Stat/For/Hort 571

Final Exam, Fall 2002
Brief Solutions

1. (a) $F=32.65 / 3.4678=9.42$. Checking the F table with degrees of freedom 4 and 10 , we see the p-value is less than 0.05 .

Source	df	SS	MS
Treatments	4	130.600	32.65
Error	10	34.678	3.4678
Total	14	165.278	

(b) The null hypothesis is $H_{0}: \mu_{A}=\mu_{B}=\mu_{C}=\mu_{D}=\mu_{E}$.
(c)

$$
\begin{aligned}
T & =\frac{\frac{11.26+13.54}{2}-\frac{14.06+19.44+17.68}{3}}{\sqrt{3.4678} \sqrt{\frac{1 / 4+1 / 4+1 / 9+1 / 9+1 / 9}{3}}} \\
& =\frac{-4.635}{0.9815} \\
& =-4.72
\end{aligned}
$$

p -value <0.002. Reject the null hypothesis.
(d) $L S D=2.228 \sqrt{3.678} \sqrt{2 / 3}=3.388$. The display is

11.26	13.59	14.06	17.68	19.44

2. (a) $n=9$. Plugging in the formula for the least square estimates, we get $\hat{b}_{1}=0.714$, and $\hat{b}_{0}=$ $\bar{y}-\hat{b}_{1} \bar{x}=1.148$.

(b) | Source | df | SS | MS | |
| :--- | ---: | ---: | ---: | ---: |
| | Regression | 1 | 271.32 | 271.32 |
| Error | 7 | 164.68 | 23.53 | |
| | Total | 8 | 436 | |

(c)

$$
\begin{aligned}
T & =\frac{1.148-10}{\sqrt{23.53} \sqrt{\frac{1}{9}+\sum \bar{x}^{2}}} \\
& =-2.15
\end{aligned}
$$

The p-value is between 0.05 and 0.10 .
(d) $\hat{y}_{\text {pred }}=1.148+0.714 \times 13=10.43$. The 90% confidence interval for the prediction is

$$
\begin{aligned}
& 10.43 \pm 1.895 \sqrt{23.53} \sqrt{1+\frac{1}{9}+\frac{(13-18)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}} \\
= & 10.43 \pm 9.89 .
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
Z & =\frac{25-29}{\sqrt{\frac{40}{32}+\frac{16}{8}}} \\
& =-2.21
\end{aligned}
$$

p-value $=0.0272$. Reject the null hypothesis at 0.05 level.
(b)

$$
\begin{aligned}
Z & =\frac{26-29}{\sqrt{\frac{16}{8}}} \\
& =-2.12
\end{aligned}
$$

p-value $=0.034$. Reject the null hypothesis at 0.05 level.
4. For Rule A: $\bar{X} \sim N(62,800 / 100)$, and the power is

$$
\begin{aligned}
& P(\bar{X}>60) \\
= & P\left(Z>\frac{60-62}{\sqrt{8}}\right) \\
= & P(Z>-0.71) \\
= & 0.7611 .
\end{aligned}
$$

For Rule B: we have

$$
\begin{aligned}
& P\left(X_{i}>70\right) \\
= & P\left(\left(Z>\frac{70-62}{\sqrt{800}}\right)\right. \\
= & P(Z>0.28) \\
= & 0.3817 .
\end{aligned}
$$

Denote the number of defective observations as W. Then $W \sim B(100,0.3817) \approx N(38.97,23.78)$, and the power is

$$
\begin{aligned}
& P(W>36) \\
= & P\left(Z>\frac{36-38.97}{\sqrt{23.78}}\right) \\
= & P(Z>-0.61) \\
= & 0.7291 .
\end{aligned}
$$

Therefore Rule A is more powerful.
5. Under the null hypothesis, the data come from a standard normal distribution, and the probability of the three categories are $P(Z<-1.2)=$ 0.1151, $P(-1.2<Z<1.4)=0.8041$, and $P(Z>$ $1.4)=0.0808$. Therefore the expected counts are $120 \times 0.1151=13.81,120 \times 0.8041=96.49$ and $120 \times 0.0808=9.70$, respectively.

$$
\begin{aligned}
X^{2} & =\frac{(24-13.81)^{2}}{13.81}+\frac{(85-96.49)^{2}}{96.49}+\frac{(11-9.7)^{2}}{9.7} \\
& =9.06
\end{aligned}
$$

on 2 degrees of freedom. The p-value is between 0.01 and 0.025 .

