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Summary

Plant and animal studies of quantitative trait loci provide data which arise from mixtures

of distributions with known mixing proportions. Previous approaches to estimation involve

modelling the distributions parametrically. We propose a semiparametric alternative which

assumes that the log ratio of the component densities satisfies a linear model, with the

baseline density unspecified. It is demonstrated that a constrained empirical likelihood has

an irregularity under the null hypothesis that the two densities are equal. A factorization of

the likelihood suggests a partial empirical likelihood which permits unconstrained estimation

of the parameters. The partial likelihood is shown to give consistent and asymptotically

normal estimators, regardless of the null. The asymptotic null distribution of the log-partial

likelihood ratio is chi-square. Theoretical calculations show that the procedure may be as

efficient as the full empirical likelihood in the regular set-up. The usefulness of the robust

methodology is illustrated with a rat study of breast cancer resistance genes.

Some key words: Boundary condition; Breeding experiment; Exponential tilt; Lagrange

multiplier; Molecular marker; Profile likelihood; Weak convergence.
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1. INTRODUCTION

Our motivation is the identification of genetic loci influencing quantitative traits. This

use of molecular marker data in breeding experiments has traditional applications in plant

and animal studies, such as improving grain yield in rice and increasing milk production in

cows. Recently, animal models have proved useful for complex human diseases. For example,

controlled crosses of inbred rat strains (Lan et al, 2000) characterized several genomic regions

conferring breast cancer resistance or susceptibility.

The standard method for quantitative trait loci is interval mapping (Lander & Botstein

1989). Since markers are observed at known locations, the genotypes between the locations

are missing. In backcross studies, this leads to a two sample mixture model at putative

loci. The component densities, f and g, are associated with the possible genotypes. The

mixing probabilities are determined by the recombination fractions between a locus and the

flanking markers (Knapp et al, 1990). The set-up differs from those in which the focus is

inference for unknown mixing proportions when some data is from f and g (Titterington,

Smith & Makov, 1985). Murray & Titterington (1978) and Hall (1981) discuss nonparametric

approaches. With quantitative traits, the proportions are known, vary among observations,

and direct information on the distributions may be unavailable. The emphasis is testing that

a locus has no genetic influence, that is, H0 : f = g.

Following early work on mixture models (Hosmer, 1973), most mapping methods employ

a likelihood analysis with f and g specified parametrically (Doerge, Zeng, & Weir, 1997).

Kruglyak & Lander (1995) proposed an ad hoc nonparametric test for H0. A formal

procedure for robust estimation of the distributions does not exist. In the rat study, the

traits are tumor counts. A challenge is relaxing the usual parametric assumptions. We

adopt a semiparametric model subsuming discrete and continuous outcomes. The densities

are related by an exponential tilt but are otherwise unspecified (Anderson, 1979). That is,

g(x) = exp(β0 + β1x)f(x), (1)
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where (β0, β1) ∈ H, a compact subset of R2. Normal variates with common variance

follow (1), as do exponential densities. The binomial and poisson distributions are other

specialisations. Including x2, x3, . . . in the loglinear model for g/f enhances its flexibility.

The exponential tilt model resembles the Cox (1972) regression model in which the ratio

of two hazard functions is linear in covariates. A partial likelihood not involving the baseline

hazard gives efficient estimators for the coefficients in the proportional hazards model (Cox,

1975). An analagous partial likelihood has yet to be developed for model (1). Qin (1999)

used a profile empirical likelihood (Owen, 1988, 1990) to construct confidence intervals for

the mixture proportions and for F =
∫

f and G =
∫

g. However, estimation of (β0, β1)

enforces constraints on F and G and is computationally involved. Furthermore, in §2, we

show that the constraints induce a boundary condition and Theorems 1-4 (Qin, 1999) do

not hold under H0. That is, the profile likelihood has an irregularity when f = g.

To derive a valid test of the null hypothesis, the profile empirical likelihood is factored

into two pieces. One part involves the constraints while the other does not: the partial

profile empirical likelihood. The partial likelihood gives consistent and asymptotically normal

estimates of (β0, β1) regardless of f = g. The log partial likelihood ratio for testing β0 =

β1 = 0 has a chi-square distribution. Maximising the partial likelihood is straightforward,

avoiding constrained optimisation of the full likelihood. Theoretical calculations show when

f 6= g, the estimators may be as efficient as those from the full likelihood. New estimators

for F and G are proved to be uniformly consistent and to converge to Gaussian processes.

In §3, simulations show that the partial profile empirical likelihood works well with

realistic sample sizes. The semiparametric methods are illustrated on the breast cancer

data in §4 and some remarks conclude in §5.

2. ESTIMATION AND INFERENCE

2.1 Data and Profile Empirical Likelihood

The data are independent observations from K mixtures with known proportions and

component densities f and g satisfying model (1). Let Xkj be the jth observations from
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the kth mixture with density λkf(x) + (1− λk)g(x), j = 1, 2, ..., nk, k = 1, 2, ..., K. Assume

0 ≤ λk ≤ 1, λ1 6= . . . 6= λK, and f(x) is nondegenerate. If K = 1, then the model

is nonidentifiable. That is, there are multiple (β0, β1, f) giving the same distribution for

the data. With d(x) = {λ1 + (1 − λ1) exp(β∗0 + xβ∗1)}f ∗(x), (β∗0 , β
∗
1 , f

∗) and (0, 0, d) yield

equivalent models. In the sequel, K ≥ 2.

