the corresponding marginal posterior densities (Box and Tiao 1973).4. RESULTSThe proposed algorithm for reversible jump MCMC is illustrated using simulateddata and using owering time data for Brassica napus. Sensitivity to the choice ofprior must be examined in a Bayesian analysis. Here we examine sensitivity to thechoice of QTL prior mean. We �rst present the analysis of simulated data, followedby the analysis of owering time data. Sensitivity to the choice of QTL prior meanis discussed for both these analyses.4.1 Simulated DataTrait data for two QTL were generated under models inspired by the Brassicanapus study detailed in section , with 105 individuals and 10 molecular markers onlinkage group 9 of this genus (Figure 1). Two QTL were placed, one between markers4 and 5 at 30.8cM, and the second between markers 8 and 9 at 66.7cM. Data on 105independent individuals (number similar to owering time data) were generated usingthe linear model of equation (1), with the error term having a N(0; 1) distribution.12



The e�ects of the two loci were (�1; �2) = (3; 3) and the model mean � = 0, in thesame units as the trait data.The prior distributions for the reversible jump analysis were chosen as follows.The prior on s was taken as Poisson with mean 4, restricted to the range 0; 1; � � � ; 10.The prior on model mean �, and the e�ects � were normal centered at 0 and variance10, allowing the possibility of extreme QTL e�ects. The QTL positions � had anordered uniform prior on the entire linkage group 9. The model variance �2 had aninverse gamma(2,2) prior. The starting values for the reversible jumpMCMC analysiswere as follows. s0 = 1, and the starting value for a single putative locus (�1) was atthe center of the linkage group between markers 5 and 6. The starting values �0 and�01 were 0, and �20 = 0:5.After a burn{in period of 100,000 sweeps, 500,000 runs of reversible jump MCMCwere obtained. These values were sampled at every 200th cycle, giving a workingset of 2,500 samples. The mode of the marginal posterior distribution of s was at 2with probability 0.42. Other plausible values for the number of loci were s = 3 withmarginal posterior probability 0.39, and s = 4 with probability 0.15. In all the runs,the number of QTL (s) never exceeded 6. Corresponding to the sampled values ofs = 2, the two loci were estimated at 31cM and 67cm with corresponding e�ects 3.06and 2.92. The estimated model mean � and model variance �2 were -0.03 and 1.17,respectively. The overall features of the true model were recovered in this analysis.The e�ects of the two loci are \large" in this simulation. Therefore, it may not besurprising that all the features of the simulated data were recovered in the reversiblejump MCMC sampling. We were interested in investigating whether similar resultscan be obtained when the underlying QTL have very small e�ects.A second set of data were generated based on the results of the owering timedata analysis in Satagopan et al. (1996). Two QTL were simulated between markers5 and 6 at 40cM, and between markers 9 and 10 at 76cM. The e�ects of the two lociwere -0.06 and -0.12, respectively, in the same units as the trait data. The model13



mean mean � was 3.0. The model variance �2 was 0.1. We �rst considered a Poissondistribution with mean 5 for the number of loci s, restricted to the range 0; � � � ; 10.Prior for the other unknown parameters were the same as for the above simulation.Starting values for the reversible jump MCMC run were the same as for the abovesimulation.Table 1 gives the estimated posterior distribuition of s for this simulation. Undera QTL prior mean of 5, the marginal posterior of s = 2 has the highest probabil-ity, although other values for s are plausible. Figure 2 gives the estimated marginalposterior distributions of the two loci conditional upon s = 2. The estimated QTLpositions and 95% HPD con�dence intervals are also indicated. The estimated po-sitions are very close to the true loci and the HPD con�dence intervals include thetrue positions as well. Sampled values of s = 1 correspond to sampling a singleQTL position. In this case, if the true number of loci is 2, one would expect themarginal posterior distribution of the single locus to be multi{modal. Figure 3 givesthe estimated marginal posterior distribution of a single QTL conditional upon s = 1.This distribution has 3 modes, one between markers 5 and 6, a second mode betweenmarkers 9 and 10, and a third mode occuring in the interval between markers 8 and 9.The two intervals between markers 7 and 9 are sampled frequently when s = 1. Thisis a common feature known as \ghosting" which occurs while �tting a single locusmodel when the true underlying model involves multiple loci a�ecting the trait, andwas previously observed by Haley and Knott (1992). Figure 4 gives the estimatedmarginal posterior distribution of the three loci conditional upon s = 3. The esti-mated positions of locus 2 and locus 3 are very close to the simulated data, and areclose to the estimated values of the loci conditional upon s = 2. Locus 1 is estimatedto lie between markers 3 and 4. One may then want to determine whether thereare indeed 3 loci a�ecting the trait. We can examine this by looking at the HPDcon�dence intervals. The 95% HPD region of locus 1 spans two regions, one betweenmarkers 1 and 2, and a second region between markers 3 and 7. This second region is14



