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Methods for Estimating the Interation Parameter ofStrauss Dis ProessesElaine Borghi 1Universidade Estadual de CampinasBrian S. YandellUniversity of WisonsinAbstratThe Strauss dis proess an potentialy model many appliationsin biologial systems, physis, environmental siene and other �elds.We perform a simulation study to ompare methods of estimating theinteration parameter of the density of this proess. We onsideredminimum-ontrast, pseudo-likelihood and Takas-Fiksel estimators andfor this ase a pseudo-likelihood estimator presented better performaneompared to the others.Keywords : Strauss dis proess, Metropolis-Hasting algorithm, pseudo-likelihood, minimum-ontrast, Takas-Fiksel.1 IntrodutionMany of the applied problems that are related to spatial statistis �tinside a speial lass of point proesses, the pairwise interation pointproesses. This partiular ase of Gibbs point proess is widely used inappliations not just beause they eÆiently model many patterns thatappear in physis, mehanis, environmental sienes and other �elds(e.g. Perus, 1964; Penttinen et al., 1992), but also beause they havefew parameters to be estimated.There is a onsiderable literature related to the inferene on pairwiseinteration point proesses in general. Various methods were proposedthat apply to more general Gibbs point proesses. Maximum likelihoodfor spatial point proesses was studied by Ogata and Tanemura (1981),and later extended to marked point proesses (Ogata and Tanemura,1Address for orrespondene : Elaine Borghi, Universidade Estadual de Campinas,Fauldade de Engenharia Agr�iola, Cidade Universit�aria Zeferino Vaz, Cx.Postal 6011,Campinas SP CEP:13026-430, Brazile-mail : elaine�agr.uniamp.br 1



1985). Fiksel (1984) generalized the idea earlier introdued by Takasand proposed the Takas-Fiksel method of estimating parametrized pairpotentials of gibssian point proesss. The pseudo-likelihoodmethod wasonsidered by Jensen and M�ller (1991) for general Markov spatial pointproesses. Later, Goulard et al. (1996) investigated this method formarked Gibbs point proesses using a pseudo-likelihood approah, andworked on ases like the bivariate Gibbs point proess and the Straussdis proess. The pseudo-likelihood method is a partiular ase of theTakas-Fiksel method for suitable test funtions. Some non-parametriestimation methods were proposed in the past few years but we will notover them in the present paper.One approah that we onsider is a very simple and well knownmethod, the method of minimum-ontrast. Although there are manyfuntions that an be used for this method, here we onsider the reduedseond moment measureK-funtion. This method appears frequently inthe literature, espeially for goodness-of-�t tests or exploratory analysis(Stoyan and Stoyan, 1994; Stoyan et al., 1987; Cressie, 1991).Although the literature is broad in this subjet, studies of propertiesof di�erent estimators were not throughout investigated for the markedase, espeially in terms of omparison of performane. Diggle etal. (1994) investigates three methods of estimation for pairwiseinteration point proesses, maximum likelihood, pseudo-likelihood andTakas-Fiksel, presenting a omparative simulation study. In the samediretion, we perform a simulation study for omparison of estimationmethods for the partiular ase of the Strauss dis proess in this paper.Properties and the behavior of eah of the estimators for the interationparameter are investigated.2 The Strauss dis proessRandom dis proesses (Baddeley and M�ller, 1989) are speial asesof the germ-grain model (Stoyan et al., 1987) whih an be used todesribe a pattern of randomly distributed diss (or spheres in higherdimensional ase), where diss may overlap.Consider a marked point proess 	 = f[xi; ri℄g with �nite numberof points on a bounded spae S and marks on � � [0;1), wherethe density is the Radon-Nikodym derivative with respet to thedistribution of a homogeneous Poisson proess (whih, with no lossof generality, an be taken to have unit rate). Let x = (x1; :::; xn),2