Define

ωk(x, β) = λk + (1− λk) exp(β0 + xβ1)

The likelihood is

L(β, F ) =

K
∏

k=1

nk
∏

j=1

dF (xkj)

K
∏

k=1

nk
∏

j=1

ωk(xkj, β) =

n
∏

i=1

dF (zi)

K
∏

k=1

nk
∏

j=1

ωk(xkj, β)

=

n
∏

i=1

pi

K
∏

k=1

nk
∏

j=1

ωk(xkj, β) (2)

where n =
K
∑

k=1

nk, z = (z1, z2, ..., zn) = (x11, x12, ..., xKnK
) and pi = dF (zi).

Unconstrained maximisation of L(β, F ) does not provide a valid estimator for β. To see

this, note that the likelihood increases monotonically in pi, i = 1, . . . , n and β0. For a given

β, it is natural to constrain p to the set

Cβ
.
=

[

p |
n

∑

i=1

pi = 1, pi ≥ 0,

n
∑

i=1

pi{exp(β0 + ziβ1)− 1} = 0

]

.

This ensures that the estimators for F and G are cumulative distribution functions. To

compute the maximum likelihood estimator of β, say β̃, one first maximises L(β, F ) over

p ∈ Cβ. This yields a profile likelihood in β which is then maximised to obtain β̃ = (β̃0, β̃1)

(Qin, 1999). The estimators F̃ (x) =
∑n

i p̃iI(zi ≤ x) and G̃(x) =
∑

i exp(β̃0+ziβ̃1)p̃iI(zi ≤ x)

are evaluated at p̃ = (p̃1, . . . , p̃n), where p̃ maximises L(β̃, F ) over p ∈ Cβ̃.

Similar to Qin & Lawless (1994), for any fixed β such that Cβ is not empty, maximising
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L(β, F ) over Cβ gives

pi =
1

n

1

r(zi, β){1 + αh(zi, β)} (3)

where α is the Lagrange multiplier determined by

1

n

n
∑

i=1

h(zi, β)

1 + αh(zi, β)
= 0, (4)

with h(x, β) = {exp(β0 + xβ1) − 1}r(x, β)−1, r(x, β) = 1 + ξ{exp(β0 + xβ1) − 1}, and

ξ =
∑K

k=1 n−1nk(1− λk). Plugging (3) into (2) gives the profile log-likelihood l{β, α̃(β)} =

l1{β, α̃(β)}+ l2(β)− n log n, where

l1{β, α̃(β)} = −
n

∑

i=1

log{1 + α̃h(zi, β)},

l2(β) = −
n

∑

i=1

log{r(zi, β)}+
K

∑

k=1

nk
∑

j=1

log{ωk(xkj, β)}

and α̃(β) solves equation (4). Maximising l(β, α̃) in (β, α̃) may be unreliable because the

function may have many saddlepoints and the maximiser must satisfy a simplex condition

(Qin & Lawless, 1994). Another method evaluates α̃(β) explicitly for each β, which is

computationally intensive. This contrasts with certain models (Qin, 1998) for which the

parameter of interest and the Lagrange multiplier may be treated separately.
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2.2 Irregularity of Profile Empirical Likelihood

The issue is that Cβ may be empty for some β and the maximiser of L(β, F ) may not

exist. The problem occurs when the true value of β, βT = (β0T , β1T ), is 0. The irregularity

seems to have been overlooked in Theorems 1-4 in Qin (1999). This is precisely stated in

the following result; see appendix for proof.

Theorem 1.

(i): Cβ is not empty ⇐⇒ β = (β0, β1) ∈ Jn(z)
def
= {(β0, β1) | minn

i=1(β0 + ziβ1) ≤ 0 ≤
maxn

i (β0 + ziβ1)}.
(ii): If βT 6= 0, then there exists a neighbourhood of βT , N(βT ), such that for every β ∈
N(βT ), β ∈ Jn(z) as n →∞.

(iii): If βT = 0, then there exists no such N(βT ).

If βT 6= 0, then for n large enough, there exists a neighbourhood of βT such that for every

β ∈ N(βT ), Cβ is not empty. However, there is no neighborhood of 0 in which every

β ∈ Jn(z). This happens because β = (β0, 0) is not in Jn(z) whenever β0 6= 0. In essence,

the constraints produce a boundary condition at the origin in which all finite α satisfy (4).

As in Lemmas 1 and 2 of Qin (1993), we can show that when βT 6= 0, the constraint

has an implicit solution α̃(β) in a O(n−1/3) neighbourhood of βT and α̃(β) is uniformly

O(n−1/3). Furthermore, it is easy to prove that β̃ is consistent and asymptotically normal.

