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(Marh 30, 2000)AN APPROXIMATION OF THE K-FUNCTIONFOR STRAUSS DISC PROCESSESELAINE BORGHI,� Universidade Estadual de CampinasBRIAN S. YANDELL,�� University of WisonsinAbstratWe extended some results of Isham (1984) that worked on an approximation fortheK-funtion for multitype point proesses, based on the assumptions that edgee�ets are negligible and interation parameter is fairly weak, for the Strauss disproess. A simulation study showed that the approximation for the unmarkedpairwise-interation-type point proesses seems reasonable, but does not workwell for Strauss dis proess. Moreover, this study led us to question the use ofthe K-funtion di�erenes as a basis for omparison of Strauss dis type patterns.Keywords: Redued seond moment measure; pairwise-interation-type point pro-ess; marked point proessAMS 1991 Subjet Classi�ation: Primary 62M30Seondary 60K401. IntrodutionSpatial statistis methodology has been largely explored and used in reognitionof spatial patterns haraterizing a spei� region. Many of the appliations are inforestry and eology but more reently other �elds also started exploring spatialstatistis tehniques. Pairwise interation point proesses are frequently used tomodel and explain ertain mehanisms involved in some pratial problems. Theyare a speial ase of Gibbs point proesses where the interation funtion dependsonly on the distane between two points (Diggle et al. 1983, Cressie 1991, Ripley� Postal address: Postal address : Fauldade de Engenharia Agr�iola, Universidade Estadual deCampinas, Campinas, SP 13083-970 Brazil.�� Postal address: Postal address : Department of Statistis, University of Wisonsin, Madison,WI 53706-1685 USA. 1



2 Elaine Borghi and Brian S. Yandell1988, Stoyan et al. 1987).Various statistis have been reated based on measures on neighborhoods, forexample, the nearest neighbor distane. Authors like Ripley (1988), Stoyan et al.(1987), Upton and Fingleton (1985), Diggle et al. (1983) and Cressie (1991) desribesome of these summary statistis and their properties for the ase of a ompletelyspatially random point proess (CSR). Some of these summaries are one-dimensionaland hene lead to a onsiderable loss of information. On the other hand, thereare summary funtions that give a piture about the departure from the CSR inthe presene of inhibition or lustered patterns in a �eld. Two examples of suhfuntions are K-funtion or redued seond moment measure and nearest-neighbordistane distribution funtion.For marked point proesses, there is some work also done in terms of summaries forgoodness-of-�t or exploratory analysis, like the K-funtion version for marked pointproesses based on some mark orrelation measure (Stoyan 1984). Pentinnen et al.(1992) used this funtion to desribe spatial dependene of stem diameters, and rownlengths in a mixed birh-pine forest area. Goulard et al. (1996) present a generalde�nition and derivation of the pseudo-likelihood funtion for marked Gibbs pointproesses. They derived the maximum pseudo-likelihood inferene for two partiularases, bivariate Gibbs point proess and Strauss dis proess. They presented asimulation study for the bivariate Gibbs point proess, and applied the method to aforestry example (same used in Penttinen et al. (1992)) of the Strauss dis pattern.The Strauss dis proess is a speial ase of marked pairwise interation pointproesses (Badelley and M�ller 1989, Geyer and M�ller 1994, Goulard et al. 1996).However, little is known about properties of summaries with respet to this proess,in partiular about the redued seond moment measure. Any progress towards thismatter would be of great help for infering and haraterizing spatial patterns.Isham (1984) derived approximations for some of the properties of a Strauss-typepoint proess with two types of points and indiated how to generalize for N typesof points, on the assumption that interations between the points are fairly weakand that the boundary e�ets are negligible. In partiular, expansions are obtainedfor the redued seond moment measure. In the present paper, approximations are