r = (r1; :::; rn), and onsider [xi; ri℄ to be a dis with radius ri enteredat xi. A Strauss dis proess has densityf(x; r) = z�ns(x; r); (1)where � is a parameter related to the intensity of the point proess, is the interation parameter, n is the number of points in 	 and s(x; r)is the number of pairs of points xi and xj that are loser than ri + rjapart in 	.3 Simulation of the Strauss disproessStatistial inferene for spatial point proesses an be very ompliate,whih explains why Markov hain Monte Carlo methods are being usedextensively in this �eld. Some of these methods of simulating a Markovhain are onditional on the number of points n, what makes themsimple in terms of omputational aspets (Ripley, 1979b). Methodsthat are unonditional on the number of points seem to be moreompliate but the hoie must be made depending on the goal ofthe study. For the present researh, we have to generate Strauss disproesses and onditioning on the number of points ould interfere inan undesirable way on the �nal distribution of the proess, based onthe theory involved. For these reasons, we deided on an approah thatis unonditional on the number of points.3.1 A Metropolis-Hastings algorithmGeyer and M�ller (1994) suggested a simulation proedure for theunonditional ase using a Metropolis-Hastings algorithm (Hastings,1970). This algorithm is simpler than the spatial birth-and-deathtehnique and an be used for Markov hain Monte Carlo methods.We now give a brief review of it.For an usual �nite point proess de�ned on a bounded Borel set S �<d equipped with the Borel �-�eld and Lebesgue measure � restrited toS, suppose the point proess has density � on (
;F) whih is absolutelyontinuous with respet to � , the density of the usual homogeneousPoisson proess with intensity 1 restrited to S. The funtion f = d�=d�is the density of the point proess with respet to the Poisson proess.3



Informally, 
 = S1n=0
n, where 
n=f fx1; � � � ; xng � Sg is the set ofall point on�gurations of n (not neessarily distint) points inludedin S. Geyer and M�ller (1994) proposed for this Metropolis-Hastingsalgorithm the transition kernel to be a mixture of two transition kernelsQ0, ontrolling displaements, and Q1, ontrolling deletion and additionof points,Qp(F j x) = (1� p) Q0(F j x) + p Q1(F j x); 0 � p � 1;for any F 2 F . This transition kernel satis�es the ondition for theMarkov hain to be time reversible, given that Q0 and Q1 satisfy thesame ondition.Q0(: j x) is onentrated on Hn = 
n \ H with H = fx 2 
n jf(x) > 0g and Q1(: j x) is onstruted so that it is onentrated onHn�1 [Hn [Hn+1 (or H0 [H1 if n = 0). In this way, with probabilityq(x), we generate a new point � from some density b(x; �) with respetto �(d�), and with probability 1� q(x) we either delete a random point� 2 x whih is seleted with some probability d(x; �), or if n = 0 we donothing.Aording to the authors, the time reversibility holds if, denotingthe aeptane probability by A1, andq(x[ �) < 1; d(x; �) > 0; q(x) > 0; b(x; �) > 0 whenever x[ � 2 H;A1(x j x [ �) = ( minf1; 1=r(x; �)g if x [ � 2 H;0 otherwise;and A1(x [ � j x) = ( minf1; r(x; �)g if x [ � 2 H;0 otherwise;where r(x; �) = f(x [ �)f(x) 1� q(x [ �)q(x) d(x; �)b(x; �) if x [ � 2 H:Geyer and M�ller onsidered one of the simplest situations for someases of point proesses like the Strauss proess, whenq(�) � 12 ; b(�; �) � 1�(S) and d(x; �) � 1n+ 1 if x 2 
n:In our ase, for the Strauss dis proess, we have to onsider themark distribution �1 (for the radii), whih we will onsider here as the4



\primary" mark distribution (as in Stoyan and Stoyan (1994), Setion16.3). So we have the probability of birth of a dis given byb(�; �) � �1(�)�(S) ;and f(x [ �)f(x) = � s(�) �(�);where s(�) is the number of diss in the proess that overlap with a disentered at � and � and  are the parameters of the Strauss dis proess(as in Equation 1). Note that, for the density of the points, the markdistribution � may be di�erent from �1, but we do not have ontrolover �. Therefore, we initially onsider them to be equal, so that themark distributions anel. Later we examine how robust this is throughsimulations. A relation between � and �1 is given by a mean-relationwith respet to the Palm distribution (Stoyan and Stoyan, 1994).Using similar notation introdued in Setion 2, we denote 
