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In Section 5.3 on the Central Limit Theorem, we presented a computer simulation to il-
lustrate the CLT. Computer simulation is a very useful tool in statistics; its importance
continues to grow as the computer opens up more approaches for describing and analyzing
data. Roughly speaking, computer simulation is important in statistics in two ways. The
first is to demonstrate results like the CLT. The second is to describe, through simulation,
distributions that cannot be described explicitly by formulas. (This includes methods like
the bootstrap and Markov chain Monte Carlo simulation.) In this volume we will restrict
attention to the demonstration aspect of computer simulation.

The third subsection of this Appendix shows how to compute probabilities for the distri-
bution of the sample variance for normal data. This is similar in spirit to the Appendix of
Chapter 4.

5.7.1 Simulations using a Discrete Distribution

Let us first consider a simulation example that illustrates Var(X̄) = σ2/n. Consider a
discrete random variable with probability function given by the following.

x p(x)
1 0.6
3 0.3
5 0.1

By using the methods from Sections 3.6 and 3.7, we find that E(X) = 2.0 and Var(X) = 1.8.
Now let us use simulation to generate 500 values from this distribution. The commands

to perform this simulation are given below. The sample command instructs R to generate
500 random values and place them in the draws. The first argument is the possible x values,
while the prob argument specifies their probabilities. The replace argument is set to TRUE

as we want to sample with replacement.

> x = c(1, 3, 5)

> px = c(0.6, 0.3, 0.1)

> draws = sample(x, size = 500, replace = TRUE, prob = px)

Here is a histogram of the 500 values in object draws. (The argument breaks is used to
allow easy comparison of the 3 histograms we present in this section based on this discrete
distribution.)

> hist(draws, breaks = seq(1, 5, by = 0.25), main = "1000 discrete draws")
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From the probability distribution we would expect 60% of the observations to have value
“1”, 30% to have value “3” and 10% to have value “5.” Thus, we would expect 300, 150,
and 50 observations for each of these three numbers. Our simulated histogram is close to
this although the lowest category (which represents the “1’s”) and the highest category have
somewhat fewer observations than expected whereas the middle category has somewhat more
than expected. If we were to simulate another 500 observations, the number of observations
in each category would be somewhat different although the general shape of the histogram
would be the same.

Although we know by construction that the variance of this distribution is 1.8, we can
find the variance of the 500 simulated observations by having R compute the variance.

> var(draws)

[1] 1.691238

Thus, the variance of the 500 simulated observations is 1.691, close to the theoretical value.
Let us now use simulation to generate 500 simulated values of x̄ where x̄ is the mean

of 4 observations from the same discrete distribution. It is straightforward to perform the
simulation using the following commands.

> draws = sample(x, size = 4 * 500, replace = TRUE, prob = px)

> draws = matrix(draws, 4)

> drawmeans = apply(draws, 2, mean)

The commands in the first and second lines generate an object named draws with 4 rows
of numbers each with 500 values from the discrete distribution used above. (In total we have
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generated 4*500 = 2000 observations. Notice that we wrote over the original draws to save
space.) The 500 values are in columns numbered from 1 to 500. Think of each column as
having 4 observations from the distribution. The command in the third line applies the mean
command to every column, using the (apply command. The 500 values of the mean are now
in object drawmeans. Here is the histogram of these 500 simulated values of x̄.

> hist(drawmeans, breaks = seq(1, 5, by = 0.25), main = "1000 means of 4 draws")
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We can see that the variance is visibly smaller. By using the var command we find that the
variance of these 500 means is 0.48. This is fairly close to the value of 0.45 that we would
expect: Var(X̄) = σ2/4 = 1.8/4 = 0.45.

Let us now simulate 500 values of x̄ where x̄ is now the mean of 16 observations. We
present a condensed set of R commands to generate the means in object drawmeans and then
display the histogram. For reasons of efficiency, we

> drawmeans = apply(matrix(sample(x, size = 16 * 500, replace = TRUE,

+ prob = px), 16), 2, mean)

> hist(drawmeans, breaks = seq(1, 5, by = 0.25), main = "1000 means of 16 draws")
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The distribution of these 500 values of x̄ indicates a much reduced variance. The (theoretical)
variance of X̄ is Var(X̄) = σ2/16 = 1.8/16 = 0.1125. For the particular simulation performed
(the values in drawmeans), the observed variance is 0.108, again fairly close to the theoretical
value.