When βT = 0, there is no guarantee the implicit solution of (4) is O(n−1/3) in a O(n−1/3)

neighbourhood of βT . This means the techniques used to derive the limiting behaviour of β̃

when βT 6= 0 do not apply under H0.
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2.3 Partial Profile Empirical Likelihood

The Lagrange multiplier is a nuisance parameter. The irregularity of l{β, α̃(β)} occurs

because α has known value 0 but is estimated to ensure that F̃ and G̃ are distribution

functions in finite samples. The partial profile empirical likelihood, l2(β), does not depend

on the constraints, while l1{β, α̃(β)} does. Hence, the boundary condition is due to l1.

A reasonable estimator for β is β̂ = argmaxβ{l2(β)}. Since l1 = 0 when α̃(β) = 0, β̂ is the

unconstrained maximiser of the full profile empirical likelihood. The asymptotic properties

of the partial likelihood procedure are given below; see appendix for proof.

Theorem 2. Assume ‖h‖3 and ‖ ∂h
∂β
‖ are bounded by integrable functions in N(βT ).

(i): For large enough n, with probability 1, ∂l2
∂β

= 0 has a solution β̂ in the interior

of the interval |β − βT | ≤ n−1/3. That is, β̂ is n1/3-consistent for βT . Further,
√

n(β̂ − βT )
L→ N(0, B), where B = S−1V S−1, S = E{n−1∂2l2(βT )(∂β∂βT )−1} and

V = 1
n
var{∂l2(βT )(∂β)−1}.

(ii): 2l2(β̂)
L→ χ2

1 under H0.

The estimator β̂ is consistent and asymptotically normal and the partial likelihood ratio test

has a chi-square distribution under H0. However, B may not equal −S−1, as in classical

likelihood theory. Inferences for β must be based on the sandwich variance estimator

B̂ = Ŝ−1V̂ −1Ŝ−1, where Ŝ = n−1∂2l2(β̂)(∂β∂βT )−1,

V̂ = n−1
K

∑

k=1

nk
∑

j=1

{

∂r(xkj, β̂)(∂β)−1

r(xkj, β̂)
− ∂wk(xkj, β̂)(∂β)−1

wk(xkj, β̂)

}⊗2

,

and for a vector v, v⊗2 = vvT .

2.4 Theoretical Comparison of β̃ and β̂

Since β̂ is easier to compute than β̃ and is valid regardless of βT , the relative efficiency

of the estimators when βT 6= 0 is of interest. One might expect that l1 and the constraint

(4) have extra information about β. We show formally that β̃ has variance bounded by that
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of β̂. The result is stated precisely below; see appendix for details.

Theorem 3. Under the regularity conditions in Theorem 2 when βT 6= 0:

(i): The estimator θ̃ = (β̃, α̃)T from l{β, α̃(β)} p→ (βT , 0)T and

√
n

{

θ̃ − (βT , 0)T
}

L→ N(0, B̃) where B̃ = S̃−1Ṽ S̃−1, (5)

S̃ =





S S12

S21 s22



 , and Ṽ =





−S − δS12S21 −δS12s22

−δS21s22 s22 − δs2
22,



 ,

where S12, S21, s22, and δ are defined in the appendix. Thus,
√

n(β̃− βT ) → N(0, B̃11) where

B̃11 = −S−1 − 1
s22−S21S−1S12

S−1S12S21S
−1.

(ii): B̃11 − B = (δ − 1
s22−S21S−1S12

)S−1S12S21S
−1 ≤ 0.

For regular βT and two or more mixtures, β̃ has limiting covariance which equals that for β̂

plus the negative semi-definite matrix in (ii).

The efficiency loss can be quantified in various settings using the formulas for B̃11 and

B in the appendix. In all settings, var(β̃1){var(β̂1)}−1 = 1 after roundoff, but not so for β0.

In Table 1, var(β̃0){var(β̂0)}−1 is given for normal, exponential and poisson mixtures. The

mixture proportions are λ = (λ1, . . . , λK). The probability of an observation with proportion

λi is ρ̃i, where
∑

i ρ̃i = 1 and ρ̃ = (ρ̃1, . . . , ρ̃K). The relative efficiency is ≈ 1 when all data

is directly from f and g and > 0.95 in most other cases, even when K = 2, λ1 = 0.7, and

λ2 = 0.5. The smaller |λ1 − λ2| is, the closer the true model is to K = 1.

An anomalous result occurs with normal densities when f(x) = g(−x) and 0 < λ1, . . . , λK

< 1. In these set-ups, the variance ratios may be less than 0.50. An explanation is β0 = 0

but β1 6= 0. This is confirmed by calculations under a variety of distributions meeting the

condition. The peculiarity is absent when f ≈ g and both coefficients are roughly zero.

2.5 Estimating F and G

To make inference about F and G, one may first test H0 using l2(β). If H0 is not rejected,
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then both F and G may be estimated with the empirical distribution from the pooled data.

Otherwise, l{β, α̃(β)} may be used to obtain the estimates (Qin, 1999). Difficulties are that

the inferential properties of this two-step procedure are unclear and estimation of F and G

after rejecting F = G requires constrained optimization. We propose a simple alternative.

Setting α = 0 and β = β̂ in (3) gives p̂i = {nr(zi, β̂)}−1. Estimators for F (x) and G(x) are

Fn(x)
.
=

n
∑

i=1

p̂iI(zi ≤ x) and Gn(x)
.
=

n
∑

i=1

p̂i exp(β̂0 + ziβ̂1)I(zi ≤ x).