n=ffx1; � � � ; xng � Sg and �n=f fr1; � � � ; rng � [0;1)ng.The algorithm is onstruted suh that, given that the urrent stateof the Markov hain is 	 = f(x1; r1); � � � ; (xn; rn)g, we generate the nextproposal 	0 as follows.If n = 0 then the proposal is either(a) remain in the point on�guration, or(b) beome a single dis with uniformly distributed enter in S andrandomly hosen radius from �1.and if n � 1 then the proposal is either obtained by() replaing a randomly piked dis in 	 by a dis with uniformlydistributed enter in S and randomly hosen radius from �1, or(d) deleting a randomly piked dis in 	, or(e) adding a new dis with uniformly distributed enter in S andrandomly hosen radius from �1 to 	.Here (a) and (b) our with probabilities 1 � p=2 and p=2,respetively, while (), (d),(e) have probabilities 1 � p, p=2, p=2,respetively. Note that 0 � p � 1 and is related to the optimization5



of the simulation proess. Then in any of the ases, the proposal 	0 isaepted with probabilityA(	0 j 	) = min 1; f�(S) � s(�)gm�n n!m! ! ; if 	0 2 
m ��m:This is alled a basi step of the hain. Geyer and M�ller (1994)investigated this algorithm for the Strauss point proess (unmarked),among others. They reported that in this ase p = 1 (disardingreplaements) is optimal. Also, aording to the authors, the Markovhain appears to reah equilibrium, starting from the empty state, infewer than 2,500 basi steps, although they onsider a \burn-in" periodof 40,000 basi steps to be safe. They onsidered a 200 basi step spaingbetween samples.3.2 Study of the simulation of Strauss disproessesThere are some aspets of this simulation method that have not beeninvestigated as far as we know for the spei� ase of a Strauss disproess. It would be worth exploring the properties of the simulationmethod in order to get some feeling about the behavior of, for example,the intensity of the proesses generated or the mark distribution, as wevary the interation parameter . Beause we are going to fous onthe e�et of  over the number of points of the generated Strauss disproess, we �x � = 50. In some of our preliminary investigations, wenotied that, if � is too big with the mean radii we are onsidering,the �nal mark distributions of the generated patterns are skewed withrespet to the "primary" distribution.On the other hand, if � is too small and we have a too sparse pattern,it is hard to detet any e�et of hanges in the parameter .Although we know that hoosing the an optimal \burn-in" periodand spaing between the samples is very useful and important, we arealso aware of the time that it would take for us to investigate those.As an attempt, we used the information given by Geyer and M�ller(1994) in the Strauss point proess ase and do some diagnosti usingsimple Time Series tehniques. In some of the problems we investigated,40,000 basi steps beame too expensive in terms of omputational time,so we dereased the \burn in" period to 20,000, and we always usedp = 1. Choosing the number of basi steps betwen samples equal to 200,6
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Figure 1: Perentage of rejetion versus  for the simulated patternswe found that the autoorrelation funtion gives us a weak orrelation(between -0.2 and 0.2 for most of the ases, just getting lose to itsmaximum absolute value, 0.4, when  gets loser to 1).The estimate of the probability of rejetion is shown in Figure 1.The behavior seems no to be di�erent for the onsidered distributions.The perentage of rejetion dereases as  inreases and it is overallhigher for bigger mean radius.The random number generator used was from Press et al. (1994),the subroutine RAN2. In order to redue the boundary e�ets in oursimulation studies, we simulated the point patterns in a bigger window(square (�0:5; 1:5) � (�0:5; 1:5)), although our region of interest wasalways onsidered to be the unit square in <2.Figure 2 shows some examples of Strauss dis patterns generatedusing this algorithm for di�erent  values.In order to look at the behavior of the intensity of the patternsfrom the simulations, we have in Figure 3 box-plots for 100 patternsfor  varying from zero, non-interseting dis proess, to one, when wehave a Boolean model (homogenous Poisson proess with independentdis radii). We onsidered the ase where the radii have �(r=12; 12)\primary" distribution for mean radius r equal to 0.04 and 0.06. Wean see that, as r inreases, the slope of the urve inreases, whihmeans we have a bigger hange in the number of points with respet tohange in the parameter  when r is bigger. We have some indiationthat the intensity of the Strauss dis proesses does not have a linear7
