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Abstract – The advent of molecular markers has created opportunities for a better understanding
of quantitative inheritance and for developing novel strategies for genetic improvement of
agricultural species, using information on quantitative trait loci (QTL). A QTL analysis relies
on accurate genetic marker maps. At present, most statistical methods used for map construction
ignore the fact that molecular data may be read with error. Often, however, there is ambiguity
about some marker genotypes. A Bayesian MCMC approach for inferences about a genetic
marker map when random miscoding of genotypes occurs is presented, and simulated and
real data sets are analyzed. The results suggest that unless there is strong reason to believe that
genotypes are ascertained without error, the proposed approach provides more reliable inference
on the genetic map.

genetic map construction / miscoded genotypes / Bayesian inference

1. INTRODUCTION

The advent of molecular markers has created opportunities for a better
understanding of quantitative inheritance and for developing novel strategies
for genetic improvement in agriculture. For example, the location and the
effects of quantitative trait loci (QTL) can be inferred by combining information
from marker genotypes and phenotypic scores of individuals in a population in
linkage disequilibrium, such as in experiments with line crosses, e.g., using
backcross or F2 progenies. A QTL analysis relies on the availability of
accurate estimates of the genetic marker map, which includes information
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on the order and on genetic distances between marker loci order. Genetic
maps are inferred from recombination events between markers, which are
genotyped for each individual. Several statistical methods have been sug-
gested for map construction. Lathrop et al. [14], Ott [17] and Smith and
Stephens [21] discussed maximum likelihood procedures for marker map
inferences, and George et al. [9] presented a Bayesian approach for ordering
gene markers. Jones [10] reviewed a variety of statistical methods for gene
mapping. At present, most statistical methods used for map construction
ignore the possibility that molecular (marker) data may be read with error.
Often, however, there is ambiguity about genotypes and, if ignored, this can
adversely affect inferences [3,15]. The problem of miscoded genotypes has
received the attention of some investigators. Most of their research, however,
has focused on error detection and data cleaning [4,11,15]. The objective of our
work is to discuss possible biases in marker map estimates when miscoding
of genotypes is ignored and to suggest a robust approach for more realistic
inferences about marker positions and their distances. The approach simultan-
eously estimates the genotyping error rate and corrects for possible miscoded
genotypes, while making inferences on the order and distances between genetic
markers.

The plan of the paper is as follows. In Section 2, the problem of miscoding
genotypes is discussed, as well as the systematic bias that this imposes on
genetic map estimation. In Section 3, a Bayesian approach for inferences
about a genetic map, when miscoding is ignored, is reviewed. In Section 4, the
methodology is extended to handle situations with miscoded genotypes, when
these occur at random. Simulated and real data are analyzed in Sections 5
and 6, respectively, and the results are discussed. Concluding remarks are
presented in Section 7.

2. THE PROBLEM CAUSED BY MISCODED GENOTYPES

First consider the estimation of the genetic distance between two marker loci
having a recombination rate θ. In simple situations, e.g., with double haploid
or backcross designs, each individual has one of two possible genotypes (say 0
or 1) at each marker locus. Inferences about genetic distance between loci are
based on recombination events, which are observed by genotyping individuals.
If marker genotypes could be read without error, the probability of observing
a recombination event in a randomly drawn individual would be θ. However,
it will be supposed that there is ambiguity in the assignment of genotypes to
individuals. For example, a genotype 0 may be coded as 1 (or vice-versa),
with probability π. Here, given the genotype for a specific marker and the
probability of miscoding (π), the distribution of the observed genotypes can be
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Figure 1. Expected recombination events observed on different values of miscoding
probabilities (π), for some selected values of recombination rates (θ).

written as:
p[mij|gij,π] = π|mij−gij|(1− π)1−|mij−gij|,

where mij and gij are the observed and true genotypes (mij, gij = 0, 1), respect-
ively, for locus j (j = 1, 2) of individual i (i = 1, 2, . . . , n).

If a “recombination event” between the loci is observed, this may be due to
either a true genetic recombination between them, or to an artifact caused by
miscoding. Hereinafter, a “recombination” observed by genotyping the mark-
ers will be denoted as the “apparent recombination”, to distinguish between
observed and “true” recombination events.

The probability of observing an apparent recombination between markers 1
and 2 for individual i can be written as:

Pr(si = 1) = Pr[ri = 1] (Pr[no miscod.] + Pr[double miscod.])
+ Pr[ri = 0]Pr[one miscod.]