An Approximation of the K-funtion for Strauss Dis Proesses 3derived for the K-funtion of a Strauss dis proess on the same assumptions andusing the same method of approximation as in Isham (1984).1.1. Preliminaries in spatial point proessesIn this setion we present a brief review of the theory involved in spatial pointproesses. We go through some de�nitions based on some referene books suh asRipley (1988), Diggle (1983) and Cressie (1991).In the following, let X be the Borel �-algebra of the sample spae X � <d for d � 2and let � be the Lebesgue measure on X . Reall that a measure � is loally �nite if�(B) < 1 for all bounded sets B 2 X . A ounting measure  (B) is the number ofevents in B, that is, the number of subsets of X .Let (
;A;P) be a probability spae and let C be a olletion of loally �niteounting measures on X � <d. On C de�ne N , the smallest �-algebra generatedby sets of the form f 2 C :  (B) = ng, for all B 2 X and all n 2 f0; 1; 2; :::g.Then a spatial point proess 	 on X is a measurable mapping of (
;A) into (C;N ).This random ounting measure  on X is analogous to a random variable on <, andprobabilities are omputed fromP (	 2 Y ) = P (w : 	(w) 2 Y ); Y 2 N :A spatial point proess de�ned over (
;A; P ) indues a probability measure�	(Y ) � P (	 2 Y ) on (C;N ); for all Y 2 N :A spatial point pattern  is a realization of a spatial point proess 	.For a point proess 	 and Borel set B, the number of points 	(B) in B is a randomvariable with �rst moment measure�	(B) � E(	(B)) = ZC  (B) �	(d );a measure on (X;X ). The intensity of a point proess is de�ned by�(s) � lim�(ds)!0 �	(ds)�(ds) ;



4 Elaine Borghi and Brian S. Yandellprovided the limit exists. Also, we an de�ne the seond moment measure by�(2)	 (B1 �B2) � E(	(B1)	(B2)) = ZC  (B1) (B2) �	(d );a measure on (X2;X (2)), with X (2) being the smallest �-algebra formed by theprodut sets B1 �B2 and B1; B2 2 X . Then the seond-order intensity is de�ned by�2(s; u) � lim�(ds)! 0�(du)! 0 �(2)	 (ds� du)�(ds) �(du) ;provided the limit exists.1.2. The K-funtionThe redued seond moment measure, or K-funtion, is de�ned asK(t) = 1�E0� number of extra events withindistane t of an arbitrary event 1A ; t � 0;(1)where � is the intensity of the point proess. Under the assumption of CSR in<2 , K(t) = �t2, while under regularity K(t) tends to be less than �t2 and underlustering K(t) tends to be greater than �t2. This paper onerns proesses that aremore regular than CSR.The relation between the K-funtion and the seond-order intensity is given by�K(t) = d�d=2���1 + d2� Z t0 ud�1 �2(u) du; t � 0;(2)where d is the dimension of the onsidered spae and �2 is the seond-order intensityof the point proess de�ned.Let (x1; :::; xn) denote the n � n(A) loations of all events in a bounded onvexstudy region A. Ripley (1979) uses an edge-orreted estimator for K(t), de�ningK̂(t) = 1n�̂ nXi=1 nXj=1 I(k xi � xj k� t)� k(xi; xj);(3)with 1=k(x; y) being the proportion of the irumferene of the irle entered at xpassing through y whih is within A. For all the estimators involving �̂ we an use



An Approximation of the K-funtion for Strauss Dis Proesses 5�̂ = njAj . Aording to Ripley (1981), the use of �̂ seems not to upset the unbiasednessof the estimator too muh. Ripley (1979) also suggests that for some t0 small enough,the bias in K̂(t) is negligible for t � t0.1.3. Strauss dis proessesRandom dis proesses (Baddeley and M�ller 1989) are speial ases of the germ-grain model (Stoyan et al. 1987) whih an be used to desribe a pattern of randomlydistributed diss (or spheres in higher dimensions), where diss (spheres) may overlap.Consider a marked point proess 	m = f[xi; ri℄g with a �nite number of points on abounded spae 
 and marks on � � [0;1), where the density is the Radon-Nikodymderivative with respet to the distribution of a homogeneous Poisson proess (whih,with no loss of generality, an be taken to have unit rate). Let x = (x1; :::; xn),r = (r1; :::; rn), and onsider [xi; ri℄ to be a dis with radius ri entered at xi. Ageneral pairwise interation proess has densityf(x; r) = z�nYi<j �(k xi � xj k; ri; rj);where � : [0;1)3 ! [0;1).Our partiular interest onerns the Strauss-like interation funtion given by�(u; ri; rj) = 8<:  if u < ri + rj1 else;for 0 �  � 1. This proess is alled a Strauss dis proess and its density beomesf(x; r) = z�n(x; r)s(x; r);(4)where � is a parameter related to the intensity of the point proess,  is the interationparameter, n(x; r) is the number of points in 	m ands(x; r) = nXi; j = 1i < j �(k xi � xj k; ri; rj);is the number of pairs of points xi and xj that are loser than ri + rj apart in 	m,with �(u; ri; rj) being equal to 1, if u � ri + rj , or 0 otherwise.