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Figure 2: Examples of Strauss dis patterns for a �(0:005; 12) markdistribution (mean radius r equal to 0.06) on an unit square (d = 0:06,� = 50).form with respet to , but we did not investigate further about thisissue.As we initiate the proess of generating marks from the \primary"mark distribution �1, we expet that the �nal distribution of the marks� in the pattern is going to be skewed with respet to �1, for smallvalues of . As showed in Figure 1, big radii are going to be more likelyto be rejeted than small radii. As we approah the Boolean model thisdoes not happen.Figures 4 and 5 show the Monte Carlo empirial mark distributionfor a sample of 50 Strauss dis patterns and the theoretial \primary"mark distribution for di�erent values of  and r, for � = 50 for uniformand gamma mark distributions, respetively. We notie that the markdistribution gets more skewed when  is equal to zero or as r inreases.For the uniform \primary" distribution this e�et is even bigger, giventhe shape of the distribution. For the gamma distribution this e�etbeomes smaller. This problem of getting a �nal mark distribution �too far from the \primary" mark distribution �1 may a�et some of oursimulation studies when we have to guess the mark distribution.Overall, this method of simulation seems to work well for Straussdis proesses if we are areful not to get too lose to the extreme ases.
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γFigure 3: Box-plot of the number of points in 100 simulated patterns aross with radii distribution �(r=12; 12) and � = 50.4 Estimation of The Strauss dis proess depends basially on parameters �, whihis related to the intensity of the proess, , the so-alled interationparameter, and a distribution of the marks (radii) �. We onentratedour e�ort on the estimation of , �xing � and �. We onsidered knownmethods inluding minimum-ontrast, Takas-Fiksel and pseudo-likelihood for estimating . We desribe eah method and presentrespetive simulation study results.For all the simulations performed in this hapter we used theMetropolis-Hastings algorithm desribed in Setion 3.1. We �xed theparameter � to be equal to 50 and onsidered as mark distributionseither uniform in [2r=3; 4r=3℄, uniform in [r=2; 3r=2℄, or gamma�[r=12; 12℄, with r in f0:04; 0:06g. Sample sizes of patterns were always50 for estimation purposes. For omparison of the estimators we usedthe mean square error, given by P(̂ � )2=49 and the mean bias.4.1 Minimum-ontrast methodThis method is being widely used, espeially in goodness-of-�t testsfor point �eld models. Suppose we have aess to some haraterizingfuntion U# from the point pattern depending on the parameter # fromthe model onsidered. One example of how this method an be applied9
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Figure 4: Empirial mark density funtion (dashed line) for a sample of50 Strauss dis patterns with \primary" mark distribution Uniform[r/2,3r/2℄(solid line being the theoretial density).onsists in �nding # that minimizes a Von-Mises-type statistiZ [Û(s)� U#(s)℄2 f(s) ds;where f(s) is a suitable weight funtion (Stephens, 1986).Although this is a very simple method in priniple, omputing workan be intensive if we annot alulate U# analytially. We foused onthe Strauss dis model and onsidered U# to be the K-funtion thatdepends on the interation parameter , whih is our primary interest.We �xed f(s) = 1. Thus we have that our minimum-ontrast estimator10
