Stat/For/Hort 571 - Midterm I, Fall 99 - Brief
 Solutions

1. (a) The stem and leaf display is useful for a small data set such as this.

8.\|	30
9.\|	91
$10 . \mid 9953$	
11.\|	569
$12 . \mid 816$	
$13 . \mid 2$	

The display appears to be roughly symmetrical, centered at about 11.
(b) The median is the middle value ($8^{\text {dh }}$) of the 15 ordered observations.
Median $=10.9$
Mean $=\Sigma y_{i} / \mathrm{n}=163.6 / 15=10.91$
Variance $=[1 /(n-1)]\left[\Sigma y_{i}^{2}-\left(\Sigma y_{i}\right)^{2} / n\right]=$
$(1 / 14)\left[1819.34-(163.6)^{2} / 15\right]=2.501$
(c) We want $\mathrm{P}\left(\mathrm{S}^{2}<2.501\right)$. We must convert this to a
probability statement about $V^{2}=(n-1) S^{2} / \sigma^{2}$ because our tables are in terms of V^{2}. Thus,

$$
P\left(V^{2}<\frac{(n-1) 2.5}{\sigma^{2}}\right)=P\left(V^{2}<\frac{14 \times 2.5}{4}\right)=P\left(V^{2}<8.75\right)
$$

We compute $1-\mathrm{P}\left(\mathrm{V}^{2}>8.75\right)$ where V^{2} has 14 df. Then $.10<$ $\mathbf{P}\left(\mathrm{S}^{2}<2.5\right)<.25$. [Draw a picture!]
2. Let μ be the mean height of the pin oak seedlings. Then

$$
\mathrm{H}_{0}: \mu=1.3 \mathrm{~m} \text { and } \mathrm{H}_{\mathrm{A}}: \mu \neq 1.3 \mathrm{~m}
$$

We find the mean height is $8.7 / 8=1.0875$ and we are given that $\sigma^{2}=0.10$. Thus

$$
z=\frac{y-\mu}{\sigma / \sqrt{n}}=\frac{1.0875-1.3}{.10 / \sqrt{8}}=-1.901
$$

The p-value is $2 \mathrm{P}(\mathrm{Z} \leq-1.901)=2 \mathrm{P}(\mathrm{Z} \geq 1.901)=2 \times .0287=$.0574 . Thus, the results are significant at 10% but not at 5% or 1%.
3. (a) We want to find y_{*} such that $P\left(\bar{Y}<y_{*}\right)=0.8$ when $\bar{Y} \sim$ $\mathrm{N}(3.62, .025 / 18)$. Note that $P\left(\bar{Y}<y_{*}\right)=.8$ implies $P\left(\bar{Y}>y_{*}\right)=.2$. From Table A we see that $P(Z>.84)=2$.
Thus $\frac{y_{*}-\mu}{\sigma / \sqrt{n}}=84$. Solving for y_{*}, we find $y_{*}=.84 \times(\sqrt{.025} / \sqrt{18})+3.62=3.651$. [Draw a picture!]
(b) We want $P\left(l_{*} \leq \bar{Y} \leq u_{*}\right)=.95$. Converting to z-scores $P\left(\frac{l_{*}-\mu}{\sigma / \sqrt{n}} \leq Z \leq \frac{u_{*}-\mu}{\sigma / \sqrt{n}}\right)=.95$. At the upper end of the interval we have $P\left(Z \geq \frac{u_{*}-\mu}{\sigma / \sqrt{n}}\right)=.025$ and we know $u_{*}-\mu=.03$ (half of the interval).

Using Table A we find $\mathrm{P}(\mathrm{Z} \geq 1.96)=.025$ so we set
$\frac{u_{*}-\mu}{\sigma / \sqrt{n}}=\frac{.03}{\sqrt{.025} / \sqrt{n}}=1.96$ or $V_{\mathrm{n}}=(1.96 \times \sqrt{ } .025) / .03=10.33$.
Then $n=107$.
4. First consider the entire sample space ($\mathrm{I}=\mathrm{in}, \mathrm{O}=\mathrm{out}$).

Remember that Butch will never be in the room with a cat. Here Y is the number of animals in the living room.

M	F	B	Y	probability
I	I	I	3	0
I	I	O	2	$.6 \times .4=.24$
I	O	I	2	0
O	I	1	2	0
I	O	O	1	$.6 \times(1-.4)=.36$
O	I	O	1	$(1-.6) \times .4=.16$
O	O	I	1	.2
O	O	O	0	$1-(.24+.36+.16+.2)=.04$

(a) Because the cats behave independently, the probability that Frisky is in the room is not affected by Mittens' behavior, and the probability is 0.4 .
(b) This probability is 0 because Butch and Frisky are never in the living room together.
(c) From the table above, the probability that only Frisky is in is 0.16.
(d) Here $p(0)=0.04, p(1)=0.72, p(2)=0.24, p(3)=0$. Then $\Sigma x p(x)=0 \times 0.04+1 \times .72+2 \times .24+3 \times 0=1.2$.
5. (a) $\mu=n \mathrm{p}=12 \times .2=2.4$ and $\sigma^{2}=n p(1-\mathrm{p})=12 \times .2 \times .8=1.92$
(b) From (a), $\mu-\sigma=2.4-\sqrt{ } 1.92=1.014$. We want
$\mathrm{P}(\mathrm{Y}<1.014)$, which for a discrete random variable is
$P(Y=0$ or $Y=1)=P(Y=0)+P(Y=1)$. Then
$P(Y=0)=\frac{12!}{120!} \times .2^{0} \times .8^{12}=.069$ and
$P(Y=1)=\frac{12!}{111!!} \cdot 2^{1} \cdot 8^{11}=.206$ and
$\mathrm{P}(\mathrm{Y}=0)+\mathrm{P}(\mathrm{Y}=1)=.275$.
(c) Because $n \mathrm{np}=20>5$ and $\mathrm{n}(1-\mathrm{p})=80>5$, we can apply the normal approximation to the binomial distribution. Then $P\left(Y_{N A}<\mu-\sigma\right)$ is just the probability that a normal RV is below a point 1 standard deviation below the mean, so $\mathrm{P}\left(\mathrm{Y}_{\mathrm{NA}}<\mu-\sigma\right)$ $=P(Z<-1)=.1587$.

Grade Distribution

100:2
90-99:27
80-89:35
70-79:36
60-69:33
50-59:9
<50:13