6 Elaine Borghi and Brian S. Yandell2. Approximation of the K-funtionApproximations are derived for the K-funtion of a Strauss dis proess, on theassumption that the interation between points is fairly weak. That is, we onsiderthe position of the enters of the diss as distributed lose to the Poisson proess, andthat the boundary e�ets are negligible.2.1. Isham's results for multitype point proessesIsham (1984) developed approximations for some of the properties of a Strauss-typespatial point proess with two types of points (easily extended to N types of points,or a multitype proess), on the assumption that the interations between the pointsare fairly weak and that boundary e�ets are negligible. The last assumption willbe true when the onsidered region is large enough and the diss are far away fromthe boundaries. Consider a marked point proess f[xi; ri℄g. We say ri = Æm, withÆm > 0, if point xi is of type m, m = 1; � � � ; N , and denote Æml = Æm + Æl. Thedensity funtion of the Strauss-multitype proess is given byf(x; r) = z NYm=1�nm(x;r)m Y1�m�l�N sml(x;r)ml ;(5)where nm(x; r) is the number of points of type m with PNm=1 nm(x; r) = n, andsml(x; r) is the number of pairs of points of types m and l that are loser than Æml.Here z; �1; :::; �N , are positive onstants. The author wrotesml(x; r) = nm(x;r)Xi=1 nl(x;r)Xj=1 �(N)(k xmi � xlj k; Æml);with xmi being the ith point of type m and �(N)(u; Æml) equal to 1, if u � Æml or 0,otherwise.For the existene of the proess it is neessary that the joint densities of the pointsspei�ed by (5) an be appropriately normalized up to a onstant z. This impliesthat within eah type the interations are inhibitory, that is, 0 � mm � 1. Betweentypes some attration may be possible but usually only to a limited extent. Based



An Approximation of the K-funtion for Strauss Dis Proesses 7on the assumptions stated previously, Isham onsiders mm = 1 � gm � andml = 1+ dml �, for m; l = 1; � � � ; N; m 6= l, for some small � > 0, where gm � 0and dml are arbitrary subjet to the existene of the proess.The type m intensity is then approximated to �rst order by�m = �m f1� � (gm �m � Æ2mm �Xl6=m dml �l � Æ2ml) +O(�2)gand the joint intensity of a type m point at � and a type l point at � is approximatedby �ml(�; �) = �m�l f1 + � dml �(N)(�; �; Æml) +O(�2)g:The joint intensities �ml an be integrated to determine seond-order propertiesof the multitype point proess. In partiular, the redued seond moment measure,following (1) and (2), is de�ned for t � 0 byKml(t) = 1�E0� number of type l points within adistane t of a given type m point 1A(6) = Z t0 2�s �ml(s)�m�l dswhere �ml(�; �) = �ml(k � � � k). A �rst order approximation isKml(t) � 8<: ml � t2 if t � Æml� t2 � (1� ml) � Æ2ml if t � Æml:(7)Using luster expansion (Croxton 1974), Isham gives results for more general Markovproesses and a seond order approximation for the two-type point proesses andshows how to extend to N -type point proesses. The author writes the seond orderapproximation for the K-funtion in the formKml(t) � 8>>>>>><>>>>>>: (1 + �dml) � t2��2 dml (gm�m + gl�l) 2 � Jml(t) +O(�3); t � Æml� t2 + � dml � Æ2ml��2 dml (gm�m + gl�l) 2 � Jml(t) +O(�3); t � Æml(8)