contained within the 95% HPD interval for locus 2. This, coupled with the fact thatthe posterior probability of s = 3 is lower than the probability that s = 2, indicatesthat a two loci model is more likely than a three loci model.4.2 Sensitivity AnalysisIn a Bayesian analysis, as discussed in this paper, it is important to check forsensitivity to the choice of prior distributions. Satagopan (1995) studied sensitivityto the choice of prior for an MCMC approach to �t multiple QTL model when sis �xed. The results of the analysis were not a�ected greatly by the choice of priordistributions and hyperparameters. Here we discuss sensitivity to the choice of priordistribution of s. The choice of QTL prior mean and how well the sampled Markovchain \mixes" appear to interact closely.A Poisson prior was chosen for s throughout our analysis. The estimated marginalposterior distribution of s was a�ected by the choice of mean (and, hence, variance) forthis Poisson prior. The prior distribution of s enters the acceptance ratio (equation12) calculation through the ratio ds+1=bs and thus inuences the \mixing" of thechain. Increasing the prior mean (or variance) of s tends to increase its posteriorvariance. Marginal posterior of s for the second set of simulations for various choicesof QTL prior means are given in Table 2. In this case, the chain did not mix welland continued to stay at smaller values of s (0 and 1) for a long time when theprior mean was chosen to be small (< 3). For example, when the QTL prior meanwas 1 the following marginal posterior probabilities were observed for various startingvalues of s for the second set of simulations: a no QTL model had a marginal posteriorprobability of 0.38, a one QTL model had a probability of 0.53, and a two QTL modelhad a probability of 0.08. The chain did not sample loci larger than 3. The chainmoved between di�erent models more frequently when the prior mean was larger than3. Increasing the prior mean seemed to favor a higher number of loci. As discussed15



in the previous section, the loci estimated in the model of a speci�c dimension (or, agiven value of s) were also the ones estimated in models of other dimensions (Figures2, 3, and 4).Bayes factor comparing a model with s1 loci against a model with s2 loci is de�nedas B(s1; s2) = �(yjs1)�(yjs2)= �(s1jy)�(s2jy) � �(s2)�(s1) (13)(by Bayes theorem) :We calculated Bayes factors for the second set of simulations. The value of B(2,3),Bayes factor comparing models with 2 and 3 loci, for QTL prior mean 3, 4, 5, and 6are 3.17, 2.73, 3.18, and 2.67, respectively. These values are fairly similar and do notseem to be a�ected by the choice of QTL prior mean. Similarly, B(1,2), Bayes factorcomparing models with 1 and 2 loci, for QTL prior means 3, 4, 5, and 6 are 1.74,1.51, 1.48, and 1.35, respectively. The results were not sensitive to choices of startingvalues for s and for other parameters.4.3 Analysis of owering time dataThe Brassica genus has been widely studied for disease resistance, freezing tol-erance, owering time and seed oil content, among various other traits of economicimportance. Here we analyze double haploid (DH) progeny from Brassica napus todetect QTLs for owering time. A DH line from the Brassica napus cv. Stellar (anannual canola cultivar) was crossed to a single plant of cv. Major (a biennial rapeseedcultivar) which was used as a female. One hundred and �ve DH lines, the F1 hybridand progeny from self-pollination of the parents Major and Stellar were evaluated inthe �eld for ower initiation. The plants were divided into 3 groups and each group16



was exposed to one of the 3 treatments { no vernalization, 4 weeks vernalizationand 8 weeks vernalization. Materials and methods and preliminary analysis of theexperiment are given in Ferreira et al. (1995). DNA extraction and linkage mapconstruction are described in Ferreira, Williams, and Osborn (1995). To illustrate re-versible jump MCMC, we consider only owering data for 105 progeny from 8 weeksvernalization treatment and genotypes of 10 markers from linkage group 9. One outof 105 phenotypic data was missing and 9% of the marker genotypes were missing.Figure 5 shows the two LOD peaks (LOD values = 8.37 and 6.91) on linkage group9 obtained using the EM algorithm for a single QTL model (Lander and Botstein1989). Fixing a QTL at the higher peak showed an increase in the LOD score of 1.72for a second putative QTL. Fitting single, two and 3 QTL models using the Bayesianapproach and comparing them using Bayes factors showed that a two QTL modelbest �t the data (Satagopan et al. 1996). We further investigate this using the abovereversible jump MCMC algorithm.We use the simple linear model given by equation (1) for the number days toower for the ith DH line, where yi is logarithm of the number of days to ower, and�; �j and Qij are de�ned as earlier. Note that since the DH lines are homozygous atevery locus, Qij 2 f�1; 1g. The random errors �i are assumed to have independentGaussian distributions with mean 0 and common variance �2.The Bayesian formulation of the problem requires speci�cation of prior distribu-tion on the set of model parameters � = (�; �; �2) and the loci �. For simplicity weassume prior independence of the model parameters. The overall mean �, and genetice�ects � are given independent Gaussian prior centered at 0 and variance 10 allowingfor the possibility of extreme QTL e�ects. The phenotypic variance �2 is assumedto have an inverse gamma(2,2) prior. The �j 's are assumed to have uniform prior asdescribed earlier. The number of QTL s has a Poisson prior with mean 5. We setsmax = 10.The starting values are chosen as follows. s0 = 1, the single starting locus �0117



