Stat/For/Hort 571 - Final Exam, Fall 2000 - Partial Solutions

1. (a) $H_{0}: \mu_{A}=\mu_{B}=\mu_{C}=\mu_{D}=\mu_{E}$. SSError $=6 \times 4.51^{2}+4 \times 4.76^{2}+3 \times 5.59^{2}+4 \times$ $4.44^{2}+5 \times 5.14^{2}=517.37$. The ANOVA table looks like:

Source	df	SS	MS
Trt	4	567.38	141.85
Error	22	517.37	23.52
Total	26	1084.75	

Thus $F=141.85 / 23.52=6.03$ on $(4,22)$ df. $0.001<\mathrm{p}$-value <0.005. There is very strong evidence against H_{0}. Note: $s_{p}=$ $\sqrt{23.52}$.
(b) $H_{0}: \frac{1}{2}\left(\mu_{B}+\mu_{D}\right)=\frac{1}{2}\left(\mu_{A}+\mu_{E}\right)$. Hence the contrast of interest is $\frac{1}{2}\left(\bar{y}_{B}-\bar{y}_{D}\right)-$ $\frac{1}{2}\left(\bar{y}_{A}+\bar{y}_{E}\right)=-4.48$ with standard error $s_{p} \sqrt{\frac{(-1 / 2)^{2}}{7}+\frac{(1 / 2)^{2}}{5}+\frac{0}{4}+\frac{(1 / 2)^{2}}{5}+\frac{(-1 / 2)^{2}}{6}}=$ $\sqrt{23.52} \times 0.42=2.04$. Thus $t=$ $-4.48 / 2.04=-2.19$ on $22 \mathrm{df} . \quad 0.02<\mathrm{p}-$ value <0.05. There is moderate evidence again H_{0}.
2. (a) $\hat{b}_{1}=\frac{\sum x_{i} y_{i}-\frac{1}{n}\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}}=1.104$ and $\hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x}=-1.245$.
(b) $H_{0}: b_{1}=1.3$. \quad SSTotal $=\sum y_{i}^{2}-$ $\frac{1}{n}\left(\sum y_{i}\right)^{2}=1.40$. The ANOVA table for regression looks like:

Source	df	SS	MS
Regression	1	1.14	1.14
Error	9	0.26	0.029
Total	10	1.40	

Also $\sum x_{i}^{2}-\frac{1}{13}\left(\sum x_{i}\right)^{2}=0.94$. So, we have $t=\frac{1.104-1.3}{\sqrt{0.029 / 0.94}}=-1.12$ on 9 df . Thus pvalue >0.10. There is no evidence against the claim that the slope is 1.3 .
(c) We have $\hat{y}_{\text {est }}=-1.245+1.104 \times 1.2=$ 0.0798 with $\operatorname{se}\left(\hat{y}_{\text {est }}\right) \quad=$ $\sqrt{0.029\left(\frac{1}{11}+\frac{(1.2-0.82)^{2}}{0.94}\right)}=0.084$. The 95% confidence interval for the expected skeletal mass is therefore: $0.0798 \pm 0.084 \times$ $t_{9, .025}$ or $-0.11<\hat{y}_{\text {est }}(1.2)<0.27$.
3. The "anticipated" 95% confidence interval for $\mu_{A}-\mu_{B}$ is $\left(\bar{y}_{A}-\bar{y}_{B}\right) \pm z_{.025} \sigma \sqrt{\frac{1}{8}+\frac{1}{n}}$. Set its half width to $2.70 / 2=1.35$. Thus, $1.35=1.96 \times$ $1.8 \times \sqrt{\frac{1}{8}+\frac{1}{n}}$ and solve for $n . n=46.68$ and is rounded up to 47 .
4. $H_{0}: p=0.5$ for each comparison. Comparisonwise: for $Y_{\text {red }} \sim B(6, p)$, p-value $=2 \times P\left(Y_{\text {red }}=\right.$ 6) $=0.031$; for $Y_{\text {blue }} \sim B(9, p)$, p-value $=$ $2 \times\left[P\left(Y_{\text {blue }}=8\right)+P\left(Y_{\text {blue }}=9\right)\right]=0.039$; for $Y_{\text {green }} \sim B(40, p), Y_{N A} \sim N(20,10)$ under H_{0} and p-value $=2 \times P\left(Y_{N A} \leq 12\right)=2 \times P(Z \leq$ $-2.53)=0.011$. Experiment-wise: p-values are 3 times the comparison-wise p-values. The results are $0.093,0.117,0.033$ for the red, blue, and green coin. Hence reject H_{0} at the 5% level only for the green coin.
5. $H_{0}: \mu=1.5$ vs. $H_{A}: \mu \neq 1.5$. Let $Y=$ disease score. By CLT, $Z=(\bar{Y}-1.5) / s_{\bar{Y}} \sim N(0,1)$ under $H_{0}: \mu=1.5$. For the given data, $\bar{y}=\frac{1}{200}(70 \times 1+80 \times 2+50 \times 3)=1.9$ and $s^{2}=\frac{1}{199}\left[70 \times(1-1.9)^{2}+80 \times(2-1.9)^{2}+\right.$ $\left.50 \times(3-1.9)^{2}\right]=0.59$. Then $z=(1.9-$ $1.5) / \sqrt{0.59 / 200}=7.35$ and p -value <0.001. Hence, there is very strong evidence against H_{0}.