8 Elaine Borghi and Brian S. Yandellwhere Jml(s) = R s0 s Aml(s) ds; with Aml(k � � � k) = Aml(�; �) being the areaof the region in the plane whose points are neighbors of both a type m point in �and a type l point in �. That is, Aml(s) is the area of intersetion of two dissentered s units apart, both with radius Æml. Isham is aware that a form of seondorder approximation for Kmm(t) an be written down easily but, more generally, forKml(t) the problem beomes too omplex, sine it involves integrating Aml.2.2. An approximation for a Strauss dis proess with ontinuous markdistributionUsing the same method desribed in the previous setion, we develop here anextension for the Strauss dis proess with density (4) to be presented in this setion.Consider � = � � �, where � is Lebesgue measure, yielding the unmarked Poissonproess of unit intensity, and � orresponding to the distribution of the marks. Denoteby R, R1 and R2 random variables with distribution �. Following Isham (1984),assume that the edge e�ets are negligible. ThusZ(
��)2 �(k x1 � x2 k; r1; r2) �(d[x1; r1℄) �(d[x2; r2℄) =�j
jE���(R1 +R2)2(9)and  = 1� g�; g > 0; for � > 0 small.For a �xed number of points n, the density in (4) an be written asf(x; r) = z�nYi<jf1� g � �(k xi � xj k; ri; rj)gwhih an be approximated byf(x; r) = z�nf1�Xi<j g � �(k xi � xj k; ri; rj) +O(�2)g:(10)Let �2 = E���(R1 + R2)2 and �(d[x; r℄) = �(d[x1; r1℄) � � � �(d[xn; rn℄). A �rst order



An Approximation of the K-funtion for Strauss Dis Proesses 9approximation for the onstant of proportionality is given byz�1 = 1Xn=0 1n! Z(
��)n f(x; r) �(d[x; r℄)(9) (10)= 1Xn=0 1n! �n j
jn � g � 1Xn=0 1n! �n n(n� 1)2 j
jn�1 � �2 +O(�2)= ej
j� �1� g � � �2 j
j2 �2 +O(�2)� :(11)The intensity of a point on � with mark r� is given by�(�; r�) = 1Xn=0 1n! Z(
��)n f(x [ �; r [ r�)�(d[x; r℄)(10)= � z 1Xn=0 �nn! Z(
��)n8<:1� g �Xi<j �(k xi � xj k; ri; rj)�g � nXi=1 �(k � � xi k; r�; ri) +O(�2)) �(d[x; r℄)(9)= � z ej
j�f 1� g � � �2 j
j2 �2 � g � � � E�(r� +R)2 +O(�2)g= �f z ej
j�[ 1� g � � �2 j
j2 �2℄ [ 1� g � � � E�(r� +R)2℄+O(�2)g(11)= �f 1� g � � � E�(r� +R)2 +O(�2)g :The unonditional intensity is then approximated by � � �f1 � g � � � �2g: Usingthe same arguments, we �nd an approximation for the joint intensity, whih is givenby �(�; �) = 1Xn=0 1n! Z(
��)n f(x [ � [ �; r [ r� [ r�)�(d[x; r℄)= �2 z ej
j�f 1� g � � �2 j
j2 �2 � 2 g � � � �2� g � E���(�(k � � � k; R1; R2)) +O(�2)g= �2 zf ej
j�[1� g � � �2 j
j2 �2℄[1� g � � � �2℄2[1� g � E���(�(k � � � k; R1; R2))℄+O(�2)g� �2f 1� g � E���(�(k � � � k; R1; R2))g :



