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typos and Changes

Preface

XVv:

Numerous typos have been corrected in this printing, and several sections
have been clarified. Sections in Chapter 5 have been renumbered. Writing
a book is a continual process, with many opportunities for rethinking the
way to present material. There is more that I would like to do with this
text, but time is too short for this time around.

Note in particular that I would like to add another part on categori-
cal data and generalized linear models. Many students complete degrees
without much exposure to this subject, given the short amount of time
available to take courses. It seems natural to show the connections with
linear models, giving readers an intuitive insight into practical data ana-
lysis for counts.

At this point, there are some parts that I would like to rethink, expand
or reorganize. Other minor changes are in the planning stages. These will
have to wait for a clear block of time in the not too distant future. Thank
you for your ideas and support in the use and development of this book.

Many thanks to the students and colleagues who have given me feedback
on this text. These include Hyungjun Cho, John Grego (1998 review), Lixin
Han, Yufen Huang, Edward C Malthouse, Nicholas Montpetit, Jon Seltzer,
Jun Shao and Chen Wang. Chen Wang served as my Teaching Assistant
when I first taught from this book in print.

Brian S. Yandell
University of Wisconsin—-Madison
December 1998
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ppp-ll:
page ppp, line 1l (from bottom if negative)

ppp.rr.ll:
page ppp, paragraph rr, line 1l (from bottom if negative)

Part A: Placing Data in Context

4.-3:

effects of one factor on response at different levels of other factors.

7.5:

dered in the language of the original questions in a manner accessible to
other scientists.

15.2.3:

ment and execution of strategies for data analysis. The recent package JMP
16.4.2:

organize all this information and provide ready access to those aspects
which

21.4.3:

project and provide the first hints of the experiment and key questions.
36.6.—4:

non-smokers, but instead have been self-selected based on a confusing va-
riety of

39.2.7:

that EU but do not increase the number of independent assignments of
factor levels. Time cannot be randomized, which can be problematic, par-
ticularly when there are repeated measurements on the same subject.

Part B: Working with Groups of Data

58 Example 4.7:

However, the cultivars and the anomalous odd

59.4.1:

Suppose interest focuses on estimating a particular group mean p; . The
65.2.4:

Prob{p < a: Hy, data } =« .

65.3.3:
among group variances are deferred to Part E.
71.2.:
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This chapter examines the problem of comparing several means simul-
taneously. Section 5.1 sets up compound hypotheses, while Section 5.2
develops linear contrasts of means. An overal test of differences among
means is developed in Section 5.3. Section 5.4 explores partitioning the
total sums of squared deviation around the sample grand mean. Expected
values of sums of squares comprise Section 5.5, with power and sample size
addressed briefly in Section 5.6.

5.1 From two to many

86 Problem 5.1(b):

orthogonal contrasts which would be uncorrelated for equal sample sizes.
98.4:

error rate is conservative in such situations (Hayter 1984).

98.8:

Vnmax|gi. —go.|/6
Part C: Sorting out Effects with Data

108.5.3:

factor combination. Their estimators, ¥;., ¥;;. and ¥iji., respectively, are
unique and unbiased, and are linear combinations of the responses in the
appropriate model.

112.-1:
a b Mij
SS =33 (yigr —p— @i — B —vy)°
i=1 j=1 k=1
113.4:
Nij%Yij = Zyijk —nij(p+ o+ B;) -
k
119.3.1:

Thus, given a set of constraints, it is possible to simplify the general form
of estimable functions. However, the estimable functions are the same re-
gardless

123.3.4:

of estimable functions. Knowing how those are calculated is vital!
127.-1:
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E(MSa) =0+ (a;—a.)?/(a—1).

3

132.10:

§p = nZ(%j — 55 =75 +7.) /0%,
ij

135 Figure 8.2:
move caption — (b) margin plot — down one line
152-3:
not linear in the model parameters. Tukey’s one-degree-of-freedom test of
H, : G =0 can be performed in a few steps with most statistical packages,
as shown in the next section.

