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10 Extension of Phenotype Model
• limitations of parametric models 
• diagnostic tools for QTL analysis
• QTL mapping with other parametric "families"
• quick fixes via data transformations
• semi-parametric approaches
• non-parametric approaches
• bottom line:

– normal phenotype model works well to pick up loci, but 
may be poor at estimating effects if data not normal
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limitations of parametric models
• measurements not normal

– categorical traits: counts (e.g. number of tumors)
• use methods specific for counts
• binomial, Poisson, negative binomial

– traits measured over time and/or space
• survival time (e.g. days to flowering)
• developmental process; signal transduction between cells
• TP Speed (pers. comm.); Ma, Casella, Wu (2002)

• false positives due to miss-specified model
– how to check model assumptions?

• want more robust estimates of effects
– parametric: only center (mean), spread (SD)
– shape of distribution may be important
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what if data are far away from ideal?

8 9 10 11 12 13 14 15 16

qq
Qq

QQ

no QTL?

8 9 10 11 12 13 14 15 16

qq
Qq

QQ

skewed?

8 9 10 11 12 13 14 15 16 17 18 19 20 21

qq
Qq

QQ

dominance?

0 1 2 3 4 5 6 7 8 9

qq

Qq
QQ

zeros?

ch. 10 © 2003 Broman, Churchill, Yandell, Zeng 4

diagnostic tools for QTL
(Hackett 1997)

• illustrated with BC, adapt regression diagnostics
• normality & equal variance (fig. 1)

– plot fitted values vs. residuals--football shaped?
– normal scores plot of residuals--straight line?

• number of QTL: likelihood profile (fig. 2)
– flat shoulders near LOD peak: evidence for 1 vs. 2 QTL

• genetic effects
– effect estimate near QTL should be (1–2r)a
– plot effect vs. location
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marker density & sample size: 2 QTL
modest sample size

dense vs. sparse markers
large sample size

dense vs. sparse markers

Wright Kong (1997 Genetics)
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robust locus estimate for 
non-normal phenotype

Wright Kong (1997 Genetics)

large sample size &
dense marker map:
no need for normality

but what happens for
modest sample sizes?
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What shape is your histogram?
• histogram conditional on known QT genotype

– pr(Y|qq,θ) model shape with genotype qq
– pr(Y|Qq,θ) model shape with genotype Qq
– pr(Y|QQ,θ) model shape with genotype QQ 

• is the QTL at a given locus λ?
– no QTL pr(Y|qq,θ) = pr(Y|Qq,θ) = pr(Y|QQ,θ)
– QTL present mixture if genotype unknown

• mixture across possible genotypes
– sum over Q = qq, Qq, QQ
– pr(Y|X,λ,θ) = sumQ pr(Q|X,λ) pr(Y|Q,θ)
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interval mapping likelihood

• likelihood: basis for scanning the genome
– product over i = 1,…,n individuals
L(θ ,λ|Y) = producti pr(Yi|Xi,λ)

= producti sumQ pr(Q|Xi,λ) pr(Yi|Q,θ)
• problem: unknown phenotype model

– parametric pr(Y|Q,θ) = f(Y | µ, GQ, σ2)
– semi-parametric pr(Y|Q,θ) = f(Y) exp(YβQ)
– non-parametric pr(Y|Q,θ) = FQ(Y)
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useful models & transformations
• binary trait (yes/no, hi/lo, …)

– map directly as another marker
– categorical: break into binary traits?
– mixed binary/continuous: condition on Y > 0?

• known model for biological mechanism
– counts Poisson 
– fractions binomial
– clustered negative binomial

• transform to stabilize variance
– counts √Y = sqrt(Y)
– concentration log(Y) or log(Y+c) 
– fractions arcsin(√Y)

• transform to symmetry (approx. normal)
– fraction log(Y/(1-Y)) or log((Y+c)/(1+c-Y))

• empirical transform based on histogram
– watch out: hard to do well even without mixture
– probably better to map untransformed, then examine residuals
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semi-parametric QTL
• phenotype model pr(Y|Q,θ) = f(Y)exp(YβQ)

– unknown parameters θ = (f, β)
• f (Y) is a (unknown) density if there is no QTL
• β = (βqq, βQq, βQQ)
• exp(YβQ) `tilts’ f based on genotype Q and phenotype Y

• test for QTL at locus λ
– βQ = 0 for all Q, or pr(Y|Q,θ) = f(Y)

• includes many standard phenotype models
normal pr(Y|Q,θ) = N(GQ,σ2)
Poisson pr(Y|Q,θ) = Poisson(GQ)
exponential, binomial, …, but not negative binomial
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QTL for binomial data
• approximate methods: marker regression

– Zeng (1993,1994); Visscher et al. (1996); McIntyre et 
al. (2001)

• interval mapping, CIM
– Xu Atchley (1996); Yi Xu (2000)
– Y ~ binomial(1,π ), π depends on genotype Q
– pr(Y|Q) = (πQ)Y (1 – πQ)(1–Y)

– substitute this phenotype model in EM iteration
• or just map it as another marker!

