Stat/For/Hort 571
 Midterm II, Fall 2003
 Brief Solutions

1. (a) $s_{p}=44.52, t_{0.005,33}=2.73$ from Table B. 99% CI is $\bar{y}_{A}-\bar{y}_{B} \pm$ $t_{0.005, n_{A}+n_{B}-2} s_{p} \sqrt{1 / n_{A}+1 / n_{B}}=$ $240-190 \pm 2.73 * 44.52 \sqrt{1 / 15+1 / 20}=$ (8.44,91.56).
(b) CI does not cover 0 , so reject H_{0} at 1% level. Alternatively, t score is 3.29 and 2 sided p -value is 0.0024 .
2. (a) First verify that sample size is large. That is, $\hat{p}=32 / 60=0.53$ and $n_{1} \hat{p}, n_{1}(1-\hat{p}), n_{2} \hat{p}, n_{2}(1-\hat{p})$ all ≥ 14. Thus can use normal approximation $Z=$ $\left(\hat{p}_{1}-\hat{p}_{2}\right) /\left(s_{p} \sqrt{1 / n_{1}+1 / n_{2}}\right) \approx N(0,1)$ under $H_{0}: p_{1}=p_{2}$. Here $s_{p}=$ $\sqrt{\hat{p}(1-\hat{p})}=0.499$ and z-score is $z=$ $(0.67-0.40) /(0.499 \sqrt{2 / 30})=2.07$. Onesided p-value from Table A is 0.019 . Argue for one-sided or two-sided test. Conclude there is strong evidence for significant symptom reduction.
(b) Binomial assumptions: 2 outcomes, independent trials, equal probability (may be different for trt 1 and trt 2). Comment on 2 independent samples and normal approximation.
3. ANOVA table: Verify SSAgent $=231.58=$ $4388-1288^{2} / 38=10(34-33.89)^{2}+10(30-$ $33.89)^{2}+18(36-33.89)^{2}$. Show SSError $=1062$ $=9\left(5^{2}\right)+9\left(5^{2}\right)+17\left(6^{2}\right)=$ SSTot - SSAgent; SSTot $=44950-1288^{2} / 38$.

Source	df	SS	MS
Agent	2	231.58	115.79
Error	35	1062.00	30.343
Total	37	1293.58	

F-value $=3.861$, p-value $=0.032$. Reject $H_{0}:$ all means identical at 5% level.
4. (a) We want $2 * z_{0.05} * \sigma / \sqrt{n} \leq 10$ where $z_{0.05}=1.645, \sigma=10$. Thus $n \geq(2 *$ $\left.z_{0.05} * \sigma / 10\right)^{2}=(2 * 1.645 * 10 / 10)^{2}=10.82$. Round up to 11 .
(b) CI always increases with confidence level, so need larger sample size to keep width at 10 units. Or repeat computation as above to get $n \geq 15.37$, with $z_{0.025}=1.96$, round up to 16 .
(c) NOTE: Typo in original exam. Should have $H_{0}: \mu=200$ and $H_{A}: \mu=$ 210 for 10 fields (not pairs). Find critical value based on power $=P(\bar{Y} \geq$ $c \mid \mu=210)=P\left(Z \geq \frac{c-210}{\sigma / \sqrt{n}}\right)=0.90$. $c=210-1.28 * 10 / \sqrt{10}=205.95$. Now find $\alpha=2 P(\bar{Y} \geq c \mid \mu=200)=$ $2 P\left(Z \geq \frac{c-200}{\sigma / \sqrt{n}}\right)=2 P(Z \geq 1.88)=$ 0.060 .
5. (a) $E\left(X_{1}\right)=\mu=\sum x p_{x}=2.5, \operatorname{Var}\left(X_{1}\right)=$ $\sigma^{2}=\sum(x-\mu)^{2} p_{x}=0.917$. Let $X=\sum X_{i}$ be the sum of n draws. $X \approx N\left(n \mu, n \sigma^{2}\right)$ by CLT. Here $n=20: X \approx N(50,18.33)$.
(b) Two-sided test-could be either extreme. $H_{0}: \mu=50, H_{A}: \mu \neq 50$. Observed $x=10 * 1+10 * 2=30$. \quad z-score is $z=(x-50) / \sqrt{18.33}=-4.67 .2 P(Z \geq$ $4.67)<0.0001$. Assume random sample of 20 draws with replacement from opaque bag. That is, draws are independent. Also using normal approximation due to large n.

Grade Distribution

90-99:22
80-89:55
70-79:39 mean $=80$, median $=81$
60-69:9
50-59:3
20-49:3