This pattern of interaction can easily be detected with a margin plot.
Consider what happens to the model when averaging over the levels of B,

Ui = p+ o + B+ G + &
Solving for «; yields
a; = E[(§i. —p—B)/(1+ GB.)]
Ignoring the expectation, plug this into the Tukey interaction model as
Yij = (s + B i
with % = (1= Gu)(8; — B.)/(1+GB.) and 35 = 1+ G(B; — 5.)/(1+ GB.).

This suggests plotting cell means y;; against marginal means ;. to examine
the fit to the Tukey interaction model.

A margin plot is an interaction plot of cell means y;; (or g;;. in general)
on one set of marginal means, say ;. (or g;..) for factor A. One purpose
of such a plot is to provide a natural order for factor levels, positioning
levels at their marginal means. Thus levels with similar marginal effect
are placed beside each other. In addition, margin plots provide a way to
interpret factors as regressors. That is, imagine regressing the cell means
on the marginal means for A

Yij. = W + Bi ¥ +ej;

The margin plot is a scatter plot of ;;. against x;; = ¥;.. using plot symbols
or connected lines for levels of factor B. This is conceptually reasonable,
but has certain theoretical problems, since the response is on both sides
of the equation. It should only be used as a graphical guide, with formal
inference deferred to the next section.

154 Table 9.1:
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geno 2 1494.1 747.1 5.32 0.075
lat 2 76.1 38.0 0.27 0.78

157 Table 9.2:

geno 2 1494.1 747.1 143.4 0.0011
lat 2 76.1 38.0 7.3 0.070
inter 1 546.4 546.4 104.9 0.0029

157.2.-1:

much as was done above. Tests can be developed in a similar fashion.
158.9-10:

(a) Write down a model for the quality score. Define everything carefully.
158.15-16:

standard errors, LSD bars and the like. Label plots and tables clearly!
158.23-25:

lems with assumptions. Do not attempt any formal analysis. Show the data
using plot symbols to identify factors or factor combinations.

Part D: Dealing with Imbalance

161.7:

In many other experiments the scientist cannot control the balance.
163.2.2:

population means do not correspond to the sample marginal means
163.2.5:

g.. = >, Ej >k Yijk /T
169.3:
SSpeaian = ROV, 8) =D niy (@i — o — 95+ 9. -
ij

170.3.7:
Mg Hig T Mik ik
Hopa : = .
; n.; %: ng.n.;

179 Table 11.2:

with zeros
BA/TDZ O 0.2 2.0 20

0 0.02c 0.51a 0.18bc 0.20bc
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184.5.6:

H()Z Z/Jaj: Z,uij7z':17---,a—1,

jesma jESia

186.3.1:

The test for interaction in a two-factor model is the same regardless of
187.1.7:

is wise to examine some balanced contrasts involving main effects.
188.1.6:

Yijk = W+ o + B + Y + €ijk

194.2.3:

taste and odor. They created 16 combinations of six factors in a frac-
197.2-3:

b"y, with a = X b. The estimators a”3 = b"X3 = b™X(X"X) X"y
are best linear unbiased (BLUE),

200.2.10:

with J = 117 an n X n matrix of all 1s. That is, the model becomes
204.2.9:

E(y)=[1:X5:X3:Xy] =1+ Xoo + X308 + Xy .

L WR T

204.3.6:
propriate. That is, the distribution of R(a|u,3,4) depends on

Part E: Questioning Assumptions

213.3.1:

The first and most important assumption is that the model has been cor-
213.-1:

Chapter 8, Part C) of mean response for factor combinations can reveal
deficiencies

218.3.2-3:

Skewness, as measured by the third moment,

SKEW = E[(y;; — p1:)°]/0® (= 0 for normal) ,

219.2.4:
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KURT = E[(yi; — p:)*]/o* — 3 (= 0 for normal) .

219.2.8:

V(&2) = 04[2/(77, — 1) + KURT/n| ~ n2i41 <1 + KUQRT) .