= θ
[
π2 + (1− π)2

]+ 2(1− θ)π(1− π)

= θ+ 2π(1− π)(1− 2θ), (1)

where si = |mi1 − mi2| and ri = |gi1 − gi2| stand for apparent and real recom-
bination events, respectively; and Pr[ri = k] = θk(1− θ)1−k, with k = 0, 1.

It is easy to realize, therefore, that recombination rates estimated from
recombinations observed by genotyping the marker loci, ignoring the possib-
ility of miscoding, would be biased upwards whenever the markers are linked
(θ < 0.5) and π > 0. Figure 1 shows the expected apparent recombination
rates as function of π, for some selected recombination rate values. It seems
that the smaller the genetic recombination rate, the worse the relative bias
produced by miscoded genotypes.
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Figure 2. Variance of recombination events observed on different values of miscoding
probabilities (π), for some selected values of recombination rates (θ).

The variance of the apparent recombination event is equal to:

Var[si] = Pr[si = 1] (1− Pr[si = 1])
= [θ+ 2π(1− π)(1− 2θ)][1− θ− 2π(1− π)(1− 2θ)]
= θ(1− θ)+ 2π(1− 3π+ 4π2 − 2π3)(1− 2θ)2. (2)

Thus, the variance of apparent recombination events is larger than the variance
of the real recombination events whenever the markers are linked (θ < 0.5)
and π > 0. Figure 2 shows the variance of the apparent recombination events
as a function of π, for some different values of recombination rates.

In view of the possibility of miscoding for each marker genotype (i.e. ambi-
guity about their genotypes), standard methods commonly used for genetic
map inferences overestimate the recombination rate between loci (or, in other
words, underestimate genetic linkage), and underestimate its precision [15].
For example, the maximum likelihood estimator of the recombination rate
between the loci (if the possibility of miscoding is ignored) is:

θ̂ = 1

n

n∑

i=1

|mi1 − mi2|,

with expectation and variance given by (1) and (2), respectively.
In more general situations, we have more than just two marker loci, and

the goal is to construct the genetic map, i.e., to order these marker loci and to
estimate the genetic distances between them. Again, all inferences are based on
recombination events observed (apparent recombinations) between the marker
loci. The problem of ignoring miscoding may lead to even worse difficulties,
e.g., to the mistaken ordering of the loci, specially with dense maps.
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3. BAYESIAN APPROACH FOR GENETIC MAP CONSTRUCTION

First, we will review a Bayesian approach for map construction when mis-
coding is not taken into account [9]. Consider the genotype of m markers for
the individual i as gi = (gi1, gi2, . . . , gim). In a backcross design, for example,
gij = 0 if the individual i is homozygous for the locus j, and 1 otherwise. The
sampling model of gi, assuming the Haldane map function, is given by:

p(gi|λ, θ) ∝
m−1∏

j=1

θ
|gij−gi,j+1|
j (1− θj)

1−|gij−gi,j+1|, (3)

where λ is the order of the genetic marker loci and θj is the recombination rate
between the loci j and j+1. Considering a sample of n independent individuals,
the likelihood of λ and θ is given by:

L(λ, θ|G) = p(G|λ, θ) =
n∏

i=1

p(gi|λ, θ)

∝
n∏

i=1

m−1∏

j=1

θ
|gij−gi,j+1|
j (1− θj)

1−|gij−gi,j+1|, (4)

where G is the (n×m)matrix of marker genotypes, with each row representing
one individual, and each column related to one marker locus.

In a Bayesian context, rather than maximizing the likelihood, it is modified
by a prior and integrated to produce inference summaries for the unknown
components in the model. The prior can be chosen based on earlier studies or
information from the literature. Here, we use a prior expressed as:

p(λ, θ|τ,α,β) = p(θ|λ,α,β)p(λ|τ), (5)

where p(λ|τ) is a probability distribution over the m!/2 different orders
for the m markers, τ is a set of prior probabilities of each order, and
p(θ|λ,α,β) = ∏m−1

j=1 p(θj|λ,αj,βj), where θj|λ,αj,βj~Beta(αj,βj) is the
recombination rate between genetic markers j and j + 1. A special case of
these prior distributions would be uniform across different gene orders, and
Uniform (0, 0.5) distributions for each θj.