10 Elaine Borghi and Brian S. YandellThrough these approximations we an aess the seond-order propertyK(t) � Z t0 2�u �1� g� Z�2 �(u; r�; r�) �(r�)�(r�) dr�dr�� du= �t2 � g�2� Z�2 �(r�)�(r�)�I [t � r� + r�℄ Z t0 u du+ I [t � r� + r� ℄ Z r�+r�0 u du� dr�dr�= �t2 � (1� )�f t2P (R1 +R2 � t)+E��� �(R1 +R2)2jR1 +R2 � t�g :In this way we have an extension to what Isham developed for a disrete set of types.Notie that we have an approximation for the K-funtion whih depends on thedistribution of the sum of pairs of radii. In the multitype ase, we an have a set ofN(N + 1)=2 K-funtions to estimate.A seond order approximation for the K-funtion in this ase is rather omplex,but we an use the de�nition of the K-funtion (7) and apply the form obtained byIsham for the multitype point proesses (8). In this ase, �xing the number of pointsn, we have that ml =  and �m = � for m; l = 1; � � � ; N with N � n. ThenKml(t) �  � t2 + 4 � (1� )2 � Jml(t) + (1� ) � (t2 � Æml2) I(t � Æml)with I(�) being the indiator funtion. The average redued seond moment measureis �K(t) = E�( NXl=1 �l Kml(t))�  � t2 NXl=1 �l + 4 � (1� )2 � NXl=1 �l E� [J(t; R1; Æll)℄+ (1� ) � NXl=1 �l E� �(t2 � (R1 + Æll)2) I(t � R1 + Æll)� :An extension to Isham's seond order approximation results is given byK(t) �  � t2 + 4 � (1� )2 � E��� [J(t; R1; R2)℄+(1� )� �t2P (R1 +R2 � t)�E��� �(R1 +R2)2 j R1 +R2 � t�	 :



An Approximation of the K-funtion for Strauss Dis Proesses 11We tried to study this seond order approximation, alulatingE��� [J(t; R1; R2)℄ numerially, whih would be in the form of a triple integral.The results (not shown) did not enourage us to ontinue further. The fat thatthis approximation inludes a term that is proportional to (1 � )2 � makes theapproximation even worse for values of  that are not extremely lose to 1 when � isreasonably big.
3. Simulation study for Strauss dis proess
In order to hek the e�etiveness of the �rst order approximation for the K-funtion given in the previous setion, we onduted a simulation study. Using theMetropolis-Hastings algorithm unonditional on the number of points (Geyer andM�ller 1994), we simulated 100 Strauss dis proesses subsampled from a Markovhain to reate 95% on�dene MCMC envelopes for eah ase onsidered. Aftersome evaluation using time series plots, we onsidered a burn-in period of 20,000 basisteps, sine equilibrium is reahed within �rst 5,000 basi steps, depending on theparameter  and radii used. Although we did not investigate about the optimum spaeamong samples, we allowed 200 steps between samples, in order to get a fairly weakorrelation among samples and, perhaps a more important feature, whih is havinga long enough hain for a not so high omputational ost. Also, we have onsideredjust the possibility of adding or removing a marked point, following suggestions givenby the authors with respet to the simulation of Strauss proesses (parameter p intheir algorithm equal to 1). For this study, we onsidered the ases where the radiiare onstant, or have uniform distribution, or have gamma distribution. We set upthe radii distributions keeping the mean r the same in all ases and onsidered twolevels of variane for the uniform ase, for eah set of parameters � and . Hereand everywhere in this researh we always used Ripley's estimator for the K-funtiongiven by (3).



12 Elaine Borghi and Brian S. Yandell3.1. Constant radiiFor diss with onstant radii r, the model beomes simply the Strauss point proesswith hard-ore distane equal to 2r. Figure 1 shows 95% envelopes and mean forthe estimated K-funtion alulated from an MCMC sample of size 100 and theapproximation given by (7) with Æml = 2r and ml =  for small values of  anddi�erent values of r, the radius.
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Figure 1. Monte Carlo 95% envelopes for the K-funtion with mean (solid line) and �rstorder approximation (dashed line) for onstant radii (� equal to 50).We an see that the approximation gets loser to the MCMC mean when we inrease. On the other hand, when we ompare MCMC means of the K-funtion amongdi�erent sets of parameters, we notie a derease in sensitivity of this funtion as gets away from zero, for the same value of r. That is, the di�erene between  = 0