219.2.-2:

with approximate degrees of freedom d = 1/(1 + KURT/2), where the kur-
tosis

221.3:

question the sense of comparing means when variances are unequal. A
weighted

221.9:

such as log for relative data or square root for counts, may change the
224.2.2:

square of an Welch’s approximate ¢ test,

224.4.3:

Sz&f/nl —|—[7§/n2

225.3:

If n1 = ng and 07 = 09, then this reduces to the usual test with r =
ni1+ne —2 and a = 1. The degrees of freedom can still be r = ny +ng — 2
provided that 02 /03 = ni(n; — 1)/[n1(n; — 1)], but in this case

0'2 0'2 0'2 0'2

nl(nl — 1) ng(ng — 1) iy no

The approximate

225.—-1:
o Vi —Ya) — (u1 —
7= 2V Ta) = (Y3 : 2.) (M; fi2)
of/n1+ 03 /n2)
226.3:
i —1)5?
xz=xxsn =" e s
9

227.2.5:

formance of means tests. Thus, it is often better to examine patterns in
227.5.2-5:

is possible with many experimental units appropriately arranged in sub-
groups. He suggests another way to study to experiments in which there is
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sub-sampling (see Chapter ??, Part ??), or multiple measurements on ex-
perimental units, by examining their log variance as a measure of quality.

228.1.2-23:

(1995). There are four groups and a total of 31 observations. The range of
SDs is modest (1.5 to 5.7), but it is unwise to assume equal variance.

(a) Write down the usual assumptions and report usual anova results. (b)
By hand, make a ‘dot-plot’ of the data, using letter symbols for group.
Comment. Now drop the assumption that variances are equal.

(c) Plot mean vs. variance by group, noting any (lack of) pattern.

(d) Use the inverse of group variance as weight, justifying this choice. Briefly
critique it. How does the use of estimates of group variances affect the p-
value? [Hint: examine the new SDs.]

(e) The exact test differs from all of these. It is based on the randomiz-
ation principle: if there are no group differences, all group assignments are
equally likely. That is, one could (in theory) examine every permutation
of the 31 responses (with nine As, seven Bs, eight Cs and seven Ds) and
compute the F' statistic for each one. The p-value is the proportion of F'
values that are as extreme as or larger than the one observed. The ‘right’
p-value, based on exact generalized inference, for the raw data is 0.030, or
for the ranks (exact Kruskal-Wallis) is 0.06.

228.2.1:
Consider inference on the variances themselves.

228.2.8-10:
(b) Conduct Levene’s test for unequal variance. This test does not depend
on normality and can be used for small samples. Interpret results.

Part F: Regressing with Factors

251.2.6-252.1.3:
with u; some independent zero-mean noise. If the y; are regressed on the
observable w; , the slope is attenuated. That is, the model becomes

yi = By + Biwi + e
with 8f = A3 attenuated by the reliability ratio, A = ¢2/02 , which is

w Y
at most one. The relationship is illustrated in Figure 16.6, which differs
in important ways from the regression calibration model shown in Figure
16.5. The intercept changes as well, to 53 = o + (1 — A\)1Z. .

252.2.3:

V(yilw;) = 0 + NG .
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254 Problem 16.4:

Consider a simple linear regression of dmi on the diet rank.

256.4:

or curvilinear relationships, as shown in Section 17.6.

259.2.7:

These are in general biased estimators, since FE(fi;) = p; + 3(Z;. — T..) and
E(B) = B+ Typ/Ter - As it turns out, these can be unbiased and do coin-
cide with adjusted estimates developed below if

263.3.10:

SSX\A = Z(gij - gl)Q = Z[B(i‘z - i‘)]2 = BQWJXE = ﬁAWa:y .

ij ij

263.3.16-17:

XA 1 SSx| A=Wy
ecror n.—a—1 SSg =Wy, — B2Wm

263.—1:
SSax = Byy + Wy .
265.—1:
E(BQWZEI) = 02 + ﬁQme .

