Stat/For/Hort 571 - Midterm I, Fall 2000

 Solutions1. (a) The stem and leaf display is useful for a small data set such as this.

6 | 14
$6 \mid 6778$
7 | 024
7 | 9

The display appears roughly symmetrical, centered around 6.7. Median $y_{[0.50]}=6.75$.
(b) Since $\bar{Y} \sim N(6.45,0.30 / 15), P(\bar{Y}<6.60)=$ $P\left(Z<\frac{6.60-6.45}{\sqrt{0.3 / 15}}\right)=P(Z<1.06)=0.8554$.
2. (a) $P\left(Y_{1} \geq 7\right)=P\left(Y_{1}=7\right)+P\left(Y_{1}=8\right)=$ $\frac{8!}{7!1!} 0.7^{7} 0.3^{1}+\frac{8!}{8!0!} 0.7^{8} 0.3^{0}=0.1976+0.0576=$ 0.2552 .
(b) $P\left(Y_{2} \geq 7\right)=P\left(Z \geq \frac{7-5.6}{\sqrt{1.68}}\right)=P(Z \geq 1.08)=$ 0.1401 .
(c) $E\left(Y_{1}\right)=8 \times 0.7=5.6=E\left(Y_{2}\right)$ and $\operatorname{Var}\left(Y_{1}\right)=$ $8 \times 0.7 \times 0.3=1.68=\operatorname{Var}\left(Y_{2}\right)$.
(d) Sample size is small with $n(1-p)=2.4<5$; thus normal is not a good approximation to binomial. Also in approximating a discrete distribution with a continuous distribution, there will almost always be some difference between them.
3. (a) Since $n=9$, the df are 8. If $V^{2} \sim \chi_{8}^{2}$, then from tables $P\left(V^{2} \geq 20.09\right)=0.01$. But then we have

$$
0.01=P\left(S^{2}>c\right)=P\left(V^{2}>\frac{8}{25} c\right)
$$

It follows that $8 c / 25=20.09$ and so $c=62.78$.
(b) By independence, $P\left(S_{1}^{2}>c\right.$ and $\left.S_{2}^{2}>c\right)=$ $P\left(S_{1}^{2}>c\right) \times P\left(S_{2}^{2}>c\right)=0.01 \times 0.01=0.0001$.
4. (a) Let $Y=$ amount of money you receive. $E(Y)=$ $0.80 \times 0+0.18 \times 1+0.02 \times 100=2.18$. Since this is greater than the cost of playing the game, 2 , the company will lose money in the long run.
(b) $\operatorname{Var}(Y)=0.80 \times(0-2.18)^{2}+0.18 \times(1-2.18)^{2}+$ $0.02 \times(100-2.18)^{2}=195.42=13.97^{2}$. Hence $\bar{Y}_{\mathrm{NA}} \sim N(2.18,195.42 / 100)$ by the central limit theorem (CLT) and $P(\bar{Y} \geq 2) \approx P\left(\bar{Y}_{\mathrm{NA}} \geq\right.$ 2) $=P\left(Z \geq \frac{2-2.18}{1.397}\right)=P(Z \geq-0.129)=$ 0.5517 .
(c) The assumptions of a random sample are implicit. Also a large sample size n is needed for the CLT to provide a good approximation. Note that the distribution of Y is strongly skewed. Hence, according to our simulation, the distribution of \bar{Y} is still somewhat skewed.
5. $E(\hat{p})=p=0.4$ and $\operatorname{Var}(\hat{p})=\frac{p(1-p)}{n}=\frac{0.24}{n}$. Hence, we have $\hat{p}_{\mathrm{NA}} \sim N\left(0.4, \frac{0.24}{n}\right)$ and
$0.05=P(\hat{p}>0.45) \approx P\left(\hat{p}_{\mathrm{NA}}>0.45\right)=P\left(Z>\frac{0.45-0.4}{\sqrt{0.24 / n}}\right)$.
From the tables, $P(Z>1.645)=0.05$. Thus $\frac{0.45-0.4}{\sqrt{0.24 / n}}=1.645$. It follows that $n=259.77$ and is rounded up to 260 . Normal approximation is justified, because $n p>5$ and $n(1-p)>5$ with $n=260$ and $p=0.4$.

Grade Distribution

100:17
90-99:68
80-89:40
70-79:19 mean $=86$, median $=90$
60-69:9
50-59:5
<50:4

