Stat/For/Hort 571 — Midterm II, Fall 2000 — Brief Solutions

1. (a) This is a paired design, with the pairing based on the age and initial weight. Let $D = Y_B - Y_A$, where Y_A and Y_B are the weight losses within a group for Program A and B respectively. We get $d_i = 3, 5, 0, -1, 3, 1$. Thus, $\bar{d} = 1.833$ and $s_d^2 = 4.966$. To test $H_0: \mu_D = 0$ vs $H_A: \mu_D \neq$ 0, we use

$$t = \frac{1.833 - 0}{\sqrt{4.966/6}} = 2.015$$
 on 5 df.

From tables, p-value = $2 \times P(T \ge 2.015) \approx 0.10$. There is very marginal evidence of difference between the two programs.

- (b) The *D*'s are independent and have a normal distribution.
- 2. (a) SSError = $4 \times (4.01^2 + 4.48^2 + 3.99^2 + 3.02^2) = 244.76$.

Source	df	\mathbf{SS}	MS
Diet	3	174.47	58.16
Error	16	244.76	15.30
Total	19	419.23	

So, F = 58.16/15.30 = 3.80 on (3, 16) df. From tables, $F_{3,16,0.05} = 3.24$ and $F_{3,16,0.01} = 5.29$, so 0.01 < p-value < 0.05. There is moderately strong evidence against the null hypothesis that all diets have the same mean coefficients of digestibility.

(b) SSError = $7 \times (4.01^2 + 4.48^2) + 1 \times (3.99^2 + 3.02^2) = 278.09.$

Source	df	\mathbf{SS}	MS
Diet	3	111.11	37.04
Error	16	278.09	17.38
Total	19	389.20	

So F = 37.04/17.38 = 2.13 on (3, 16) df. From tables, $F_{3,16,0.25} = 1.51$ and $F_{3,16,0.10} = 2.46$, so 0.10 < p-value < 0.25. There is no evidence against the null hypothesis that all diets have the same mean coefficients of digestibility.

- (c) They are different, because the data are different. In particular, SSError is bigger in (b), since there are more observations on Treatment 1 and 2 which have larger variances. Also, note that SSTrt is smaller in (b).
- 3. (a) With n = 9, $s^2 = 15$, $\chi^2_{8,0.025} = 17.53$, and $\chi^2_{8,0.975} = 2.18$, we have,

$$\frac{(n-1)s^2}{\chi^2_{n-1,0.025}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{n-1,0.975}}$$

which gives a CI of $6.85 \le \sigma^2 \le 55.05$.

- (b) $v^2 = (n-1)s^2/6.8 = 120/6.8 = 17.64$. From χ_8^2 in tables, p-value < 0.05. Hence, reject H_0 at the 5% level, but barely.
- (c) $v^2 = (n-1)s^2/56 = 120/56 = 2.14$. From χ_8^2 in tables, p-value < 0.05. Hence, reject H_0 at the 5% level, but barely.
- (d) Yes. From (b) and (c), we can see that 6.8 and 56 are barely rejected; from (a), each of these is barely not in the CI. Hence, there is an exact correspondence.
- 4. (a) True. The 95% CI for μ_1 is $\bar{y}_1 \pm t_{n_1-1,0.025}\sqrt{s_1^2/n_1} = 28.6 \pm 2.145\sqrt{10.2/15} = 28.6 \pm 1.77$. The 95% CI for μ_2 is $\bar{y}_2 \pm t_{n_2-1,0.025}\sqrt{s_2^2/n_2} = 80.4 \pm 2.571\sqrt{3.2/6} = 80.4 \pm 1.88$. The half-width, and hence the width of the CI is larger for μ_2 .
 - (b) False. Let γ = the probability of \overline{Y} exceeding the threshold under H_0 on a single trial. Then,

$$\gamma = P(\bar{Y} > 25.0 | \mu = 25) = P(Z > 0) = 0.5.$$

For the test that is based on all 4 trials,

$$\alpha = P(\text{reject } H_0 \mid H_0) = \gamma \times \gamma \times \gamma \times \gamma = (0.5)^4 = 0.0625.$$

5. Under $H_A: p = 0.85, \hat{p} \sim N\left(0.85, (0.85 \times 0.15)/n\right)$. We want

 $0.90 = P(\hat{p} \ge 0.81 | p = 0.85) \approx P(Z \ge \frac{0.81 - 0.85}{\sqrt{0.85 \times 0.15/n}}).$

From tables, $0.90 = P(Z \ge -1.282)$. Thus $\frac{0.81-0.85}{\sqrt{0.85\times0.15/n}} = -1.282$. It follows that n = 130.97 and is rounded up to 131. Normal approximation is justified, because np > 5 and n(1-p) > 5 with n = 131 and p = 0.85.

Grade Distribution