By inspection, the estimators are monotone increasing step functions in x, with jumps at

the observed values (zi, i = 1, . . . , n). Because estimation is unconstrained, in small samples,

Fn and Gn may exceed 1 in the tail. The adjusted estimators F ∗
n(x) = Fn(x)/Fn(∞) and

G∗
n(x) = Gn(x)/Gn(∞) are always distribution functions.

Recall β̂
p→ βT and note that pi and exp(β0 + β1zi) have bounded derivatives in β

for bounded zi and β ∈ H. Thus, it is straightforward to establish supx∈[τl,τu] |Fn(x) −
∑

i piI(zi ≤ x)| and supx∈[τl,τu] |Gn(x)−∑

i pi exp(β0 + β1zi)I(zi ≤ x)| vanish in probability,

where pr(zi < τl) > 0 and pr(zi > τu) > 0. A uniform law of large numbers gives that

supx∈[τl,τu] |F (x) − ∑

i piI(zi ≤ x)| p→ 0 and supx∈[τl,τu] |G(x) − ∑

i pi exp(β0 + β1zi)I(zi ≤
x)| p→ 0. As a result, Fn and Gn are uniformly consistent.

The next theorem is helpful in constructing confidence intervals for the distributions; see

appendix for proof.

Theorem 4. Under the regularity conditions of Theorem 2,

√
n{Fn(x)− F (x)} W→ KF (x) and

√
n{Gn(x)−G(x)} → KG(x),

where KF (x) and KG(x) are mean zero Gaussian processes with continuous sample paths for

x ∈ [τl, τu] and covariance functions ΣF (x, y) and ΣG(x, y) given in the appendix.

Estimators for the covariance functions, Σ̂F and Σ̂G, are computed with empirical estimates

in place of theoretical quantities in ΣF and ΣG. The resulting plug-in formulas are tedious
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and are omitted. A 0.95 confidence interval for F (x) is Fn(x) ± n−1/21.96Σ̂F (x, x) and

similarly for G(x).

3. NUMERICAL STUDIES

Simulations were run to investigate the small sample behavior of β̂, B̂, and 2l2(β̂) in a

genetic experiment. Two homozygous lines (P1 and P2) are mated, yielding heterozygous

(F1) children. P1 individuals have genotype a/a at all loci, P2 individuals are A/A at all

loci, and F1 individuals are a/A at all loci. F1 is bred to P1, yielding backcross progeny

(BC) which are either a/a or a/A at a given locus. These breedings are designed to study

a quantitative trait locus at 30 cM on a hypothetical chromosome. The BC generation is

genotyped at markers at 20 cM and 40 cM.

The distribution of the trait is f(x) for individuals a/a at 30 cM and g(x) for individuals

a/A. There are four possible genotypes at the flanking markers: aa/aa, aa/aA, aa/Aa, and

aa/AA. The recombinant genotypes, aa/aA and aa/Aa, each occur with probability 0.082.

Conditional on these genotypes, the probability of a/a at the trait locus is 0.5. These

values are based on recombination fractions from the Haldane (1919) map function. In a like

manner, the probabilities of aa/aa and aa/AA at the flanking markers are each 0.418, and the

conditional probabilities of a/a at 30 cM are 0.99 and 0.01. This gives λ = (0.99, 0.5, 0.01)

and ρ̃ = (0.418, 0.164, 0.418).

Normal, poisson, and exponential mixtures were investigated. Five hundred samples were

simulated for each mixture model with n = 100 or 250. In each sample, β̂, B̂, and 2l2(β̂) were

computed. The average values of β̂ and B̂ are in Table 2. The empirical rejection rate for a

nominal 0.05 level test using 2l2(β̂) and the empirical variance of β̂ are also provided. The

bias is small and the empirical and model-based variances agree. The performance improves

as n increases. The test statistic rejects at the nominal level under H0 and has good power

when β0 and β1 6= 0.

4. MAMMARY CARCINOMA DATA
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Female rats from the Wistar-Kyoto (WKy) strain resistant to mammary carcinogenesis

were crossed with male rats from the Wistar-Furth (WF) strain susceptible to cancer (Lan

et al., 2000). Each strain was purebred, hence WF/WF or WKy/WKy at all loci. The

progreny were mated to WF animals, producing 383 female rats which were either WF/WF

or WKy/WF at each locus. These backcross rats were scored for number of mammary

carcinomas and were genotyped at 58 markers on Chromosome 5. Using several interval

mapping strategies, Lan et al. (2000) found that marker D5Rat22 on Chromosone 5 was

strongly associated with low tumor counts. That is, female rats with a copy of the WKy

allele at DFRat22 had fewer carcinomas than rats with no WKy alleles.

The data are reanalyzed with our semiparametric method. At a putative locus, let f(x)

be the distribution of tumor counts for a WF/WF animal and let g(x) be the distribution

for a WKy/WF animal. The mixture is λf(x) + (1 − λ)g(x), where λ is the probability

of WF/WF at the locus conditional on flanking marker genotypes. In Fig. 1, the partial

likelihood statistic is shown as a function of location on Chromosome 5. The LOD score,

log{l2(β̂}{2 log(10)}−1, the conventional measure of genetic linkage, is also given. For

comparison, the profile from a normal mixture using MapMaker/QTL is displayed.