The Bayes theorem combines the information from the data and the prior
knowledge to produce a posterior distribution over all unknown quantities. In
this case, the posterior density of λ and θ is given by:

p(λ, θ|G, τ,α,β) ∝ p(G|λ, θ)p(θ|λ,α,β)p(λ|τ). (6)

Distribution (6) is intractable analytically but MCMC methods such as the
Gibbs sampler and the Metropolis-Hastings algorithm [7,8] can be used to
draw samples, from which features of marginal distributions of interest can be
inferred.
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3.1. Fully conditional posterior distributions

The Gibbs sampler draws samples iteratively from conditional posterior
distributions deriving from (6). The fully conditional posterior distribution of
each recombination rate θj is:

p(θj|λ,G, τ,α,β) ∝ θ
αj−1
j (1− θj)

βj−1
n∏

i=1

θ
|gij−gi,j+1|
j (1− θj)

1−|gij−gi,j+1|

∝ θ
qj+αj−1
j (1− θj)

n−qj+βj−1, (7)

where qj =∑n
i=1 |gi,j − gi,j+1| is the number of recombination events between

the loci j and j + 1. This is the kernel of a Beta distribution with parameters
(qj + αj) and (n− qj + βj).

The updating for the gene order λ involves moves between a set of models,
because for distinct ordering, the recombination rates have different meanings.
George et al. [9] discuss a reversible jump algorithm, for which recombination
rates are converted into map distances, and reverted to new recombination rates
after shifting a randomly selected marker around a pivot marker.

Here, another Metropolis-Hastings [12] scheme is presented for the MCMC
updating of λ and θ, simultaneously. A new gene ordering is proposed according
to a candidate generator density q(.), and new recombination rates are simulated
for this new order, using (7). The Markov chain moves from the current state
T = (λ, θ) to T∗ = (λ∗, θ∗) with probability:

π(T∗,T) = min

[
1,

p(λ∗, θ∗|G, τ,α,β)
p(λ, θ|G, τ,α,β)

q(λ, λ∗)
q(λ∗, λ)

]
, (8)

where p(λ, θ|G, τ,α,β) is the joint conditional posterior distribution of the
gene ordering λ and recombination rates θ, given by:

p(λ, θ|G, τ,α,β) ∝ p(λ|τ)
m−1∏

j=1

θ
qj+αj−1
j (1− θj)

n−qj+βj−1.

Under these circumstances, the choice of q(.) is extremely important for an
efficient implementation of the MCMC, especially in situations with a large
number of marker loci. A bad choice of q(.) would generate a large number
of unlikely orders, or even generate inconsistent orders, in relation to the data
set. In order to have a better implementation and mixing of the MCMC, some
alternatives for the generation of candidate orders for the Metropolis-Hastings
step are described in the Appendix.
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3.2. Missing data

In practice, some marker genotypes are missing. The missing data can
be handled by the MCMC approach, with an additional step for updating each
missing genotype based on this fully conditional density. For instance, suppose
gij is missing, the genotype for the j-th marker of the individual i. Its fully
conditional distribution is Bernoulli with probability pij = Pr(gij = 1|G−ij)

given by:

pij = p(gij = 1|θ,G−ij, τ,α,β)∑

k

p(gij = k|θ,G−ij, τ,α,β)
,

where G−ij refers to all elements in G but gij, and k = 0, 1. Under the
Haldane independence assumption, p(gij = k|θ,G−ij, τ,α,β) depends just
on the recombination rates between the locus j and its flanking neighbors,
as well as on the genotypes of these neighbor loci, so it can be written as
p(gij = k|θj−1, θj, gi,j−1, gi,j+1).

4. THE PROBABILITY OF MISCODING GENOTYPES

At present, the methods commonly used for map construction ignore the
possibility that molecular (marker) data may be read with error, or the error
rate has a fixed and known value, as in Lincoln and Lander [15]. Often,
however, there is ambiguity about the genotypes. To address these situations,
we introduced a new parameter into the model, the probability π of miscoding
a genotype. Now we consider that the matrix G of genotypes is unknown,
and that we observe a matrix M of genotypes, possibly with some miscoding.
The probability of observing a genotype mij, i.e. the genotype of locus j for
individual i, given that the actual genotype is gij , may be expressed as:

Pr(mij = k1|gij = k2) = π|k1−k2|(1− π)1−|k1−k2|,

where k1 and k2 assume values equal to 0 or 1.
Assuming independence between miscodings in different loci and individu-

als, and considering that the miscoding rate is constant over the genome, the
probability of observing a matrix M of genotypes, given the matrix G of actual
genotypes, can be expressed as:

p(M|G) = πt(1− π)nm−t, (9)

where n is the number of individuals, m is the number of marker loci, and
t = ∑n

i=1

∑m
j=1 |mij − gij| is the number of miscoding genotypes in the data

set. Note that under these circumstances, M is the observed data, and G is now
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an auxiliary and non-observed matrix. The joint posterior distribution of all
unknowns in the model is written now as the product of (9) by (4), (5) and the
prior distribution of π, which gives:

p(G, λ, θ,π|M, τ,α,β, a, b)