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Figure 5: Empirial mark density funtion (dashed line) for a sample of 50Strauss dis patterns with \primary"mark distribution �(r/12,12) (solid linebeing the theoretial density).of  is given by  whih minimizes the integralZ t00 [K̂(s)�K(s)℄2 ds;for some appropriate t0.Other funtions an be used instead of the K-funtion, suh asthe L-funtion, the pair orrelation funtion or the nearest-neighbourdistane distribution funtion (Stoyan et al, 1987). We onsideredthe K-funtion for purposes of omparison among methods and usedestimator proposed by Ripley (1979a) for estimating this funtion.As we do not have an expliit analytial form for the K-funtionfor Strauss dis proesses, we approahed this problem by simulating11



100 patterns and alulating the MCMC average of the estimated K-funtion.Figures 6 and 7 show, respetively, the mean square error and themean bias of 50 estimates of  for all onsidered methods, for di�erentmark distributions. In Figure 6 we notied that, for the minumum-ontrast estimator, the mean square error is slightly smaller overall forthe mean radius r = 0:06. In Figure 7, we see that the mean bias issigni�antly higher in absolute value at extreme values of  for the sameestimator, what makes this method not attrative for these partiularases of Strauss dis proesses.4.2 Pseudo-likelihood methodGoulard et al. (1996) gave a general de�nition and derived the pseudo-likelihood funtion for marked Gibbs point proesses. They developedformulae for two partiular ases, the bivariate Gibbs point proessesand the Strauss dis proesses. Further, they applied the maximumpseudo-likelihood for one data set for eah of the ases. For the bivariateGibbs point proess, they presented simulation results. We present heretheir formulae for Strauss dis proesses and desribe an algorithm forthe pseudo-likelihood estimator.We are going to use the same notation as in Setion 2, but de�nitionshere require a reparametrization, in order to better understand the basisfor the methodology. Consider a marked point proess 	 = f([xi; ri℄g,with �nite number of points on a bounded spae 
 and marks on � �[0;1) with density funtion �. Let x = (x1; :::; xn), r = (r1; :::; rn) andonsider [xi; ri℄ to be a dis with radius ri entered at xi. A generalpairwise interation proess has densityf;�(x; r) = z �nYi<j �(k xi � xj k; ri; rj ; ); (2)where � : 
� 
����! [0;1).With appropriate reparametrization, we an write 2 in the formf�;�(x; r) = z expf�n��Xi<j '(k xi � xj k; ri; rj ; �)g; (3)with � = � log  and � = � log �, where ' : 
�
����! (�1;1)is alled the mark pair potential funtion, and � : 
 ! (�1;1)is the mark hemial ativity funtion. The funtion ' haraterizes12



interations between marked points and � desribes the ability of thesystem to reeive a point.Goulard et al. (1996) onsidered the mark hemial ativityto depend on the marks instead of being a onstant, as a way ofdealing with the problem that we do not have aess to the \primary"distribution funtion of the marks (the mark distribution if we had nointeration). They de�ned the pseudo-likelihood (PL) funtion of �rstorder bylogPL(1)(�; �; 	) = � X[xi;ri℄2	E�;�(xi; ri;	� Æ[xi; ri℄)� Z
 Z� exp (�E�;�(�; r� ;	)) �(dr�) d�; (4)with E�;�(xi; ri;	)) = �(ri; �) + X[yj ;rj ℄2	'(xi; yj ; ri; rj ; �); (5)being the loal energy at [xi; ri℄ with respet to 	, �( � ; �) and '( � ; �),the parametri models for the hemial ativity and pair potential,respetively, and � and � = f�1; � � � ; �kg, with k being the number ofsubsets onstituting the partition of � (see below), are the parametersto be estimated.The Strauss dis proess has pair potential funtion given by'(k xi � xj k; ri; rj ; �) = � � 1(k xi � xj k� ri + rj); � > 0: (6)Goulard et al. (1996) �xed the mark spae to be � = [D0;D℄, where D0is the minimum and D the maximum of the dis radii from the observedvalues, and onsidered the hemial ativity as a step funtion, i.e. forthe partition D0 < � � � < Dl�1 < Dl < � � � < Dk = D of �, �(ri; �) = �lon (Dl�1;Dl℄. Thus the pseudo-likelihood funtion (4) takes the formlogPL(�; �; 	) =� X[xi;ri℄2	 kXl=1 �l 1(Dl�1;Dl℄(ri)� � X[xi;ri℄2	 X[xj ;rj ℄2	;i 6=j 1(k xi � xj k� ri + rj) (7)� 1jD �D0j Z