266.4.3:
factor is applied, if appropriate, are surely unaffected by the factor. Thus
it may be
266.5.3—4:

X=Covariate 1 S’SX:ﬁvam

error n.—2 SSgp=T,, — *Ts.
267.7-9:

A|X a—1 SSA‘X:Byy +BWzy _B2Tzr

error n.—a—1 SSp =Wy, — 3*Wa
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267.2.3:
E(IBQTJ;I) = 02 + Tmz[ﬂ + TJ}ILL/TZI?:E]Q ?
268.2—4:
X 1 BZTxac o? + ﬂQTxx
AX a-1 Byy + BPWay — BPTew 0>+ 3 ni(pi — i)?/(a — 1)
error n.—a—1 Wy, — BQWM o?
268.—2:

thesis, T}, = 0 and p; = fi. = p, which implies % = 0. Thus the pivot
269.2—4 Table 17.3:

X|A=covariate 1 BPWos o?(1+0%)
Al X =treatment a—1 By, + B2Wow — 2T he o%(1+6%)
error n.—a—1 Wy, — BPW s o?

Part G: Deciding on Fized or Random Effects

306.2.—4:

2[E(SSA)]2 - a—1
V(SSa)  1+v/[(a—1)(ng+02/07%)?] "’

dfa =~

315.2.4:
levels would only be done on a post-hoc basis to select levels for subsequent
315.—1:

J2+na

2
F=MSap/MSE ~ TABF((L—U(b—l),ab(n—l) )

332 Problem 21.1:
with the restriction that Z?:I Ch=0.

Part H: Nesting Experimental Units

339.4.2:
that measurement variance is ¢? = 1 while EU variance is 0% = 2, and
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339.4.-2:

increases. Both the non-centrality parameter §* = bn/E(2MSp(4)) and
the

358.3 Table 23.1:

plot error 3 o2 +40%

359.5 Table 23.3:

subplot error 9 o2

373.4-6:

combine nested factors as a single factor to simplify analysis and/or employ
multiple comparisons methods. Thus it may not be possible simply to use
one approach for all factors in an experiment which is unbalanced.

Part I: Repeating Measures on Subjects

387.4.2-3:

(U; = 021). In practice, there are a variety of ways to examine treatment
differences over time by reducing data to a single measurement
389.—1:

cov(rit,riz) = (Ni)12 = oh(win +wi2)
390.3:
142X M+X - M+ N
) ) M+ 142X - A+ N
V=0 I+A1"+ 1\ =0 _ ) _ )
AMAN A+ o 142X
391.2.4-5:
SSspe = Y imWikm — Yike — Yiom + Yi-r)?
= kam ezzkm -n Z?k ézzkr —t sz ézz-m +nt Zz 612
394.-2:
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395.-2:

Y13. — Y14. = 13 — M14 + €13. — €14.

396.2:

Y13. — Y23. = (13 — M3 + T1. — T2. + €13. — €23.

402 Table 26.1:

source F naive G-G H-F Box
tree soils
e—adjustment 0.38 0.48
402.—1:
V(c"y,m) =c Ve
403.2:

c¢"Vec = o2. However, in general, the variance of a contrast over time
403.3.13:

det(C"VC)) )
S=(n(la—1)—r)lo ~
(n(a=1) =) g<|tr( )|t_1> Xr

C™VQ)/(t—1
406.2:
XBy, = X(X"X) X"y, = (I - Py, ~ N(XBy, 04(I - P))
407.10:
m"Y"PYm = (n — r)m"Vm ~ m"Vmy?_,
409.17:

(e) How do the multivariate tests compare with polynomial (or other)
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412-413:

Consider a variation on the split plot model in which the whole plot
factor is the sequence of treatment levels applied to the subplots. Here
think of the subplots as time periods, although that is not necessary. Such
a model might include