∝ πt(1− π)nm−t
n∏

i=1

m−1∏

j=1

θ
|gij−gi,j+1|
j (1− θj)

1−|gij−gi,j+1|

× p(θ|λ,α,β)p(λ|τ)p(π|a, b). (10)

Assuming a uniform prior probability distribution for λ; Beta(αj,βj) as prior
for each θj; and Beta(a, b) as the prior distribution for π, the expression (10)
becomes:

p(G, λ, θ,π|M, τ,α,β, a, b)

∝ πa+t−1(1− π)b+nm−t−1
m−1∏

j=1

θ
αj+qj−1
j (1− θj)

βj+n−qj−1

where qj =∑n
i=1 |gij − gi,j+1|, as already defined, is the number of recombin-

ation events between the loci j and j + 1. Note that the dependence of this
distribution on λ is rendered implicit by the definition of θj as the recombination
rate between the ordered loci j and j+ 1.

4.1. Fully conditional posterior distributions

The fully conditional posterior distributions of λ and of each θj have the
same forms as discussed before. In the case of G, its conditional distribution is:

p(G|M, λ, θ,π, τ,α,β, a, b)

∝ πa+t−1(1− π)b+nm−t−1
m−1∏

j=1

θ
αj+qj−1
j (1− θj)

βj+n−qj−1.

Given the independence between the recombination events in different intervals
(by the Haldane map function), each element in G can be updated independ-
ently. If j = 1, i.e. gij refers to genotypes at one end of the linkage group, its
fully conditional posterior distribution can be written as:

p(gi1|G−i1,M, λ, θ,π, τ,α,β, a, b)

∝ π|gi1−mi1|(1− π)1−|gi1−mi1|θ|gi1−gi2|
1 (1− θ1)

1−|gi1−gi2|,

where G−i1 represents all the elements in G but gi1, and similarly for gim.
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For genotypes at interior markers in the linkage group, the fully conditional
posterior distribution becomes:

p(gij|G−ij,M, λ, θ,π, τ,α,β, a, b) ∝ π|gij−mij|(1− π)1−|gij−mij|

× θ
|gij−gi,j−1|
j−1 (1− θj−1)

1−|gij−gi,j−1|θ|gij−gi,j+1|
j (1− θj)

1−|gij−gi,j+1|,

for j = 2, 3, . . . ,m − 1. The conditional distribution of the probability of
miscoding π is given by:

p(π|M,G, λ, θ, τ,α,β, a, b) ∝ πa+t−1(1− π)b+nm−t−1,

which is the kernel of a Beta distribution with parameters (a+t) and (b+nm−t).

5. SIMULATION STUDY

5.1. Example 1

Three data sets were simulated to examine the ability of the model discussed
in Section 4 to correctly estimate genetic distances and the probability of
miscoding. Each simulation considered 300 individuals with genotypes for 5
loci, denoted as ABCDE. The recombination rates between consecutive loci
were assumed to be θAB = 0.09, θBC = 0.11, θCD = 0.05 and θDE = 0.14. The
data sets were generated considering π = 0, 0.02 and 0.04, and 3% of missing
data for each.

These data sets were analyzed using models with and without the miscoding
parameter (π). An equal probability distribution was adopted as prior for the
different loci orders. For each recombination rate, a Uniform (0, 0.5) process
was considered as prior distribution. Computations were performed using
the IML procedure of SAS [19]. Graphical inspection and the Raftery and
Lewis diagnostic [18] for the Gibbs output using CODA [1] were used for
assessing convergence to the equilibrium distribution, the joint posterior. A
burn-in period of 1 000 iterations was adopted, followed by 60 000 iterations
with thinning intervals of 20, based on a lag-correlation study. Hence, 3 000
samples were retained for the post-Gibbs analysis.

For all data sets, the gene order was estimated perfectly by both models, with
100% of the MCMC iterations sampling the order ABCDE. It seems that, up to
certain levels, inferences about gene ordering is robust to miscoding genotypes,
if these occur at random. As discussed earlier (Sect. 2), the effect of miscoding
is larger for smaller genetic distances between loci, such as in fine mapping
studies. In these cases, the miscoding may lead to ordering estimated with
some positions switched for tightly linked markers, as discussed in the next
example.
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Table I. True parameter values and posterior means and standard deviations (in
parenthesis) of the recombination rates considering the data set without miscoding
genotypes and the two models, with and without the miscoding parameter.