A practical issue is that the analysis requires testing H0 at all loci on the chromosome.

The simultaneous type I error probability is inflated from the pointwise level. Lander and

Botstein (1989) presented critical values for the normal mixture which preserve a genome-

wide error rate. The limiting distribution of the test statistic across the genome was

approximated by an Ornstein-Uhlenbeck diffusion. The extreme value properties of the

process were used to derive the thresholds. Interestingly, we can show that the asymptotic

equivalent for 2l2(β̂) is exactly identical to that in Lander and Botstein (1989). This means

the same guidelines apply to the semiparametric model.

The curves are quite similar and their peaks are very near D5Rat22 and are well above the

usual thresholds. The estimated distribution functions for Wky/WF and WF/WF genotypes

were computed at the locus giving the maximum LOD score under the semiparametric

and normal mixtures. These are displayed in Fig. 2 along with 0.95 pointwise confidence
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intervals using model (1). The plots exhibit that WF/WF rats have higher tumor counts.

The estimated means for carcinomas in WKy/WF and WF/WF rats are
∫

xdĜ(x) = 2.69

and
∫

xdF̂ (x) = 5.45, respectively. The estimated distributions from the normal mixture

are rather different from the semiparametric estimates and may lie outside the confidence

intervals. Other estimates (not shown) from a negative binomial model (Drinkwater & Klotz,

1981) fall entirely within the 0.95 limits.

To assess the goodness-of-fit of the exponential tilt assumption at the peak locus, the

rats were divided into four groups according to flanking marker genotypes. Recombination

was infrequent and > 90% of rats were either WFWF/WFWF or WKyWKy/WFWF. The

empirical distribution functions were calculated for these groups. The distributions were

also computed using the fitted semiparametric model. In Fig. 3, the model-based and

nonparametric estimates match closely, indicating the model fits well.

5. REMARKS

The profile empirical likelihood for a semiparametric mixture model arising in

quantitative genetics was shown to have an irregularity under the null hypothesis of no

linkage. After factoring the likelihood, a partial likelihood was identified and was shown

to give valid inferences. The estimator β̂1 had the same variance as β̃1 and β̂0 had good

efficiency relative to the full likelihood when data is observed directly from f and g. This is

realistic in backcross studies with dense marker maps. Recombination with flanking markers

is unlikely and most observations have mixture proportions close to 0 or 1.

The methodology can be adapted to more complicated breeding experiments. For

example, in an intercross (F2) mating of heterozygous animals, there are three distributions

in the mixture. In theory, the model can accomodate an arbitrary number of components.

Another important extension is to incorporate higher powers of x in (1). This is easily

accomplished with our approach.

Empirical likelihood may pose computational difficulties (Owen, 1988, 1990). The partial

profile empirical likelihood for the exponential tilt model enables unconstrained estimation of

12



the parameters of interest. It would be worthwhile to investigate whether empirical likelihood

has useful factorizations in other scenarios.
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APPENDIX

Proofs of Theorems 1-4

Lemma 1 is needed for the proof of Theorem 1. The proof is trivial and is omitted.

Lemma 1. For any given a = (a1, a2, ..., an), the set {p = (p1, p2, ..., pn) |
n
∑

i=1

pi = 1, pi ≥

14



0 and
n
∑

i=1

piai = 1} is non-empty ⇐⇒ minn
i=1(ai − 1) ≤ 0 ≤ maxn

i=1(ai − 1).

Proof of Theorem 1.

(i): For any given β ∈ Jn(z), min
i

(β0+ziβ1) ≤ 0 ≤ max
i

(β0+ziβ1)⇒min
i
{exp(β0+ziβ1)−1} ≤

0 ≤ max
i
{exp(β0+ziβ1)−1}. By Lemma 1, there exists p = (p1, p2, ..., pn) ∈ Cβ. On the other

hand, if Cβ is not empty, then there exists p = (p1, p2, ..., pn) ∈ Cβ such that
n
∑

i=1

pi = 1, pi ≥ 0

and
n
∑

i=1

pi{exp(β0 + ziβ1) − 1} = 0. Lemma 1 gives that min
i
{exp(β0 + ziβ1) − 1} ≤ 0 ≤

max
i
{exp(β0 + ziβ1)− 1}, or min

i
(β0 + ziβ1) ≤ 0 ≤ max

i
(β0 + ziβ1).

(ii): We first show that βT ∈ Jn(z). If βT /∈ Jn(z), then either all β0T + ziβ1T > 0 or

all β0T + ziβ1T < 0. Without loss of generality, assume β0T + ziβ1T > 0, or exp(β0T +

ziβ1T ) > 1 for i = 1, 2, . . . , n, which indicates exp(β0T + xβ1T ) ≥ 1 for all x. Because F (x)

is nondegenerate, 1 =
∫

exp(β0T + xβ1T )dF (x) >
∫

dF (x) = 1. But this is a contradiction.

