Stat/For/Hort 571 - Midterm II, Fall 2000 - Brief Solutions

1. (a) This is a paired design, with the pairing based on the age and initial weight. Let $D=Y_{B}-Y_{A}$, where Y_{A} and Y_{B} are the weight losses within a group for Program A and B respectively. We get $d_{i}=3,5,0,-1,3,1$. Thus, $\bar{d}=1.833$ and $s_{d}^{2}=4.966$. To test $H_{0}: \mu_{D}=0$ vs $H_{A}: \mu_{D} \neq$ 0, we use

$$
t=\frac{1.833-0}{\sqrt{4.966 / 6}}=2.015 \text { on } 5 \mathrm{df} .
$$

From tables, p-value $=2 \times P(T \geq 2.015) \approx$ 0.10 . There is very marginal evidence of difference between the two programs.
(b) The D 's are independent and have a normal distribution.
2. (a) SSError $=4 \times\left(4.01^{2}+4.48^{2}+3.99^{2}+3.02^{2}\right)=$ 244.76.

Source	df	SS	MS
Diet	3	174.47	58.16
Error	16	244.76	15.30
Total	19	419.23	

So, $F=58.16 / 15.30=3.80$ on $(3,16)$ df. From tables, $F_{3,16,0.05}=3.24$ and $F_{3,16,0.01}=5.29$, so $0.01<\mathrm{p}$-value <0.05. There is moderately strong evidence against the null hypothesis that all diets have the same mean coefficients of digestibility.
(b) SSError $=7 \times\left(4.01^{2}+4.48^{2}\right)+1 \times\left(3.99^{2}+\right.$ 3.02^{2}) $=278.09$.

Source	df	SS	MS
Diet	3	111.11	37.04
Error	16	278.09	17.38
Total	19	389.20	

So $F=37.04 / 17.38=2.13$ on $(3,16)$ df. From tables, $F_{3,16,0.25}=1.51$ and $F_{3,16,0.10}=2.46$, so $0.10<\mathrm{p}$-value <0.25. There is no evidence against the null hypothesis that all diets have the same mean coefficients of digestibility.
(c) They are different, because the data are different. In particular, SSError is bigger in (b), since there are more observations on Treatment 1 and 2 which have larger variances. Also, note that SSTrt is smaller in (b).
3. (a) With $n=9, s^{2}=15, \chi_{8,0.025}^{2}=17.53$, and $\chi_{8,0.975}^{2}=2.18$, we have,

$$
\frac{(n-1) s^{2}}{\chi_{n-1,0.025}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{n-1,0.975}^{2}}
$$

which gives a CI of $6.85 \leq \sigma^{2} \leq 55.05$.
(b) $v^{2}=(n-1) s^{2} / 6.8=120 / 6.8=17.64$. From χ_{8}^{2} in tables, p -value <0.05. Hence, reject H_{0} at the 5% level, but barely.
(c) $v^{2}=(n-1) s^{2} / 56=120 / 56=2.14$. From χ_{8}^{2} in tables, p -value <0.05. Hence, reject H_{0} at the 5% level, but barely.
(d) Yes. From (b) and (c), we can see that 6.8 and 56 are barely rejected; from (a), each of these is barely not in the CI. Hence, there is an exact correspondence.
4. (a) True. The 95% CI for μ_{1} is $\bar{y}_{1} \pm$ $t_{n_{1}-1,0.025} \sqrt{s_{1}^{2} / n_{1}}=28.6 \pm 2.145 \sqrt{10.2 / 15}=$ 28.6 ± 1.77. The 95% CI for μ_{2} is $\bar{y}_{2} \pm$ $t_{n_{2}-1,0.025} \sqrt{s_{2}^{2} / n_{2}}=80.4 \pm 2.571 \sqrt{3.2 / 6}=$ 80.4 ± 1.88. The half-width, and hence the width of the CI is larger for μ_{2}.
(b) False. Let $\gamma=$ the probability of \bar{Y} exceeding the threshold under H_{0} on a single trial. Then,

$$
\gamma=P(\bar{Y}>25.0 \mid \mu=25)=P(Z>0)=0.5 .
$$

For the test that is based on all 4 trials,
$\alpha=P\left(\right.$ reject $\left.H_{0} \mid H_{0}\right)=\gamma \times \gamma \times \gamma \times \gamma=(0.5)^{4}=0.0625$.
5. Under $H_{A}: p=0.85, \hat{p} \sim N(0.85,(0.85 \times 0.15) / n)$. We want
$0.90=P(\hat{p} \geq 0.81 \mid p=0.85) \approx P\left(Z \geq \frac{0.81-0.85}{\sqrt{0.85 \times 0.15 / n}}\right)$.
From tables, $0.90=P(Z \geq-1.282)$. Thus $\frac{0.81-0.85}{\sqrt{0.85 \times 0.15 / n}}=-1.282$. It follows that $n=130.97$ and is rounded up to 131 . Normal approximation is justified, because $n p>5$ and $n(1-p)>5$ with $n=131$ and $p=0.85$.

Grade Distribution

100:3
90-99:30
80-89:39
70-79:44 mean $=77$, median $=79$
60-69:22
50-59:6
<50:6