Recombination rates

Model θAB θBC θCD θDE π p(y|Model)

W/o miscoding 0.0929 0.1060 0.0528 0.1214 – 2.61× 10−162

(0.0172) (0.0181) (0.0132) (0.0186)

With miscoding 0.0892 0.1028 .0511 0.1193 0.0027 5.36× 10−161

(0.0178) (0.0179) (0.0131) (0.0194) (0.0024)

Parameter values 0.09 0.11 0.05 0.14 0 –

Table I shows the posterior mean and standard deviation for each recombin-
ation rate, for the data set without miscoding. The estimates obtained by each
model do not present any relevant difference, so it seems that the introduction
of the extra parameter (π) into the model, in situations where there is no
miscoding, does not affect the estimated genetic map. In this example, the
estimate for π was very close to zero, denoting the ability of the model to
recognize situations without miscoding. However, because π = 0 relies on the
boundary of the parameter space of π, to test for the absence of miscoding for
a particular data set, another approach should be employed, such as comparing
both models (with and without miscoding) using some criteria, e.g., the Bayes
factor or the likelihood ratio test.

The Bayes factors may be computed by taking ratios between estimates of
the marginal densities of the data (after integrating out all parameters). If
models are taken as equally probable, a priori, then the Bayes factor gives the
ratio between the posterior probabilities of the corresponding models. Here, the
marginal densities were estimated by calculating harmonic means of likelihoods
evaluated at the posterior draws of the Gibbs output [16], and these are presented
in Table I. The Bayes factor (in favor of the model without the miscoding
parameter) of 20.5 does not denote important differences between both models
for modeling this data set.

The results obtained by both models for the data set with 2% miscoding
(π = 0.02) are presented in Table II. As expected, the model that ignores
the miscoding problem had estimates biased upwards. When the probability
of miscoding was introduced into the model, there was improvement on the
estimates. In addition, the probability of miscoding was adequately estimated.
For the robust model, all the parameter values were inside a credible set of 0.95
of probability. The Bayes factor of 2.01× 106, in favor of the model with the
miscoding parameter, denotes its greater plausibility, when compared to the
model ignoring miscoding genotypes.
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Table II. True parameter values and posterior means and standard deviations (in
parenthesis) of the recombination rates considering the data set with 2% of miscoding
genotypes and the two models, with and without the miscoding parameter.

Recombination rates

Model θAB θBC θCD θDE π p(y|Model)

W/o miscoding 0.0982 0.1361 0.0934 0.1950 – 4.70× 10−200

(0.0178) (0.0195) (0.0172) (0.0226)

With miscoding 0.0739 0.1096 0.0561 0.1624 0.0223 9.45× 10−194

(0.0192) (0.0200) (0.0175) (0.0251) (0.0067)

Parameter values 0.09 0.11 0.05 0.14 0.02 –

Table III. True parameter values and posterior means and standard deviations (in
parenthesis) of the recombination rates considering the data set with 4% of miscoding
genotypes and the two models, with and without the miscoding parameter.

Recombination rates

Model θAB θBC θCD θDE π p(y|Model)

W/o miscoding 0.1681 0.1640 0.1413 0.1758 – 1.93× 10−235

(0.0223) (0.0215) (0.0204) (0.0217)

With miscoding 0.1327 0.1208 0.0828 0.1307 0.0374 3.37× 10−213

(0.0252) (0.0228) (0.0204) (0.0251) (0.0087)

Parameter values 0.09 0.11 0.05 0.14 0.04 –

Similar results were found for the data set with 4% miscoding (Tab. III).
The Bayes factor, in this case, was of 1.75 × 1022 in favor of the model with
the miscoding parameter.

5.2. Example 2

Thirty data sets were simulated, where half had no miscoding and half had
5% miscoding. Here, our main interest was to examine the performance of the
models (with and without miscoding) to correctly estimate the gene order with
relatively small data sets, both under situations without miscoding and with
high levels of miscoding genotypes. Each data set had 100 individuals with
genotypes for five markers; no missing data were considered in this study. The
recombination rates between consecutive loci were: θAB = 0.05, θBC = 0.18,
θCD = 0.02 and θDE = 0.07. Prior distributions and computations were similar
to those described for the previous simulation study.

For the 15 data sets without miscoding, both models (with and without mis-
coding) yielded the highest posterior probability for the correct order ABCDE.
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The Bayes factor was favorable to the model without miscoding for 8 of the data
sets (and favorable to the model with the miscoding parameter for the remaining
data sets), but with no expressive or relevant values (ranging from 1.2 to 57.9).
For the datasets with 5% miscoding, the Bayes factor was always favorable
to the model considering miscoding genotypes, with values that ranged from
2.42× 102 to 8.31× 1010.