Yijkm = 1+ (a0 + Tim) + (B + (aB)ij + €ijrm)

with ¢ = 1,- -+ , a sequences of treatment levels, m = 1,--- ,n; subjects per
sequence, j = 1,---,b treatment levels, and c¢ repeats of each treatment
level. Note that there are t = be subplots (times) per subject. It is often
nice for recording purposes to have k = 1,--- ,¢ identify the time periods
even though this leads to redundancy in the triplet ijk much as there is
in the Latin square design. In fact, the sequence of treatments over time
periods is prescribed by the sequence i. If there are the same number of
periods as treatments (b = t), there are t! (=t x (t—1) x - -- x2x 1) possible
sequences, although only a subset might be used in some experiments.
With p as the usual reference, «; is the sequence effect, 3; is the treat-
ment effect, r;,, the subject error and e;jrm, the time period error. This
form indicates which treatment is assigned to each time period, but as-
sumes there is no trend over time. Recall the repeated measure model,

Yijkm =+ (0 + 7im) + (T + (T )ik + €ijkm)

with 75 the time effect, and the treatment subscript just included for con-
venience. Combine these concepts, and consider a more complicated model
which allows for treatment and time

Yijkm = p+ (o + rim) + (85 + Tk + Yijk + €ijkm)

with the three-factor interaction -, representing the different response to
treatment in different periods not explained by main effects. This is often
attributed to the carry-over of treatments from earlier periods.
Typically there are not enough periods to investigate full interactions
involving treatment and period within sequence. Instead, simplifying as-
sumptions about the form of the carry-over v;;, are made, such as

k—1
Yise = D s
=0

the sum of carry-overs from all previous periods, including a possible initial
effect \j(;,0) which is usually set to zero. Most applications simplify further

Yijk = Nj(ik—1)
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to an effect associated with the treatment in the previous period. This leads
to the cross-over model

Yijim = p+ (i +7im) + (85 + 71 + €i1km)
Yijkm = M+ (4 Tim) + (85 + T + Xji,e—1) + €ijkm) , k> 1.

The relationship of treatment j to sequence i and period k for subject m
is made explicit here to avoid ambiguity. The notation is identical to that
used for nested effects.

413-414:

sequence period mean

Al =p+og+0a+7
piB2 = p+ar+Bp+ 712+ Aa
p2B1 = pt+ a2 + Bp + 71
2 2 poa2 =+ as+ Ba+ T+ AB

The difference in means between sequences is

[N
— N =

f1.. — flo. = (g —ag) + (Aa — Ap) /2,

which hopelessly confounds sequences effect with carry-over. In fact, the se-
quence effect is precisely the difference due to which treatment is given first,
or the carry-over. Thus it is reasonable to think of carry-over as measuring
the sequence effect, or rather to assume «; = 0. The difference of period
means
fa — fo = (11— T2) — A
is confounded with the average carry-over effect. For this reason it is usual
to assume \. = 0, or with two treatments Ag = —\4.
The difference in mean response between treatments is

fa. — B = (Ba— Be) + (A — Aa)/2,

which confounds treatment and carry-over effects. Combining with the se-
quence mean differences, one can isolate the treatment effects as

Ba—Bs = (fa—ip)+ (i —fiz.)

= M141 — U2B1 ,

which is the difference in mean responses for the first period only.
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414 Example 27.1b Carry:
Consider a cross-over experiment with three periods per subject and three
treatments (1,2,3). There are six possible sequences

period

sequence 1 2 3

1 1 2 3
2 1 3 2
3 2 1 3
4 2 31
5 3 1 2
6 3 2 1

Each subject is assigned to a sequence, with n = 2 subjects per sequence.
The expected response for subjects in sequences ¢ = 3,4 are

sequence period mean

faz1 =+ a3+ Pa+ 7
p312 = f+ a3z + B+ 12 + A2
p33s = b+ a3z + B3+ 73+ A1
paz1 = p+ oy + B2+ 11
fazz = [+ g+ B3+ To + Ao
3 pa13 = p+ g + B+ 73+ A3

= s W W
N = W N =

The difference in means between sequences is
fs.. — fa.. = (a3 —aq) + (A1 — A3)/3,

which again confounds sequence effects with carry-over. However, notice
that comparing sequences 3 and 1 does not involve the carry-over, since it
cancels out due to the balance in the first two periods. In fact, the sequence
effect is precisely the difference due to which treatment is given first, or the
carry-over. Thus it is reasonable to think of carry-over as measuring the
sequence effect, or rather to assume «; = 0.

