Stat/For/Hort 571
 Midterm I, Fall 2002

Brief Solutions

1. (a) The display appears skewed.
(b) Mean $\bar{x}=21.007$.

Median $x_{[0.50]}=\frac{20.2+20.3}{2}=20.25$.
(c) B. We can see this because 50% of data is between 19.5 and 21.8 (inside the box).
2. (a) Since $V^{2}=27 S^{2} / 49 \sim \chi_{27}^{2}$,

$$
\begin{aligned}
P\left(S^{2}>90\right) & =P\left(V^{2}>\frac{27(90)}{49}\right) \\
& =P\left(V^{2}>49.59\right)
\end{aligned}
$$

From Table B, $0.005<P\left(V^{2}>49.59\right)<0.01$.
(b) The statement is true. S^{2} is centered at σ^{2}. As the sample size increases, S^{2} becomes a better estimate of σ^{2}. More specifically, the distribution of S^{2} becomes more tightly centered on $\sigma^{2}=49$, and so $P(S>90)$ becomes smaller.
3. (a) Since $X \sim N(68,900)$,

$$
\begin{aligned}
& P(70<X<90) \\
= & P\left(\frac{70-68}{\sqrt{900}}<Z<\frac{90-68}{\sqrt{900}}\right) \\
= & P(0.07<Z<0.73) \\
= & P(Z>0.07)-P(Z>0.73) \\
= & 0.4721-0.2327 \\
= & 0.2394
\end{aligned}
$$

(b) Since $\bar{X} \sim N(68,900 / 12)=N(68,75)$,

$$
\begin{aligned}
& P(60<X<70) \\
= & P\left(\frac{60-68}{\sqrt{75}}<Z<\frac{70-68}{\sqrt{75}}\right) \\
= & P(-0.92<Z<0.23) \\
= & 1-0.4090-0.1788 \\
= & 0.4122
\end{aligned}
$$

4. (a) $E(X)=1 \times 0.4+2 \times 0.3+10 \times 0.3=4$, and

$$
\begin{array}{cc}
& \operatorname{Var}(X) \\
= & (1-4)^{2} \times 0.4+(2-4)^{2} \times 0.3+(10-4)^{2} \times 0.3 \\
= & 15.6
\end{array}
$$

(b) Since $X \sim B(75,0.4)$,

$$
\begin{aligned}
P(X \leq 28) & \approx P\left(Z \leq \frac{28-75 \times 0.4}{\sqrt{75 \times 0.4 \times 0.6}}\right) \\
& =P(Z \leq-0.47) \\
& =P(Z \geq 0.47) \\
& =0.3192
\end{aligned}
$$

(c) $n p=75 \times 0.4>5$ and $n(1-p)=75 \times 0.6>5$.
5. (a) Let $Y=$ the number of trees that are damaged. Then $Y \sim B(8,0.7)$, and

$$
\begin{aligned}
P(Y=6) & =\frac{8!}{6!2!}(0.7)^{6}(0.3)^{2} \\
& =0.296 .
\end{aligned}
$$

(b) Let X_{A} be the number of trees sampled from plantation A that are damaged. Define X_{B}, X_{C}, X_{D} similarly. Then

$$
X=X_{A}+X_{B}+X_{C}+X_{D}
$$

and

$$
\begin{aligned}
& X_{A} \sim B(5,0.8) \\
& X_{B} \sim B(12,0.75) \\
& X_{C} \sim B(9,0.6) \\
& X_{D} \sim B(8,0.7)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& E(X) \\
= & E\left(X_{A}\right)+E\left(X_{B}\right)+E\left(X_{C}\right)+E\left(X_{D}\right) \\
= & 5 \times 0.8+12 \times 0.75+9 \times 0.6+8 \times 0.7 \\
= & 24
\end{aligned}
$$

Note: Although you can get the same conclusion using $E(X)=\sum x p(x)$, this formula is not applicable here. Specifically, the probabilities listed in the problem ($.8, .75, .6, .7$) do not correspond to a single random variable X (the probabilities do not add up to 1).
Since X_{A}, X_{B}, X_{C}, and X_{D} are independent, we have

$$
\begin{aligned}
& V(X) \\
= & V\left(X_{A}\right)+V\left(X_{B}\right)+V\left(X_{C}\right)+V\left(X_{D}\right) \\
= & 5 \times 0.8 \times 0.2+12 \times 0.75 \times 0.25 \\
& +9 \times 0.6 \times 0.4+8 \times 0.7 \times 0.3 \\
= & 6.89
\end{aligned}
$$

Grade Distribution

100:7
90-99:59
80-89:32
70-79:21 mean $=85.95$, median $=90$ 60-69:5
50-59:4
<50:3