is at the center of linkage group 9. Model mean �0, and the single QTL e�ect �01are 0. The variance �20 is 0.5. After an initial burn{in of 100,000 states, 1,000,000states were sampled at every 200th cycle giving a working set of 5,000 states. Table 1gives the estimated marginal posterior distribution of s. The estimated mode of thisdistribution is at s = 2. Figures 6A and 6B give the estimated posterior distributionsof the two loci conditional upon s = 2. Locus 1 is estimated at 34.3cM near marker5. Locus 2 is estimated at 71.1cM between markers 9 and 10. The estimated e�ectsof the two loci are -0.05 and -0.13 respectively. The estimated model mean is 3.06and the estimated model variance is 0.08. Figure 6C shows the estimated posteriordistribution of a single locus conditional on s = 1. This distribution has 3 modes,two around the same regions as the loci estimated when s = 2, and a third one inbetween these two modes. The third mode corresponds to a ghost QTL sampledunder a one QTL model when the trait is a�ected by multiple loci. The 95% HPDcon�dence region for a single locus spans two regions, one between markers 5 and7, and a second region between markers 7 and 10. These regions are also includedin the con�dence intervals of the two loci sampled under a two QTL model (Figures6A and 6B). Based on these plots and the posterior distirbution of s, a two QTLmodel is more likely although other models (such as three loci) are plausible. UsingBayes factors as a model selection criterion, Satagopan et al. (1996) observed that atwo loci model was more likely for the owering time data. Butruille (1998) condutedbreeding experiments focusing on linkage group 9 (now called N2) and found evidenceto support two linked QTL. This work is being extended to �ne mapping of the region,exploiting synteny with Arabidopsis thalianus to locate the candidate gene.Sensitivity to the choice of QTL prior mean was examined for the owering timedata. Results were similar to those observed in the second set of simulations. Theposterior probability of s = 2 was the highest for various choices of prior mean. Avery small prior mean resulted in poor mixing of the chain. Increasing the prior meanalso increased the variance of the estimated marginal posterior of s. The results were18



not a�ected by the choice of starting values, nor were they a�ected by the choice ofprior for the other unknown parameters.5. DISCUSSIONOne of the goals of any linkage study is to determine the number of loci a�ectingthe trait of interest. One can estimate this quantity by either �tting a single lo-cus model and including additional loci in a step{wise manner (Lander and Botstein1989), or by considering this as a model selection problem by comparing single versusmulti{locus models (Satagopan et al. 1996; Hoeschele and VanRanden 1993b), or byconsidering the unknown number of loci as an additional parameter to be estimatedas presented here. An attractive feature of the reversible jump MCMC approach isthat we can obtain an estimate of the probability distribution of the number of loci inthe form of marginal posterior distribution of s. For the simulated data and oweringtime, we have considered a simple linear model without dominance or epistasis. Theseterms can be easily incorporated into the model. Epistasis, which denotes interac-tion between two genetic loci, can be included as an interaction term in the model.Although we have considered analysis of only one linkage group, this method can beeasily extended to include multiple chromosomes. This can be done by including anadditional step in the algorithm which will choose a chromosome before choosing aninterval for a birth or a death step within that chromosome. Here we have demon-strated application to a double haploid progeny which is homozygous at every geneticlocus. Other breeding schemes can also be considered. For the owering time dataanalysis, 1,000,000 iterations of the chain were sampled at every 200th cycle. Thestored samples were examined for serial correlation and convergence.Satagopan and Yandell (1996) gave a reversible jump MCMC approach for mul-tiple loci on a single linkage group. Later Sillanp�a�a and Arjas (1998) and Stephensand Fisch (1998) used a similar approach for multiple loci on di�erent linkage groups.19