An Approximation of the K-funtion for Strauss Dis Proesses 13and  = 0:2 seems bigger than di�erene between  = 0:2 and  = 0:4. Earlierstudies atually showed that this di�erene beomes negligible when we approah thehomogeneous Poisson proess. Note also that the sensitivity is larger for larger meanradius.Results show that this approximation is reasonable even for values of  lose tozero for Strauss point proesses, whih indiates it ould be used for estimation of or for testing patterns against CSR.3.2. Radii with Uniform distribution - U [a; b℄The K-funtion approximation for Uniform[a; b℄ distributed radii is given by
K(t) �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
�t2; t � 2a;�t2 � (1� )��t2�1� (t� 2a)22(b� a)2�+ 3t4 � 8at3 + 16a46(t� 2a)2 � ; 2a < t � a+ b;�t2 � (1� )��t2� (2b� t)22(b� a)2�+ 16a4 � 2(a+ b)4 + 8bt3 � 3t46f2(b� a)2 � (2b� t)2g � ; a+ b < t � 2b;�t2 � (1� )� n7a2 + 7b2 + 10ab6 o ; t > 2b:In order to study the behavior of the approximation in this ase, we onsidereddistributions with two di�erent varianes. Beause of the fat that the outomedistribution from simulations in this ase are skewed with respet to the \primary"distribution, we investigated how muh this fat would a�et the approximation. Wealulated the approximation from the empirial mark distribution of the generatedpatterns and we obtained very similar results.Figure 2 shows when the radii are distributed as uniform in the range (2r=3; 4r=3),with variane equal to r2=27, while in Figure 3, the radii are uniformly distributedon (r=2; 3r=2), with variane equal to r2=12. In both ases the approximation getsaway from the MCMC mean as we approah  to zero (hard ore) and also when weinrease the radii mean r.At t = 2a, the K-funtion is not ontinuous, and the jump at that point is of size



14 Elaine Borghi and Brian S. Yandell
γ = 0

distance t

K
(t

)

0.0 0.10 0.20

0.
0

0.
10

distance t

K
(t

)

0.0 0.10 0.20

0.
0

0.
10

γ = 0.2

distance t
K

(t
)

0.0 0.10 0.20

0.
0

0.
10

0.
20

distance t

K
(t

)

0.0 0.10 0.20

0.
0

0.
10

γ = 0.4

distance t

K
(t

)

0.0 0.10 0.20

0.
0

0.
10

0.
20

distance t

K
(t

)
0.0 0.10 0.20

0.
0

0.
10

   
   

r 
=

 0
.0

6 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

r 
=

 0
.0

4 
   

  

Figure 2. Monte Carlo 95% envelopes for the K-funtion with mean (solid line) and �rstorder approximation (dashed line) for radii distributed as Uniform[2r/3,4r/3℄and � equal to 50.
4�a2(1 � ) and so beomes negligible as either a approahes zero or  approahesone. Another fat we an observe is that the sensitivity of the K-funtion in detetinghanges in parameters of the Strauss dis proess beomes weaker than when we haveonstant radii. As we depart a little from the hard ore proess, the K-funtion seemsto derease in sensitivity, giving us an indiation that this harateristi itself maynot be a good summary in this ase of Strauss dis proess with ontinuous radii.
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Figure 3. Monte Carlo 95% envelops for the K-funtion with mean (solid line) and �rstorder approximation (dashed line) for radii distributed as Uniform[r/2,3r/2℄and � equal to 50.3.3. Radii with gamma distribution - �(b; )We onsider here the ase when  is an integer (Erlang distribution) and the densityfor the radii is given byfR(u) = u�1 exp(�u=b)�() b ; u > 0; b;  > 0;  integer:Let's denote the umulative distribution funtion of a gamma distributed randomvariable R by �(u; b; ) = P (�(b; ) � u). Then we have that the approximation forthe K-funtion is given byK(t) � �t2 � (1� )��t2 (1� �(t; b; 2)) + b2 2 (2+ 1)�(t; b; 2+ 2)�(t; b; 2) � :Figure 4 shows the approximation for the gamma distributed radii. The approxima-
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Figure 4. Monte Carlo 95% envelopes for the K-funtion with mean (solid line) and �rstorder approximation (dashed line) for radii distributed as �(r=12; 12) and �equal to 50.tion is not good for values lose to zero and, for mean radii 0.04, it starts gettingloser to the MCMC estimate of the K-funtion. We an ompare Figures 3 and 4,onsidering two distributions with the same mean and variane but di�erent shapes.There is no evident di�erene between the MCMC means and envelopes of the K-funtion for the two radii distributions, indiating that the K-funtion itself mightnot be sensitive to hange in shapes of the radii distribution.4. Analysis and onlusionsThe �rst order approximation for theK-funtion by this method (luster expansion)is not eÆient, sine for values lose to zero (where the assumptions on whih the