Now, again without loss of generality, assume exp(β0T +z1β1T ) < 1 and exp(β0T +z2β1T ) > 1.

Because exp(β0 + z1β1) and exp(β0 + z2β1) are continuous with respect to β = (β0, β1), there

exists a neighbourhood of βT such that exp(β0 + z1β1) < 1 and exp(β0 + z2β1) > 1.

(iii): If βT = 0, then for any β0 6= 0, C(β0,0) is empty by (i). Thus, there does not exist an

N(0) in which Cβ is empty for every β.

Proof of Theorem 2.

(i): Suppose β0 = β0T + t1n
−1/3 and β1 = β1T + t2n

−1/3 where
√

t21 + t22 = 1. By Taylor

expansion in β around βT :

l2(β) = l2(βT ) +
K

∑

k=1

nk
∑

j=1

{

1− λk

ωk(xkj, βT )
− ξ

r(xkj, βT )

}

(t1 + xkjt2) exp(β0T + β1T xkj)n
−1/3

+
1

2

K
∑

k=1

nk
∑

j=1

{

λk(1− λk)

ω2
k(xkj, βT )

− ξ(1− ξ)

r2(xkj, βT )

}

(t1 + t2xkj)
2 exp(β0T + β1T xkj)n

−2/3 + o(n1/3).
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Define ρk = limn→∞
nk

n
, k = 1, 2, ..., K, φ = limn→∞ ξ =

K
∑

k=1

ρk(1− λk), and

R(x, β) = lim
n→∞

r(x, β) = 1 + φ{exp(β0 + xβ1)− 1} =
K

∑

k=1

ρkωk(x, β)

Note 1
n

∑K
k=1

∑nk

j=1

{

1−λk

ωk(xkj ,βT )
− ξ

r(xkj ,βT )

}

(t1 +xkjt2) exp(β0T +β1T xkj) approaches 0 as n →
∞. By Theorem 9.6 in Durrett (Chap. 7, 1991) and the strong law of large numbers:

l2(β)− l2(βT ) = O(n1/6(log log n)1/2)+

1

2

[

∫

{

K
∑

k=1

ρkλk(1− λk)

ωk(x, βT )
− φ(1− φ)

R(x, βT )

}

{

exp(β0T + xβ1T )(t1 + xt2)
2
}

dF (x)

]

n1/3 + o(n1/3).

Next, we show

4(x, βT )
.
=

K
∑

k=1

ρkλk(1− λk)

ωk(x, βT )
− φ(1− φ)

R(x, βT )
< 0 for all x.

Define θ = exp(β0T + xβ1T )− 1. After tedious calculation:

4(x, βT )

{

K
∏

k=1

ωk(x, βT )R(x, βT )

}

=
∏

l 6=k

ρkλk(1− λk)ωl(x, βT )R(x, βT )− φ(1− φ)
K
∏

l=1

ωl(x, βT )

= (θ + 1)
∑

i6=j

{−ρiρj(λi − λj)
2

∏

l 6=i,l 6=j

(1 + λlθ)} < 0

with unequal λi, i = 1, . . . , K. So, for n large enough, l2(β) < l2(βT ). It follows that l2(β)

attains a local maximum at a point β̂ in the interior of the interval | β−βT |≤ n−1/3. Solving

0 =
1

n

∂l2(β̂)

∂β
=

1

n

∂l2(βT )

∂β
+

1

n

∂2l2(βT )

∂β∂βT
(β̂ − βT ) + o(n−1/2),
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β̂ − βT = −S−1
n Qn + o(n−1/2), where

Sn =
1

n

∂2l2(βT )

∂β∂βT
=

1

n

K
∑

k=1

nk
∑

j=1

λk(1− λk)(1, xkj)
T (1, xkj) exp(β0T + xkjβ1T )

ωk(xkj, βT )2

− 1

n

n
∑

i=1

ξ(1− ξ)(1, zi)
T (1, zi) exp(β0T + ziβ1T )

r(zi, βT )2
.

The matrix Sn tends to

S =
K

∑

k=1

ρkλk(1− λk)

∫

∂2 exp(β0T + xβ1T )

∂β∂βT

1

ωk(x, βT )
dF (x)

−φ(1− φ)

∫

∂2 exp(β0T + xβ1T )

∂β∂βT

1

R(x, βT )
dF (x) as n →∞.

The matrix

Qn =
1

n

∂l2(βT )

∂β
=

1

n

K
∑

k=1

nk
∑

j=1

(1− λk)

ωk(xkj, βT )

∂ exp(β0T + xkjβ1T )

∂β

− 1

n

n
∑

i=1

ξ

r(zi, βT )

∂ exp(β0T + ziβ1T )

∂β

and E(Qn) → 0. By Lindeberg-Feller central limit theorem:
√

nQn → N(0, V ), where

V = lim
n→∞

1

n

K
∑

k=1

nk
∑

j=1

∫ [

{ 1− λk

ωk(x, βT )
− ξ

r(x, βT )
}∂ exp(β0T + xβ1T )

∂β

]2

ωk(x, βT )dF (x)

= −S − δ

∫

∂ exp(β0T + xβ1T )

∂β

1

R(x, βT )
dF (x)

{
∫

∂ exp(β0T + xβ1T )

∂β

1

R(x, βT )
dF (x)

}T

and δ =
∑K

k=1 ρk(1− λk)
2 − φ2 > 0. Thus,

√
n(β̂ − βT ) → N(0, B), where B = S−1V S−1.