This paper modi�es the method of Satagopan and Yandell (1996) by updating themodel mean and e�ects within the birth and death steps (steps B4, B5 and D2) toprovide a good �t for the data conditional upon the number of loci and the genotypesat the estimated locations. This idea is similar to modifying the regression parame-ters when additional covariates are included in the model (Seber 1977). Further, byupdating the model parameters as in steps B4, B5 and D2, we achieved better mixingof the chain than in our earlier work. The advantage of updating the parameters as inthe earlier three works on reversible jump approach is that the Jacobian is very easyto evaluate (in fact, the Jacobian is 1). However, the Jacobian must be evaluatedcarefully to implement the method presented here.Reversible jumpMCMC method is computationally intensive. But given the speedof modern computers it is feasible to implement this approach. However, the choiceof priors, particularly prior of s, must be carefully assessed in every application. Theprior mean of s plays an important role in how well the chain mixes. Further, theposterior variance of s also depends on its prior mean (which is the same as theprior variance). It remains to be investigated whether very long runs of the chainare required for small prior means of s. This prior mean appears in the acceptanceprobability of the birth (and death) step as the ratio of birth and death proposals. Inour analyses of owering time data, between 14% and 33% of the proposed birth/deathtype moves were accepted for various choices of prior mean of s. Another choice ofprior for s is Uniform over f0; 1; � � � ; smaxg. The ratio of birth and death proposalsunder this prior would be 1. The role of smax in mixing of the sampled chain must beinvestigated.
20
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APPENDIX: JACOBIAN FOR THE BIRTH STEPThe birth step involves changing the parameters from (s;�; Q; �) to�s+ 1; f�; �s+1g; fQ;Qs+1g; f��; �s+1g� :The contribution to the Jacobian comes only from transforming � in the smallermodel to (��; �s+1) in the larger model as described in section in steps B4 and B5.Hence, the Jacobian is given byJ = det0@ @�=@�� @�=@�s+1@U=@�� @U=@�s+1 1A= @(�;U)@(��; �s+1)= det0@ Is+1 @�=@�s+10Ts+1 (1=�)V 1=2 1A= (1=�)V 1=2 2Here Is+1 is an identity matrix of dimension s + 1, @�=@�s+1 is a column vector oflength s + 1, and 0s+1 is a column vector of 0s of length s + 1. The Jacobian is theproduct of the diagonal elements since the matrix is upper triangular.
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Table 1: Estimated posterior probability of the number of loci for 2 data sets. Data1: Simulated data with \small" QTL e�ects where (�1; �2) = (�0:06;�0:12), andData 2: owering time data for Brassica napus. Probabilities are given for variouschoices of QTL prior means.Data QTL prior meanSet s 3 4 5 61 0 0.050 0.020 0.000 0.0001 0.440 0.310 0.260 0.1802 0.380 0.410 0.440 0.4003 0.120 0.200 0.230 0.3004 0.020 0.050 0.060 0.1005 0.000 0.010 0.010 0.0206 0.000 0.000 0.000 0.0002 0 0.000 0.000 0.000 0.0001 0.430 0.280 0.210 0.1202 0.430 0.440 0.410 0.3403 0.120 0.220 0.280 0.3304 0.020 0.050 0.090 0.1605 0.000 0.000 0.010 0.0406 0.000 0.000 0.000 0.005
27



Figure CaptionsFigure 1: Linkage group 9 of Brassica napus with 10 markers positioned accordingto their genetic distances. The centiMorgan distance between consecutive pairsof markers are shown on the right.Figure 2: Histogram of estimated marginal posterior distributions of two loci con-ditional upon s = 2 for the simulated data with \small" QTL e�ects. TheX denotes the estimated locations. 95% HPD intervals are indicated by theparantheses.Figure 3: Histogram of estimated marginal posterior distribution of a single locusconditional upon s = 1 for the simulated data with \small" QTL e�ects.Figure 4: Histogram of estimated marginal posterior distribution of 3 loci condi-tional upon s = 3 for the simulated data with \small" QTL e�ects. X denotesthe estimated loci. 95% HPD intervals are indicated by parantheses.Figure 5: LOD score using EM algorithm for a single QTL model. The horizontalaxis is linkage group 9 with all 10 markers positioned according to their geneticdistances. The vertical axis is the LOD score. The horizontal line at LOD = 3corresponds to the conventional LOD cut-o�.Figure 6: Estimated posterior distributions of the locations for Brassica napus ow-ering time data. Figures A and B give the posterior distribution for locus 1 andlocus 2 conditional upon a two loci model. Figure C gives the posterior dis-tribution of a single locus conditional upon a one locus model. X denotes theestimated loci. 95% HPD intervals are indicated by parantheses.28
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