 Z DD0 exp � kXl=1 �l 1(Dl�1;Dl℄(r�)� � � X[xj ;rj ℄2	1(k � � xj k� r� + rj)1A dr� d�:13



Thus the pseudo-likelihood estimators for the parameters are given bythe values of �1; � � � ; �k and � that maximize (7).We desribe now the algorithm that was used to alulate theestimator of the parameter of interest �. Let's takeS(�; r�) = X[xj ;rj ℄2	1(k � � xj k� r� + rj);SS = X[xi;ri℄2	 X[xj ;rj ℄2	;j 6=i1(k xi � xj k� ri + rj)and rl = X[xi;ri℄2	1(Dl�1;Dl)(ri):Then�logPL(�; �; )��l = �rl + e��ljD �D0j Z� Z DlDl�1 e��S(�; r�) dr� d�; (8)and setting � logPL(�; �; )��l = 0 we have thate��̂ljD �D0j = rlR� RDlDl�1 e��S(�; r�) dr� d� : (9)On the other hand, if we take the derivative of the pseudo-likelihoodwith respet to � and substitute (9), we get�logPL(�; �; )�� = �SS + kXl=1 rl Jl(�); (10)with Jl(�) = R� RDlDl�1 e��S(�; r�)S(�; r�) dr� d�R� RDlDl�1 e��S(�; r�) dr� d� :The pseudo-likelihood estimator of � is the solution of the equation�logPL(�; �; )�� = 0.In terms of omputing the estimator, we need an algorithm to �ndthe value of Jl(�). An interpretation of Jl(�) an be made as follows:Note that the funtion S(�; r�) of the proess evaluates the number ofdiss in the proess that overlap a dis entered at � with radius r�.Thus S(�; �) is a ounting proess and eah r� an be onsidered as14



the \time" for the i-th interation in a partiular proess observed ina window. Therefore we an let r� vary over the range of integrationand sum up the areas of the retangles formed by the step funtionsdepending on S(�; r�) to alulate the inner integrals in Jl(�). We anapproximate the outer integrals with respet to � by seleting randompoints in the window of interest and averaging over the inner integralusing Monte Carlo.In the simulation, we had a sample of 50 Strauss dis proesses,for whih we alulate the pseudo-likelihood estimators. We onsidereda grid of 500 points in the window that is the unit square in <2 toapproximate the integrals.Figures 6 and 7 show that this estimator has a stable performanefor the ases we onsidered. We see that the estimator improves itsperformane slightly when the mean radius is bigger, whih it is to beexpeted. In Figure 7 we see that a bias is introdued for the smallermean radii for big values of , most probably beause these ases getvery lose to the Boolean pattern. But overall we an say this methodhas nie properties.4.3 Takas-Fiksel methodUsing the same reparametrization used in the last setion, we saythat the distribution of a homogeneous and isotropi marked Gibbs�eld satis�es some ontinuity properties and the following mean-valuerelation :� Z E0;r(T (	; r))M(dr) = (11)Z E8<:T (	; r) exp24��(r)� X[xi;ri℄2 '(k xi k; ri; r; �)359=; M1(dr);whereM is the distribution funtion of the marks, M1 is the \primary"distribution funtion, and E0;r is the Palm mean-value operator (givesmeans under the ondition that there is a point with the mark r at 0)(Stoyan and Stoyan, 1994).Equation 11 is a generalization of the mean-value relation forunmarked Gibbs point proesses. The idea of the Takas-Fiksel methodis to hoose a series of test funtions Tv(	; r); v = 1; � � � ; V , where Vis at least equal to the dimension of (�; �), ompute estimates L̂v(�; �)and R̂v(�; �) of the left and right sides of (11) for eah Tv(	; r), and15



estimate (�; �) to minimize the sum of squaresS(�; �) = VXv=1nL̂v(�; �)� R̂v(�; �)o2 : (12)Sine Takas (1983) proposed this estimation method, various testfuntions Tv have been onsidered, espeially for the unmarked ase.Aording to Stoyan and Stoyan (1994), experiene shows that withpoint proesses that present regularity (or inhibitory proesses),Tv(	) = N(tv) = number of points xi in 	 with k xi k� tvis preferable. The advantage of using this test funtion is that we get�2K(tv) on the left side of (11). For the ase of marked point proesses,of ourse we would be using a marginal test funtion, sine it does notdepend on the marks expliitly. But we should onsider the fat that theK-funtion indiretly depends on the marks, sine the distane betweenpoints depends on the marks. Besides, the right side takes into aountthe \primary" mark distribution. If we knew M1 or ould estimate iteÆiently, maybe we would be able to ompensate for the estimation of�. In the previous setion, we onsidered the pseudo-likelihoodestimators for (�; �). If we onsider a little di�erent haraterizationof the mean-value relation given byZ