(ii): A Taylor expansion of 1
n

∂l2(β̂)
∂β

in β̂ around (0, 0) gives

0 =
1

n

∂l2(β̂)

∂β
=

1

n

∂l2(0, 0)

∂β
+

1

n

∂2l2(0, 0)

∂β∂βT
β̂ + o(n−1/2)

= U − δXβ̂ + o(n−1/2),
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where U = {0, n−1∂l2(0, 0)(∂β1)
−1}T and X =

∫

(1, x)T (1, x)dF (x). It follows that β̂ =

δ−1X−1U + o(n−1/2). Since 0 = 2l2(0, 0) = 2l2(β̂) + 2∂l2(β̂)
∂β

β̂ + β̂T ∂2l2(β̂)
∂β∂βT β̂ + o(1),

2l2(β̂) = −β̂T ∂2l2(β̂)

∂β∂βT
β̂ + o(1) = nδβ̂TXβ̂ + o(1) = nδ−1UT X−1U + o(1)

=
n

δσ2
F

{

1

n

∂l2(0, 0)

∂β1

}2

+ o(1)
L→ χ2

1,

where σ2
F =

∫

x2dF (x)−
{∫

xdF (x)
}2

. The convergence in distribution occurs because

√
n

{

1

n

∂l2(0, 0)

∂β1

}

= n−1/2

{

K
∑

k=1

(1− λk)

nk
∑

j=1

xkj − ξ

n
∑

i=1

zi

}

L→ N(0, δσ2
F ).

Proof of Theorem 3.

(i): When βT 6= 0, methods similar to those used in the proof of Theorem 2(i) give the

consistency and asymptotic normality of β̃. The details are omitted.

(ii): When operating on matrices, > 0 and ≥ 0 denote positive and positive semi-definite,

and < 0 and ≤ 0 denote negative and negative semi-definite. Define

S12 = ST
21 =

∫

∂ exp(β0T + xβ1T )

∂β

1

R(x, βT )
dF (x), δ =

K
∑

k=1

ρk(1− λk)
2 − φ2 > 0

and s22 =

∫ {1− exp(β0T + xβ1T )}2

R(x, βT )
dF (x).

Note that Ṽ =





−S − δS12S21 −δS12s22

−δS21s22 s22 − δs2
22



 > 0

and −S − δS12S21 > 0 ⇒ S21S
−1(−S − δS12S21)S

−1S12 > 0. This implies −S21S
−1S12 −

δS12S
−1S12S21S

−1S12 > 0. Hence, −S21S
−1S12(1 + δS21S

−1S12) > 0, since −S21S
−1S12 >

0 ⇒ 1 + δS21S
−1S12 > 0.
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Now, because Ṽ > 0, the last element of Ṽ −1, say v−1
33 , is > 0 too. Calculating Ṽ −1:

v33 = (s22 − δs22)− (−δS21s22)(−S − δS12S21)
−1(−δS12s22)

= s22 − δs2
22 + δ2s2

22S21S
−1S12 −

δ3s2
22S21S

−1S12S21S
−1S12

1 + δS21S−1S12

=
s22 + δ(S21S

−1S12 − s22)s22

1 + δS21S−1S12
> 0

Using the first part of the proof and the fact that s22 > 0, δ − 1
s22−S21S−1S12

< 0.

Thus, B̃11 − B = (δ − 1
s22−S21S−1S12

)S−1S12S21S
−1 ≤ 0.

Proof of Theorem 4.

Note Fn(x) = 1
n

n
∑

i=1

1

r(zi,β̂)
I(zi ≤ x). A Taylor expansion of r(zi, β̂) at βT gives

Fn(x)− F (x) =
1

n

n
∑

i=1

1

r(zi, βT )
I(zi ≤ x)− F (x)

− 1

n

n
∑

i=1

1

r2(zi, βT )

∂r(zi, βT )

∂β
I(zi ≤ x)(β̂ − βT ) + R1n(x)

=
1

n

n
∑

i=1

1

r(zi, βT )
I(zi ≤ x)− F (x) + d1,F (x)S−1Qn + R2n(x)

where Rin(x), i = 1, 2, satisfy sup
τl<x<τu

|Rin(x)| = o(n−1/2) and

d1,F (x) = lim
n→∞

1

n

n
∑

i=1

1

r2(zi, βT )

∂r(zi, βT )

∂β
I(zi ≤ x)

=

∫ ∞

−∞

φ

R(u, βT )

∂ exp(β0T + uβ1T )

∂β
I(u ≤ x)dF (u), a.s.

Let d2,F (x) = d1,F (x)S−1,

εF,k(u, x) =
I(u ≤ x)

r(u, βT )
−

x
∫

−∞

ωk(u, βT )dF (u)

R(u, βT )
, and
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qk(u) = −ξ
∂ exp(β0T + uβ1T )/∂β

r(u, βT )
+ (1− λk)

∂ exp(β0T + uβ1T )/∂β

ωk(u, βT )
, k = 1, 2, ..., K.