– but may have complex
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EM algorithm for binomial QTL

• E-step: posterior probability of genotype Q

• M-step: MLE of binomial probability πQ
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threshold or latent variable idea
• "real", unobserved phenotype Z is continuous
• observed phenotype Y is ordinal value

– no/yes; poor/fair/good/excellent
– pr(Y = j) = pr(τj–1 < Z ≤ τj)
– pr(Y ≤ j) = pr(Z ≤ τj)

• use logistic regression idea (Hackett Weller 1995)
– substitute new phenotype model in to EM algorithm
– or use Bayesian posterior approach
– extended to multiple QTL (papers in press)

1)]exp(1[)|(pr)|(pr −−++=≤=≤ jQj GQZQjY τµτ
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quantitative & qualitative traits
• Broman (2003): spike in phenotype

– large fraction of phenotype has one value
– map binary trait (is/is not that value)
– map continuous trait given not that value

• multiple traits
– Williams et al. (1999)

• multiple binary & normal traits
• variance component analysis

– Corander Sillanpaa (2002)
• multiple discrete & continuous traits
• latent (unobserved) variables
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other parametric approaches
• Poisson counts

– Mackay Fry (1996)
• trait = bristle number

– Shepel et al (1998)
• trait = tumor count

• negative binomial
– Lan et al. (2001)

• number of tumors

• exponential
– Jansen (1992)

Mackay Fry (1996 Genetics)
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semi-parametric empirical likelihood
• phenotype model pr(Y|Q,θ) = f(Y) exp(YβQ)

– “point mass” at each measured phenotype Yi
– subject to distribution constraints for each Q:

1 = sumi f(Yi) exp(YiβQ)

• non-parametric empirical likelihood (Owen 1988)
L(θ,λ|Y,X) = producti [sumQ pr(Q|Xi,λ) f(Yi) exp(YiβQ)]

= producti f(Yi) [sumQ pr(Q|Xi,λ) exp(YiβQ)]
= producti f(Yi) wi

– weights wi = w(Yi|Xi,β,λ) rely only on flanking markers
• 4 possible values for BC, 9 for F2, etc.

• profile likelihood: L(λ|Y,X) = maxθ L(θ,λ|Y,X)
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semi-parametric formal tests
• clever trick: use partial empirical LOD

– Zou, Fine, Yandell (2002 Biometrika)
– Lange, Whittaker (2001 Genetics) GEE

• has same formal behavior as parametric LOD
– single locus test: approximately χ2 with 1 d.f.
– genome-wide scan: can use same critical values
– permutation test: possible with some work

• can estimate cumulative distributions
– nice properties (converge to Gaussian processes)
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log empirical likelihood details
log(L(θ,λ|Y,X)) = sumi log(f(Yi)) +log(wi)
now profile with respect to β,λ
log(L(β,λ|Y,X)) = sumi log(fi) +log(wi)

+ sumQ αQ(1-sumi fi exp(YiβQ))
partial likelihood: set Lagrange multipliers αQ to 0
point mass density estimates
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histograms and CDFs
histogram
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cumulative distribution

histograms capture shape
but are not very accurate

CDFs are more accurate
but not always intuitive
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rat study of breast cancer
Lan et al. (2001 Genetics)

• rat backcross
– two inbred strains

• Wistar-Furth susceptible
• Wistar-Kyoto resistant

– backcross to WF
– 383 females
– chromosome 5, 58 markers

• search for resistance genes
• Y = # mammary carcinomas
• where is the QTL? dash = normal

solid = semi-parametric
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what shape histograms by genotype?
WF/WF WKy/WF

line = normal, + = semi-parametric, o = confidence interval
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non-parametric methods
• phenotype model pr(Y|Q,θ ) = FQ(Y) 

– θ = F = (Fqq,FQq,FQQ) arbitrary distribution functions
• interval mapping Wilcoxon rank-sum test

– replaced Y by rank(Y)
• (Kruglyak Lander 1995; Poole Drinkwater 1996; Broman 2003)

– claimed no estimator of QTL effects
• non-parametric shift estimator

– semi-parametric shift (Hodges-Lehmann)
• Zou (2001) thesis, Zou, Yandell, Fine (2002 in review)

– non-parametric cumulative distribution
• Fine, Zou, Yandell (2001 in review)

• stochastic ordering (Hoff et al. 2002)
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rank-sum QTL methods
• phenotype model pr(Y|Q,θ ) = FQ(Y) 
• replace Y by rank(Y) and perform IM

– extension of Wilcoxon rank-sum test
– fully non-parametric (Kruglyak Lander 1995; Poole Drinkwater 1996)

• Hodges-Lehmann estimator of shift β
– most efficient if pr(Y|Q,θ ) = F(Y+Qβ)
– find β that matches medians

• problem: genotypes Q unknown
• resolution: Haley-Knott (1992) regression scan

– works well in practice, but theory is elusive
• Zou, Yandell Fine (Genetics, in review)
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non-parametric QTL CDFs
• estimate non-parametric phenotype model

– cumulative distributions FQ(y) = pr(Y ≤ y |Q)
– can use to check parametric model validity

• basic idea:
pr(Y ≤ y |X,λ) = sumQ pr(Q|X,λ)FQ(y) 
– depends on X only through flanking markers
– few possible flanking marker genotypes

• 4 for BC, 9 for F2, etc.
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finding non-parametric QTL CDFs

• cumulative distribution FQ(y) = pr(Y ≤ y |Q)
• F = {FQ, all possible QT genotypes Q} 

– BC with 1 QTL: F = {FQQ, FQq}
• find F to minimize over all phenotypes y

sumi [I(Yi ≤ y) – sumQ pr(Q|X,λ)FQ(y)]2

• looks complicated, but simple to implement
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non-parametric CDF properties

• readily extended to censored data
– time to flowering for non-vernalized plants

• nice large sample properties
– estimates of F(y) = {FQ(y)} jointly normal
– point-wise, experiment-wise confidence bands

• more robust to heavy tails and outliers
• can use to assess parametric assumptions
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what QTL influence flowering time?
no vernalization: censored survival

• Brassica napus
– Major female

• needs vernalization
– Stellar male

• insensitive
– 99 double haploids

• Y = log(days to flower)
– over 50% Major at QTL 

never flowered
– log not fully effective grey = normal, red = non-parametric
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what shape is flowering distribution?
B. napus Stellar B. napus Major

line = normal, + = non-parametric, o = confidence interval