Thus, we have used the simulation capabilities of R to demonstrate visually (from the
histograms) and numerically (from the realized variances) the impact of the sample size,
n, on Var(X̄). We can also see an illustration of the Central Limit Theorem in the last
histogram. With x̄ values computed from the mean of 16 observations from a particular
discrete distribution, the distribution of these sample means shown in the histogram looks
approximately like a normal distribution.

In Section 5.3 we displayed a histogram of 2000 values of x̄ from another discrete dis-
tribution. This was done using the same procedure we used here. Of course the particular
discrete distribution must be entered into R as the necessary first step.

It is sometimes difficult to know how many values to generate is a simulation study. In
our example in this section we used 500; in Section 5.3 we used 2000. A simulation itself
is random, and the number of simulations done helps to control that randomness. Having
said that, the number of simulations depends on the purposes of the simulation. We will
not explore this issue further, except to note that, for a simulation used for demonstration
purposes, 500 to 2000 is a reasonable range for the number of values. When simulation is
used directly for inference, other considerations may dictate the need for a different number
(usually larger).
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5.7.2 Simulations using a Continuous Distribution

Here is another example of simulation for demonstration purposes. We will simulate values of
V 2 corresponding to S2, the sample variance from normal data. Assume that the underlying
distribution X is distributed as X ∼ N(0, 9) and suppose that the sample size, n, is 6.

The sequence of R commands for generating 1000 values from V 2 with 5 degrees of
freedom is as follows.

> draws = matrix(rnorm(1000 * 6, 0, 3), 6)

> drawvar = apply(draws, 2, var)

The commands in the first 2 lines generate an object named draws with 6 rows and 1000
columns of normal observations where the normal observation has mean 0 and standard
deviation 3. ( Recall that rnorm requires the standard deviation, not the variance.) The
third line applies the var command to each column using the apply command to create the
1000 values of S2. We now present the histogram for these 1000 values of V 2 = (n−1)S2/σ2.

> draws = 5 * drawvar/9

> hist(draws, breaks = 20, prob = TRUE, main = "standard distribution for sample variance")

> v = seq(0, max(draws), length = 200)

> lines(v, dchisq(v, 5), lty = 2, lwd = 2)
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Not surprisingly, the shape of this simulated distribution is very close to the shape of the
theoretical distribution for χ2

5 shown in the figure in Section 5.5 and overlaid as a dashed
lines here by the last two command lines.
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5.7.3 Computing Probabilities for the Variance in R

In the Appendix to Chapter 4, we showed how to compute probabilities for the mean of a
normal distribution. Here we show similar calculations for the distribution of the sampling
variance for normal data. Consider again the pine seedlings, where we had a sample of
18 having a population mean of 30 cm and a population variance of 90 cm2. What is the
probability that S2 will be less than 160?

> n = 18

> pop.var = 90

> value = 160

> pchisq((n - 1) * value/pop.var, n - 1)

[1] 0.9752137

Notice where the sample size (n = 18), population variance (pop.var = 90) and value of
interest (value = 160) appear in the pchisq command. The p-value of 0.975 agrees with
the p-value shown in Section 5.5. As with other probability commands, the upper tail could
have been calculated using the option lower.tail=FALSE.

Now consider the fruit company problem with weight of apple sauce in grams having
distribution X ∼ N(275, 0.0016). Here we want to take a random sample of 9 jars and find
the s2 so that P (S2 ≤ s2) = 0.99. The following R command does this:

> pop.var = 0.0016

> n = 9

> prob = 0.99

> pop.var * qchisq(prob, n - 1)/(n - 1)

[1] 0.004018047

Again notice where the sample size (n = 9), probability level (prob = 0.99) and population
variance (pop.var = 0.0016) appear in the calculation. [Why do the variance and sample size
appear outside of the command qchisq?] The value 0.004 agrees with earlier calculations in
Section 5.5.

Remember that probability calculations for the sample variance rely heavily on the as-
sumption of normality. If the data distribution is not normal, then these probabilities may
be way off.
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