Stat/For/Hort 571
 Midterm I, Fall 2003
 Brief Solutions

1. (a) A stem-and-leaf display:

0	4
0	78
1	1344
1	$: 67$
2	1

(b) Since $y_{0.25}=8$ and $y_{0.75}=16, \mathrm{IQR}=8$.
2. Let A denote the event that Habibi barks and let B denote the event that Spotty barks. We have $P(A)=0.5$ and $P(B)=0.7$.
(a) The event that both dogs bark corresponds to the event of " A and B ". By independence, $P(A$ and $B)=P(A) \times P(B)=0.35$.
(b) The event that at least one dog barks corresponds to the event of " A or B ". Thus $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=$ $0.5+0.7-0.35=0.85$.
(c) The probability distribution of Y is:

y	0	1	2
$p(y)$	0.15	0.5	0.35

Note that from (a), $P(Y=2)=0.35$, $P(Y=1)=P(Y \geq 1)-P(Y=2)=$ $0.85-0.35=0.5$, and $P(Y=0)=$ $1-P(Y \geq 1)=1-0.85=0.15$. Thus $E(Y)=0 \times 0.15+1 \times 0.5+2 \times 0.35=1.2$ and $\operatorname{Var}(Y)=(0-1.2)^{2} \times 0.15+(1-$ $1.2)^{2} \times 0.5+(2-1.2)^{2} \times 0.35=0.46$.
3. (a) Since $V^{2}=\frac{(10-1) S^{2}}{9} \sim \chi_{9}^{2}$,

$$
\begin{aligned}
& P\left(8.34 \leq S^{2} \leq 14.68\right) \\
= & P\left(\frac{(10-1) 8.34}{9} \leq V^{2} \leq \frac{(10-1) 14.68}{9}\right) \\
= & P\left(8.34 \leq V^{2} \leq 14.68\right) \\
= & P\left(V^{2} \geq 8.34\right)-P\left(V^{2} \geq 14.68\right) \\
= & 0.5-0.1=0.4
\end{aligned}
$$

(b) Since $\bar{Y} \sim N\left(20, \frac{9}{10}\right), Z=\frac{\bar{Y}-20}{\sqrt{\frac{9}{10}}} \sim$
$N(0,1)$. We know that $P(Z \leq 1.645)=$ 0.95 , thus

$$
\begin{aligned}
0.95 & =P\left(\frac{\bar{Y}-20}{\sqrt{\frac{9}{10}}} \leq 1.645\right) \\
& =P\left(\bar{Y} \leq 1.645 \times \sqrt{\frac{9}{10}}+20\right)
\end{aligned}
$$

and $y^{*}=1.645 \times \sqrt{\frac{9}{10}}+20=21.56$.
(c) False. Since $\operatorname{Var}(\bar{Y})=\frac{9}{n}$, by the same argument as in (b), $y=1.645 \times \sqrt{\frac{9}{n}}+20$. The value y is smaller than y^{*}, because the variance $\operatorname{Var}(\bar{Y})$ is smaller, when the sample size n is larger than 10 .
4. (a) Let Y denote the number of infected plants among the 15 plants. Then Y is binomial with $n=15$ and $p=0.1$. The probability that at least 1 plant is infected is

$$
\begin{aligned}
P(Y \geq 1) & =1-P(Y<1) \\
& =1-P(Y=0) \\
& =1-(0.9)^{15}=0.794
\end{aligned}
$$

Note that by using the complement of the event of interest, we could avoid computing $P(Y \geq 1)=P(1)+P(2)+\cdots+P(15)$.
(b) Here W is binomial with $n=150$ and $p=$ 0.1. The mean and variance of W are $n p=$ 15 and $n p(1-p)=13.5$. Since $n p=15 \geq$ 5 and $n(1-p)=135 \geq 5$, we can use $W_{\text {NA }} \sim N(15,13.5)$. Since

$$
\begin{aligned}
0.90 & =P(W \geq a) \\
& \approx P\left(W_{\mathrm{NA}} \geq a\right) \\
& =P\left(\frac{W_{\mathrm{NA}}-15}{\sqrt{13.5}} \geq \frac{a-15}{\sqrt{13.5}}\right) \\
& =P\left(Z \geq \frac{a-15}{\sqrt{13.5}}\right)
\end{aligned}
$$

and $P(Z \geq-1.282)=0.90$, we set $\frac{a-15}{\sqrt{13.5}}=-1.282$. Thus $a=15-1.282 \times$ $\sqrt{13.5}=10.29$, or $a=10$.