The model ignoring the miscoding gave the highest posterior probability for
a gene ordering other than ABCDE in 8 of the 15 data sets. In the case of
the model with the miscoding parameter, just four data sets had the highest
posterior probability for a wrong order. If credibility sets with minimum
probability of 0.90 are considered, three of the data sets had the correct gene
ordering outside of the set. For the model with the miscoding parameter, just
one data set presented a probability set that did not contain the correct order.

The results suggest that the model ignoring the miscoding overstates the
precision in relation to the gene ordering, sometimes concentrating posterior
probability on the wrong (set of) order(s).

6. ANALYSIS OF EXPERIMENTAL DATA

The data set refers to the RFLP study with Brassica napus using F1-derived
double haploid lines. Materials and methods related to the DNA extraction and
a preliminary linkage map construction (using maximum likelihood approach)
are presented by Ferreira et al. [6]. These data, combined with phenotypic
information (flowering time under one of the three vernalization treatments
considered in that study), were also analyzed by Ferreira et al. [5] and by
Satagopan et al. [20] for the study on quantitative trait loci.

Here, we focus on the estimation of the probability of miscoding, and also on
robust construction of the linkage map for a set of marker loci. To illustrate the
methods, we consider the data for 105 progeny and 10 maker loci related to the
linkage group 9, for which 9% of the genotypes were missing. For simplicity,
the marker loci are denoted here by letters (from A through J), according to the
order that was estimated by Ferreira et al. [5].

Prior distributions and computations were similar to those describe in Sec-
tion 5, for the simulation studies. In this case, a longer burn-in period of 2 000
iterations was adopted, followed by 100 000 iterations with thinning intervals
of 20. Hence, 5 000 samples were used for the post-Gibbs analysis.

The miscoding rate for this data set was estimated at a level of approximately
1.5%, with a 95% probability set [0.0055; 0.0266]. The model with the
miscoding parameter was much more plausible than the one without it, with the
Bayes Factor of 4.91× 106. Posterior probabilities for different gene ordering,
estimated by both models (with and without the miscoding parameter) are
presented in Table IV. The most probable order for both models was the
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Table IV. Posterior probabilities of different ordering of the markers in the Brassica
data by using the two models, with and without miscoding.

Models
Order W/o miscoding With miscoding
ABCDEFGHIJ 0.7516 0.6824
BACDEFGHIJ 0.1818 0.1658
ABDCEFGHIJ 0.0412 0.0632
ABCEDFGHIJ 0.0128 0.0404
BACEDFGHIJ 0.0036 0.0094
Others (1) 0.0090 0.0388
(1) Loci orders with posterior probabilities smaller than 0.0050.

Table V. Posterior means and standard deviations (in parenthesis) of the recombination
rates and probability of miscoding in the Brassica data by using the two models, with
and without the miscoding parameter.

Models

Parameter W/o miscoding With miscoding

θAB 0.0923 (0.0291) 0.0693 (0.0308)
θBC 0.1135 (0.0318) 0.0961 (0.0304)

θCD 0.0719 (0.0255) 0.0390 (0.0224)
θDE 0.0730 (0.0259) 0.0392 (0.0223)

θEF 0.0899 (0.0289) 0.0853 (0.0298)
θFG 0.1096 (0.0319) 0.0773 (0.0308)

θGH 0.1084 (0.0320) 0.0749 (0.0309)

θHI 0.0684 (0.0271) 0.0681 (0.0287)
θIJ 0.1353 (0.0358) 0.1320 (0.0379)

π – 0.0151 (0.0054)

p(y|Model) 4.81× 10−137 2.36× 10−130

sequence ABCDEFGHIJ, with approximate posterior probabilities of 0.68 and
0.75, respectively for models with and without the miscoding parameter. Some
uncertainty on the order arose with the position of the two first markers (A
and B), but very high posterior probabilities were found for the sequence
CDEFGHIJ of the other eight loci (respectively 0.85 and 0.93 for the models
with and without the miscoding parameter).

The recombination rates, as expected, presented higher estimates by the
model ignoring the possibility of miscoding (Tab. V). Figure 3 shows the
estimated map from these two models, using the inverse of the Haldane map
function to the recombination rates drawn at each Gibbs iteration.
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Figure 3. Estimated genetic map of the markers of the Brassica data, by using the
robust model (first map) and the model ignoring miscoding (second map).

7. CONCLUDING REMARKS

The model discussed in this paper provides an appealing robust alternative
for genetic map construction in the presence of non-systematic miscoding
genotypes. The MCMC implementation of the Bayesian analysis is straight-
forward, with just some caution to be addressed in relation to the Metropolis-
Hastings step for updating the gene ordering. This approach provides more
reliable estimates for subsequent studies that use information on genetic maps,
such as quantitative trait loci (QTL) search and marker assisted selection.