Then
√

n{Fn(x)− F (x)} =
1√
n

K
∑

k=1

nk
∑

j=1

{εk(xkj, x) + d2(x)qk(xkj)}+ op(1)

Using arguments from Qin (1999),
√

n{Fn(x) − F (x)} → KF (x) in distribution, where

KF (x) is a mean zero Gaussian process with continuous sample paths and covariance

structure ΣF (x1, x2) =
K
∑

k=1

ρkcov{εF,k(Yk, x1) + d2,F (x1)qk(Yk), εF,k(Yk, x2) + d2,F (x2)qk(Yk)},
where Yk ∼ ωk(y, βT )f(y). Similarly,

√
n{Gn(x) − G(x)} → KG(x) in distribution with

ΣG(x1, x2) =
K
∑

k=1

ρkcov{εG,k(Yk, x1) + d2,G(x1)qk(Yk), εG,k(Yk, x2) + d2,G(x2)qk(Yk)}, where

d1,G(x) =

∫ ∞

−∞

φ− 1

R(u, βT )

∂ exp(β0T + uβ1T )

∂β
I(u ≤ x)dF (u)

d2,G(x) = d1,G(x)S−1, and

εG,k(u, x) =
I(u ≤ x) exp(β0T + uβ1T )

r(u, βT )
−

x
∫

−∞

exp(β0T + uβ1T )ωk(u, βT )dF (u)

R(u, βT )
.
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Table 1. Relative efficiency of β̃0 to β̂0. n, e, and p denote normal, exponential, and

poisson distributions.

g(x) f(x) β0 β1 (a) (b) (c) (d)

n(0,1) n(2,1) 2 -2 0.998 0.973 0.918 0.924

n(2.01,1) n(2,1) -0.02 0.01 1.000 1.000 1.000 1.000

n(4,1) n(2,1) -6 2 1.000 0.997 0.990 0.972

p(1) p(3) 2 -1.10 1.000 0.981 0.960 0.969

p(3.01) p(3) -0.01 0.01 1.000 1.000 1.000 1.000

p(6) p(3) -3 0.69 0.999 0.991 0.984 0.970

e(1) e(3) -1.10 2 0.993 0.980 0.966 0.958

e(3.01) e(3) 0.01 -0.01 1.000 1.000 1.000 1.000

e(6) e(3) 0.69 -3 1.000 0.986 0.987 0.989

n(-3,1) n(2,1) -2.5 -5 0.993 0.989 0.941 0.869

n(-2,1) n(2,1) 0 -4 0.983 0.958 0.444 0.241

n(-1,1) n(2,1) 1.5 -3 0.990 0.966 0.777 0.698

(a): ρ̃ = (0.5, 0.5), λ = (1, 0)

(b): ρ̃ = (0.4, 0.2, 0.4), λ = (1, 0.5, 0)

(c): ρ̃ = (0.33, 0.34, 0.33), λ = (0.7, 0.5, 0.3)

(d): ρ̃ = (0.5, 0.5), λ = (0.7, 0.5)
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Table 2. Simulation results. n, e, and p denote normal, exponential, and poisson

distributions.

β̂0 β̂1 2l2(β̂)

g(x) f(x) β0 β1 n ave var1 var2 ave var1 var2 rr

n(2,1) n(2,1) 0 0 100 0.02 0.237 0.219 -0.01 0.060 0.055 0.064

250 0.00 0.089 0.083 0.00 0.022 0.021 0.046

n(0,1) n(2,1) 2 -2 100 2.17 0.469 0.410 -2.17 0.366 0.331 1.000

250 2.07 0.140 0.128 -2.06 0.113 0.100 1.000

p(3) p(3) 0 0 100 0.05 0.178 0.159 -0.02 0.020 0.018 0.056

250 0.01 0.063 0.062 0.00 0.007 0.007 0.050

p(1) p(3) 2 -1.10 100 2.10 0.264 0.258 -1.16 0.089 0.085 1.000

250 2.07 0.101 0.096 -1.14 0.033 0.031 1.000

e(3) e(3) 0 0 100 0.00 0.063 0.057 0.01 0.616 0.540 0.056

250 0.00 0.020 0.021 0.02 0.191 0.196 0.050

e(1) e(3) -1.10 2 100 -1.16 0.121 0.108 2.15 0.565 0.485 0.996

250 -1.13 0.037 0.041 2.09 0.166 0.177 1.000

ave: average of β̂

var1: empirical variance of β̂

var2: average of B̂

rr: empirical rejection rate
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Fig. 1. Likelihood ratio statistic and LOD score as a function of location on chromosome 5.

Solid line is the semiparametric mixture and dashed is the normal mixture.
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Fig. 2. Points estimates (+) and 0.95 pointwise confidence limits (0) for cumulative

distributions at location of maximum partial likelihood ratio statistic. Dashed lines are

point estimates from the normal mixture model. (a) WF/WF; (b) WKy/WF.
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Fig. 3. Comparison of model-based (solid line) and nonparametric (dashed line) estimates

of the cumulative distributions for flanking marker groups.

(a) WFWF/WFWF; (b) WKyWKy/WFWF.
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