Stat/For/Hort 571 Midterm II, Fall 2002 Brief Solutions

1. (a)

Source	df	SS	MS	F
Insecticide	4	38.766	9.692	2.4424
Error	16	63.490	3.968	
Total	20	102.256		

p -value is in $(0.05,0.1)$. At 0.05 level, reject the null hypothesis that the population mean wing lengths corresponding to the 5 species are all equal.
(b) The 95% confidence interval is $(63.49 / 28.85,63.49 / 6.91)=(2.2,9.2)$.
2. Let the number of wasps turning to the right be X. Under the null hypothesis H_{0} we have $X \sim$ $B(11,0.65)$. Therefore,
$\alpha=P($ rejecting the null hypothesis $\mid p=0.65)$
$=P(X=0,1$, or $11 \mid p=0.65)$
$=0.65^{0}(1-0.65)^{11}+11 \times 0.65^{1}(1-0.65)^{10}+0.65^{11}$
$=0.00001+0.00875+0.000197$
$=0.0089$.
3. (a) We have

$$
\begin{aligned}
v r_{1} & =s_{1}^{2} / n_{1}=4.9167 / 4=1.23 \\
v r_{2} & =s_{2}^{2} / n_{2}=1195.982 / 8=149.5 \\
a d f & =\frac{\left(v r_{1}+v r_{2}\right)^{2}}{\left(v r_{1}^{2} /\left(n_{1}-1\right)\right)+\left(v r_{2}^{2} /\left(n_{2}-1\right)\right)} \\
& =7.11 .
\end{aligned}
$$

Round down to $a d f=7$.

$$
p-\text { value }=2 \times(0.005,0.01)=(0.01,0.02)
$$

(b) Use the Mann-Whitney test. $n_{1}=4, n_{2}=8$, $T^{*}=12, T^{* *}=n_{1}\left(n_{1}+n_{2}+1\right)-T^{*}=40$. Therefore $T=\min \left(T^{*}, T^{* *}\right)=12$. Now the table give p -value $\in(0.01,0.05)$.
(c) (b) is more appropriate. A stem-and-leaf plot reveals that the normality assumption is not likely to be valid for this data. (a) requires normality, (b) does not.
4. (a) $\hat{p}_{1}=35 / 60=0.58, \hat{p}_{2}=30 / 75=0.40$. Therefore the 90% confidence interval for $p_{1}-p_{2}$ is

$$
\begin{array}{r}
\hat{p}_{1}-\hat{p}_{2} \pm z_{0.05} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{60}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{75}} \\
=0.18 \pm 0.14=(0.04,0.32) .
\end{array}
$$

(b) The assumptions are $n_{1} \hat{p}_{1} \geq 5, n_{1}\left(1-\hat{p}_{1}\right) \geq 5$, $n_{2} \hat{p}_{2} \geq 5, n_{2}\left(1-\hat{p}_{2}\right) \geq 5$. These are easily checked to be satisfied.
5. Under H_{0}, we have $E(X)=0 \times 1 / 3+2 \times 1 / 3+$ $7 \times 1 / 3=3 ; \operatorname{var}(X)=(0-3)^{2} \times 1 / 3+(2-3)^{2} \times$ $1 / 3+(7-3)^{2} \times 1 / 3=8.66$. Therefore by the Central Limit Theorem, \bar{X} is approximately $N(3,8.66 / 100)$. We should reject the null hypothesis if \bar{X} is large since the mean of the distribution in the alternative hypothesis is larger than that in the null hypothesis. Denote the rejection region by $\bar{X}>c$. Then

$$
\begin{aligned}
P\left(\bar{x}>c \mid H_{0}\right) & =0.01 \\
P\left(Z>\frac{c-3}{\sqrt{0.0866}}\right) & =0.01 \\
\frac{c-3}{0.294} & =2.33 \\
c & =3.685
\end{aligned}
$$

Grade Distribution