High values of miscoding probability estimates, however, should raise con-
cern about the molecular data, and a revaluation of the marker genotypes may
be a good approach. In situations with relatively large rates of miscoding,
the high frequency of apparent recombinations may not be recognized as
the reflect of miscoding genotypes, but due to bigger values of real genetic
recombinations. For these cases, a multilocus feasible map function, which
assumes interdependence between different marker intervals [17], could be a
better alternative to the Haldane map function.

This paper can be extended in various ways to analyze genetic data originated
from different designs (e.g. F2 progenies, granddaughter design, etc.). Further-
more, the idea of considering the possibility of miscoding genotypes may be
used for QTL analysis as well. The methodology for robust estimation under
miscoding genotypes can be adapted to handle multiallelic loci situations.
For example, consider that gij can assume one of t genotypes, denoted as
1, 2, . . . , t. In these cases, the probability of observing a genotype mij equal
to r (r = 1, 2, . . . , t) would be:

Pr(mij = r) = Pr(gij = r)Pr(mij = r|gij = r)+ Pr(gij 6= r)Pr(mij = r|gij 6= r)

= Pr(gij = r)Pr(mij = r|gij = r)+
t∑

s=1;s6=r

πrs Pr(gij = s),
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where πrs = Pr(mij = r|gij = s) represents the miscoding probability of
observing a genotype as r, when the actual genotype is s. The miscoding
probabilities πrs could be considered, for example, proportional to the distance
of each allele in the gel, which reflects the size of each allele (in base pairs). In
this case, the miscoding probabilities would be written as:

πrs = Pr(mij = r|gij = s) = φ (distance between alleles r and s).

The results found in this work suggest that, unless there is strong reason to
believe in the absence of ambiguity about genotypes, it may be safer to use
the robust model, which would provide a more reliable estimate of the genetic
map.

Towards the completion of this research, we became aware of related studies
by Keller [13] under the supervision of G.A. Churchill. Their work confirms
the utility of our approach to assess miscoding and improve the estimation of
map distances. Some of their methods appear as part of the R/QTL software
module of Broman [2].

ACKNOWLEDGEMENTS

This work was supported by the Wisconsin Agriculture Experimental Sta-
tion, by research grant NRICGP/USDA 99-35205-8162.

REFERENCES

[1] Best N., Cowles M.K., Vines K., CODA Manual, Version 0.30. Technical Report,
Cambridge, UK MRC Biostatistics Unit, 1995.

[2] Broman K.W., R/QTL Software Module, Version 0.80–3, 2001.
(http://biosun01.biostat.jhsph.edu/~kbroman/).

[3] Brzustowicz L.M., Merette C., Xie X., Townsend L., Gilliam T.C., Ott L.,
Molecular and statistical approaches to the detection and correction of errors in
genotype database, Am. J. Hum. Genet. 53 (1993) 1137–1145.

[4] Douglas J.A., Boehnke M., Lange K., A multipoint method for detecting geno-
typing errors and mutations in sibling-pair linkage data, Am. J. Hum. Genet. 66
(2000) 1287–1297.

[5] Ferreira M.E., Satagopan J., Yandell B.S., Williams P.H., Osborn T.C., Mapping
loci controlling vernalization requirement and flowering time in Brassica napus,
Theor. Appl. Genet. 90 (1995) 727–732.

[6] Ferreira M.E., Williams P.H., Osborn T.C., RFLP mapping of Brassica napus
using double haploid lines, Theor. Appl. Genet. 89 (1995) 615–621.

[7] Gelfand A.E., Smith A.F.M., Sampling based approaches to calculating marginal
densities, J. Am. Stat. Assoc. 85 (1990) 398–409.



368 G.J.M. Rosa et al.

[8] Geman S., Geman D., Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images, IEEE Transactions on Pattern Analysis and Machine
Intelligence 6 (1984) 721–741.

[9] George A.W., Mengersen K.L., Davis G.P., A Bayesian approach to ordering
gene markers, Biometrics 55 (1999) 419–429.

[10] Jones H.B., A review of statistical methods for genome mapping, Int. Stat. Rev.
68 (2000) 5–21.

[11] Haines J.L., Chromlook – an interative program for error-detection and mapping
in reference linkage data, Genomics 14 (1992) 517–519.

[12] Hastings W.K., Monte Carlo sampling methods using Markov chains and their
applications, Biometrika 57 (1970) 97–109.