The difference of period means

fi = flg= (11 —72) = A

is again confounded with the average carry-over effect (which is again set to
zero for convenience). The difference in mean response between treatments
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is

fia. — flo. = (B1 — P2) +2(Aa — A\1)/3 ,
which confounds treatment and carry-over effects. It may be useful to ex-
amine the combinations of treatments and carry-overs, as in the following
table of triplets ijk. There are two triplets, from two distinct sequences,
for all combinations except that no treatment has its own carry-over. The
zero carryover is included for completeness.

treatment
carry B1 B2 B3
0 111,211 321,421 531,631
A1 —— 122,523 232,333
A2 312,613 —— 133,432

A3 413,512 223,622  ——

Thus this represents an incomplete factorial, but it is balanced. Each treat-
ment (carry-over) level appears in 6 (4) time period per sequence combina-
tions. Thus main effects of treatment and carry-over are estimable provided
the sequence effect is assumed zero («; = 0). However, inference for carry-
over is tricky, since there is information in both the whole plot and the sub-
plot. See Milliken and Johnson (1989) Example 32.3 for details, although
the notation is somewhat different.
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Suggestions for Further Work

7.3.1:

include newer context of data mining of massive data sets
8 Table 1.1:

pick labels that are not in alphabetical order

14:

update refs for SPSS, Systat and Minitab

15:

update JMP vs. SAS/Insight discussion

61 Example 4.9:

use real data set to illustrate

62 Figure 4.6(b):

move 3 up slightly

72.4:

need specifics on notched boxplots

75.2.:

how to describe orthogonal contrasts for unbalanced data: > ¢;d;/n; =0
75 Example 5.4:

plot the contrasts

89.4.:

SAS (1992) presents many

refer to Hsu (1996)

113-114:

move additive model parameterization to Section 7.27
149.3.:

should ‘rule of 2’ discussion of pooling interactions go in Section 9.17
215.2.:

tone down first sentence?

216.-2:

add reference to Cleveland (1975) and/or forward to next chapter on normal
scores — where does s come from?

217 Figure 13.4:

make this more realistic

218.3.3:

eliminate gammas in favor of words for skew and kurt?
219.2.:

refer ahead to Satterthwaite in next chapter

224.2.2:

need reference for Welch’s t-test

227.3.:

details of tests of variance

211 Figure 13.1:
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change line type for SD lines

212 Figure 13.2:

Redraw with correct SD for fit without zeros

230.:

rewrite rationale for log / practical interpretation

232-233.:

develop comparions of arcsin(/y) vs. log(y) for proportions; i.e. normality
vs. stabilizing variance

236.:

update references and material/focus on MCMC

245.:

include other path coef refs? Wright (1921) Li (1975) Sokal and Rolff (1981)
252.2.3:

elaborate how attenuation affects variance

253.:

awkward first two paragraphs

259.:

show details: E(B) =02+ Ty /Tow

265.:

doube check the anovas in Table 17.1 and 17.2
266.:

E(MSa) = o’ + [B;m +26Bay, + Byz]/(a—1)
267.:

E(MSax) = 0% + By + 1.(To/ Tra)] /0~ 1)
271.:

consider replacing p;(z) with p;,

276.:

introduce word “manova”

302-306:

switch around sections 19.2 and 19.3 to make it easier to find ng

330.:

make new section for higher order mixed models?

372.:

consider 96-well plates for strip plot example

340.:

redo Table 22.2 and Figure 22.1. Figure is almost correct, but table is way
off.

430—:

Index has several changes