�� X[xi;ri℄2	h(xi; ri;	� Æ([xi; ri℄)) P (d ) =Z� Z
 Z
�� h(xi; ri;	) exp(�E(xi; ri;  )) P (d ) dxiM(dri);where 	 � Æ([xi; ri℄) an be interpreted as the point proess withoutthe point xi, then the pseudo-likelihood estimators ould be onsideredas a partiular ase of the Takas-Fiksel estimators. The testfuntions in that ase are h1(xi; ri;	) = ��(r; �)�� and h2(xi; ri;	) =�'(xi; xj ; ri; rj ; �)�� , with funtions � and ' as in (5). Based on thisfat, Goulard et al. (1996) expressed their onern with respet to theadvantage the pseudo-likelihood estimator onsidered by them wouldhave over other Takas-Fiksel estimators.In order to make a omparison with the pseudo-likelihood methodand the minimum-ontrast based on the K-funtion presented in the16



�rst setion, we onsidered the Takas-Fiksel estimator based on theK-funtion, that is, onsidering the test funtions of the kind N(tv).The left side of (11) is de�ned by the K-funtion with whih we anuse Ripley's estimator (Ripley, 1979a). The right hand side an beestimated byR̂v(�; �) = 1nu ny nuXl=1 nyXj=1Nj(tv) exp8<:��� X[xi;ri℄2	'(k xi � yj k; ri; ul)9=; ;where the yj form a lattie of ny points in W , ul form a sample of numarks from the distribution hosen to estimate M1, and Nj(tv) denotesthe number of events [xi; ri℄ with k xi � yi k� ri + ul.To implement (12), we used a regularly spaed grid of ny = 81�xed points in the unit square, V = 5 and tv = 0:05v. We hosethese values trying to get a reasonable but not too expensive estimator,omputationally speaking. Of ourse the auray of the estimation analways be improved.We onsidered for the estimation the same ases we onsidered inthe pseudo-likelihood estimation in terms of mean radius, distributionsof the marks and �. As the distribution from whih we sample theul's (weight distribution), we onsidered the uniform distribution (as inthe pseudo-likelihood method) and the distribution we used to generatesamples of the Strauss dis proesses (�1).Figure 6 shows the mean square error. There is little di�erenebetween the two weight distributions results (urves TFM and TFU)when we have a gamma distribution as \primary" distribution. Thismeans that the estimator is not sensitive to the hoie of weightdistribution for the ases we onsidered. Figure 7 shows that aonsistent bias is present, although small. The bias is slightly bigger forthe smaller mean radius in this ase too.4.4 Comparison of methodsAs far as the ases we onsidered here, the pseudo-likelihood estimatorproposed by Goulard et al. (1996) presented the best performane interms of estimation of the parameter . For omparison purposes wehave that the standard deviation for the mean square error (MSE) anbe approximated by MSE q2k , with k being the degrees of freedom(sample size minus one) and we an also alulate the standard deviationof the mean bias for the sample. We found that the standard deviation17



for the mean square error is approximately 0.038 for the Takas-Fikselmethods and maximum pseudo-likelihood method and 0.054 for theminimum-ontrast methods. The standard deviation for the mean biasis approximately 0.004 for the Takas-Fiksel methods and maximumpseudo-likelihoodmethod and 0.005 for the minimum-ontrast methods.The minimum-ontrast estimator presents a signi�ant bias,ompared to the others (Figure 7). Further, the mean square errors arehigher than for the other two methods, espeially for strong interations(Figure 6). But an improvement of performane with respet to bothbias and mean square error an be seen as we inrease the radius mean.If we look at both Figures 6 and 7, we see that the urves approah theones for the pseudo-likelihood estimator.The Takas-Fiksel estimators based on theK-funtion present loserresults to the pseudo-likelihood than to the minimum-ontrast methodin terms of mean square error (Figure 6), but there is the problem ofbias appearing for all onsidered