[13] Keller A.E., Estimation of genetic map distances, detection of genotype errors,
and imputation of missing genotypes via Gibbs sampling, M.S. Thesis, Cornell
University, 1999.

[14] Lathrop G.M., Lalouel J.M., Julier C., Ott J., Strategies for multilocus linkage
analysis in humans, Proc. Nat. Acad. Sci., USA 81 (1984) 3443–3446.

[15] Lincoln S.E., Lander E.S., Systematic detection of errors in genetic linkage data,
Genomics 14 (1992) 604–610.

[16] Newton M.A., Raftery A.E., Approximate Bayesian inference by the weighted
likelihood bootstrap (with discussion), J.R. Stat. Soc. Series B 56 (1984) 3–48.

[17] Ott J., Analysis of Human Genetic Linkage, John Hopkins University Press,
Baltimore, 1991.

[18] Raftery A.E., Lewis S.M., How many iterations in the Gibbs sampler?, in:
Bernardo J.M., Berger J.O., David A.P., Smith A.F.M. (Eds.), Bayesian Statistics
4, Oxford Univ. Press, 1992, pp. 763–774.

[19] SAS
�
R Institute Inc., SAS/IML Software: Usage and Reference, Version 6. 1st

edn., SAS
�
R Institute Inc., Cary, NC, 1989.

[20] Satagopan J.M., Yandell B.S., Newton M.A., Osborn T.C., A Bayesian approach
to detect quantitative trait loci using Markov chain Monte Carlo, Genetics 144
(1996) 805–816.

[21] Smith C.A.B, Stephens D.A., Estimating multipoint recombination fractions,
Ann. Hum. Genet. 59 (1995) 307–321.

APPENDIX: PROPOSALS FOR λ

A simplified version of the Metropolis-Hastings step for drawing from the
conditional distribution of λ and θ can be described as follows:

1. Draw λ∗ with probability q(λ∗|m) = 2/m!, from the m!/2 different orders;
2. Draw each θj from (7);
3. Move from the current state T = (λ, θ) to T∗ = (λ∗, θ∗) with probability

π(T∗,T), or stay with T otherwise. In this case, the Metropolis ratio given
in (8) is simplified as:

π(T∗,T) = min

[
1,

p(λ∗, θ|G, τ,α,β)
p(λ, θ|G, τ,α,β)

]
·
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The equally probable process for q(.), as described above, is not an adequate
choice for generating candidates for λ. As discussed in Section 3, this process
would generate a large number of unlikely (or inconsistent) orders, that would
increase the rejection rate of the Metropolis-Hastings step. In order to have
a better implementation and mixing of the MCMC, some alternatives for the
generation of candidate orders are described below.

A) Switching adjacent loci

In this case, a locus is chosen at random and its position is interchanged
with its neighbor, for example, on the right. If the last gene position is chosen,
then the two ends of the linkage group are interchanged. This alternative can
be schematized as follows:

1. Draw k from p(k|m) = 1/m, where k = 1, 2, . . . ,m;
2. Define λ∗ as equal to λ, except that loci k and k + 1 are switched, if

k = 1, 2, . . . ,m − 1. If k = m, the loci 1 and m have their positions
interchanged.

B) Switching two non adjacent loci

This alternative is, in some sense, a generalization of the previous one. Here,
two loci are chosen at random and their positions are interchanged. It can be
schematized following:

1. Draw k1 from p(k1|m) = 1/m, where k1 = 1, 2, . . . ,m;
2. Draw k2 from p(k2|m) = 1/(m− 1), where k2 6= k1 = 1, 2, . . . ,m;
3. Define λ∗ as equal to λ, except that loci k1 and k2 are switched.

C) Rotation of random length segments

In this more general case, a random set of neighbor loci is chosen, and the
new order is derived from the old one, with the rotation on this set of genes. It
is described as follows:

1. Draw k1 from p(k1|m) = 1/m , where k1 = 1, 2, . . . ,m;
2. Draw k2 from p(k2|m) = 1/(m− 1), where k2 6= k1 = 1, 2, . . . ,m;
3. Suppose that k1 < k2 and write λ as:

λ = (λ(1), λ(2), . . . , λ(k1−1), λ(k1), λ(k1+1), . . .

. . . , λ(k2−1), λ(k2), λ(k2+1), . . . , λ(m)),

where λ(j) is the marker at the position j in the linkage group. The new order
λ∗ is defined as:

λ∗ = (λ(1), λ(2), . . . , λ(k1−1), λ(k2), λ(k2−1), . . .

. . . , λ(k1+1), λ(k1), λ(k2+1), . . . , λ(m)).