An Approximation of the K-funtion for Strauss Dis Proesses 17method is based fail) there is a substantial departure from the estimated K-funtion.While for the ase of onstant radii (Strauss proesses) this departure is almostnegligible, for the ase of Strauss dis proesses it beomes bigger as  approahes tozero.When we analyze the MCMC means of the K-funtions, we see that this funtionis not sensitive to  for the same radii distribution. Most probably this is beausethe ontinuous distribution of the marks makes the K-funtion smoother when weallow any level of overlapping of the diss, espeially if the range of the dis radiiovers values lose to zero. Therefore this leds us to question the use of K-funtiondi�erenes as a basis for omparison of Strauss dis type patterns.� 25 100r 0.04 0.06 0.02 0.030.0 0.170 0.222 0.034 0.0450.1 0.158 0.222 0.045 0.0420.2 0.192 0.186 0.041 0.0400.3 0.153 0.222 0.038 0.0450.4 0.177 0.189 0.041 0.039 0.5 0.128 0.159 0.035 0.0390.6 0.148 0.136 0.033 0.0350.7 0.144 0.140 0.038 0.0280.8 0.138 0.161 0.029 0.0370.9 0.127 0.148 0.034 0.0391.0 0.141 0.145 0.028 0.043Table 1. Maximum range in the 95% Monte Carlo envelopes for 100 Strauss dispatterns with radii distributed �(r=12; 12).We did a small simulation study using the Strauss dis proess with radii gammadistributed to study the behavior of Ripley's K-funtion estimator for Strauss disproesses with respet to the �-dependent ount of the point proess, mean radius rand parameter of interation . This estimator is suppose to be unbiased for values



18 Elaine Borghi and Brian S. Yandellof t less than or equal to an appropriate t0, here 0.25 (used by Ripley (1979) for 25point patterns). Table 1 shows results for the maximum range of the 95% on�deneinterval in MCMC simulations of 100 Strauss dis patterns. The variability of theestimator of the K-funtion seems to derease onsiderably when we enlarge theamount of information, if we ompare patterns with � = 25 and mean radius r to theones with � = 100 and r=2 with the same parameter of interation . On the otherhand, when we have � = 25, as we inrease r or derease  (leading to a derease inthe number of points in the pattern), the variability of the estimator inreases. Thesefats may indiate that this estimator for the K-funtion improves as we enlargeeither the density of points, or size of the studied region in this ase of Strauss disproesses. But, of ourse, a more rigorous study is needed to show onsisteny of theestimator.The �rst order approximations extended for the Strauss dis proess, as presentedin this hapter, seem to work better for values of  not lose to zero, and withpossible better behavior as the mean radius dereases. On the other hand, evidenesuggests that the K-funtion beomes smoother and loser to the K-funtion of thehomogeneous Poisson proess as we inrease the variane of the radii for  not toofar from zero. This fat is disouraging in terms of using this approximation foromparison purposes. ReferenesBaddeley, A.J. and M�ller, J. (1989). Nearest-neighbour Markov pointproesses and random sets. Int. Statist. Rev. 57, 89{121.Croxton, C.A. (1974). Liquid State Physis - a Statistial Mehanial Introdution.Cambridge : Cambridge University Press.Cressie, N.A.C. (1991). Statistis for Spatial Data. New York : John Wiley.Diggle, P.J. (1983). Statistial Analysis of Spatial Point Patterns. London :Aademi Press.Geyer, C. J. and M�ller, J. (1994). Simulation proedures and likelihoodinferene for spatial point proesses. Sand. J. Statist. 21, 359{373.Goulard M., S�arkka, A. and Grabarnik, P. (1996). Parameter estimation
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