ases (Figure 7). The hoie of theweight distribution seemed not to matter when the radii distributionwas gamma. We an notie almost no di�erene between the urvesTFM and TFU in both Figure 6 and Figure 7. Most probably whathappens with respet to the bias is that although we introdued in theequation some orretion for the marks on the right side of the mean-value relation equation, we are losing some information related to theintensity of the marks. This is taken are of in the pseudo-likelihoodestimation when they onsider the hemial ativity as nononstant.Thus, although Goulard et al. (1996) implied that the hoie ofthe weight distribution may inuene the pseudo-likelihood estimationperformane, whih means that the estimator an still be improved,the best results were found using the uniform distribution as weightover the ases and methods of estimation we onsidered. In this ase,the mean bias is onsistently around zero and smaller than any othermethods, onsidering their standard deviation (Figure 7) and the meansquare errors are smaller than for the minimum-ontrast (Figure 6).However, it would merit further investigations in terms of other weightdistributions.An important feature of this study is that we may be able to getnie omparison tests of Strauss dis patterns based on this pseudo-likelihood estimator for the interation parameter.
18



5 ConlusionsWe foused our studies on the interation parameter of the Strauss disproess , whih in general is of the greatest interest in appliations. Aquestion that arises naturally is how we ould estimate this parameterin the ase of Strauss dis proesses. The issue was onsidered inearlier work by Goulard et al. (1996) using the pseudo-likelihoodmethod, but studies about properties has not been reported. Weompared three methods, pseudo-likelihood, minimum-ontrast basedon the K-funtion and the Takas-Fiksel method also based on the K-funtion through MCMC simulation. The pseudo-likelihood estimatorwas onsidering the uniform distribution as the weight distribution,while for the Taaks-Fiksel we onsidered both uniform and gammadistribution. Our simulation study indiated that the pseudo-likelihoodestimator for the interation parameter has the best performane,ompared to the minimum-ontrast and the Takas-Fiksel method.The pseudo-likelihood estimator was shown to be robust in terms ofvarying mark distribution shape and size of the diss (mean radius).Further investigations should be done for the pseudo-likelihood methodusing weight distributions other than the uniform. New methods likemaximum likelihood and even nonparametri methods ould be alsoinvestigated.Another issue that was not overed here whih deserves someinvestigation is about the intensity of the proesses, whih dependson the interation parameter, distribution of the marks, and on theintensity � of the proess when =1. This is related to the hemialativity, and whih was onsidered by Goulard et al. (1996) as aorretor fator for the estimation, most probably the reason for theestimator to present better properties than the others.ReferenesBaddeley, A.J. and M�ller, J. (1989). Nearest-neighbour Markov pointproesses and random sets. International Statistial Review, 57, 89-121.Cressie, N.A.C. (1991). Statistis for Spatial Data. New York : JohnWiley.Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. andTanemura, M. (1994). On parameter estimation for pairwise interation19
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Figure 6: Mean square error versus  for Strauss dis patterns with meanradius equal to r, for estimates of , obtained using the methods minimum-ontrast (MC) for the K-funtion, pseudo-likelihood (PL), Takas-Fiksel usingthe mark distribution as weight (TFM) and the uniform distribution (TFU).
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Figure 7: Mean bias versus  for Strauss dis patterns with mean radiusequal to r, for estimates of , obtained using the methods minimum-ontrast(MC) for the K-funtion, pseudo-likelihood (PL), Takas-Fiksel using themark distribution as weight (TFM) and the uniform distribution (TFU).
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