10 Extension of Phenotype Model

* limitations of parametric models

» diagnostic tools for QTL analysis

* QTL mapping with other parametric "families"
 quick fixes via data transformations

* semi-parametric approaches

* non-parametric approaches

* bottom line:

— normal phenotype model works well to pick up loci, but
may be poor at estimating effects if data not normal
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limitations of parametric models

* measurements not normal

— categorical traits: counts (e.g. number of tumors)
+ use methods specific for counts
* binomial, Poisson, negative binomial
— traits measured over time and/or space
* survival time (e.g. days to flowering)
* developmental process; signal transduction between cells
» TP Speed (pers. comm.); Ma, Casella, Wu (2002)

« false positives due to miss-specified model
— how to check model assumptions?
« want more robust estimates of effects

— parametric: only center (mean), spread (SD)
— shape of distribution may be important
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what if data are far away from ideal?
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diagnostic tools for QTL
(Hackett 1997)

* 1illustrated with BC, adapt regression diagnostics
» normality & equal variance (fig. 1)
— plot fitted values vs. residuals--football shaped?
— normal scores plot of residuals--straight line?
« number of QTL: likelihood profile (fig. 2)
— flat shoulders near LOD peak: evidence for 1 vs. 2 QTL
 genetic effects

— effect estimate near QTL should be (1-2r)a
— plot effect vs. location
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marker density & sample size: 2 QTL

modest sample size
dense vs. sparse markers
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FIGURE |.—The two-QTL true model with a QTL at 30 cM
and a second QTL of somewhat sr
locations indicated by A). A normal
sumed and the LOD score for 100 simulated individuals is
given for dense markers (thin curve) and markers at 20-cM
intervals (bold curve).

Wright Kong (1997 Genetics)
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large sample size
dense vs. sparse markers
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Fieure 4. —Mix) for a normal single-QTL assumed model
under @ two-QTL true model when both of the genes lic on
the chromosome under study. This scenario was originally
depicted in Figure 1. With dense markers (thin curve), M{x)
peaks at exactly 30 cM, the location of the QTL of stronger
effect. With nondense markers at 20-cM intervals, M{x) peaks
at 47 M in an incorrect interval {bold curve). Note the simi-
larity in shape between the LODs in Figure 1 and the limiting
forms depicted here,
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robust locus estimate for .’
non-normal phenotype

large sample size &
dense marker map:
no need for normality

but what happens for
modest sample sizes?

Wright Kong (1997 Genetics)
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FIGURE 2. reification of the ph pe model. (A)

The assumed distributions f and f. (B) The true distributions
By, hy. (C) The expected loglikelihood across the chrome-
some when the markers are dense. Despite the misspecifica-
tion, the function is maximized at exactly the true location
x* = 30 cM {indicated by &)
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What shape 1s your histogram?

* histogram conditional on known QT genotype

— pr(Y|qq, 0 model shape with genotype qq
— pr(¥|Qq, & model shape with genotype Qq
— pr(¥Y|QQ, 6 model shape with genotype QQ

» is the QTL at a given locus A?
—no QTL pr(¥lqq, & = pr(¥1Qq, ) = pr(¥Y|QQ, &

— QTL present  mixture if genotype unknown
* mixture across possible genotypes

— sum over Q= qq, Qq, QQ
= pr(Y|X.A,6 = sum,, pr(Q|X, A) pr(¥|Q, 6)
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interval mapping likelihood

* likelihood: basis for scanning the genome
— product over i = 1,...,n individuals
L(8.A1Y) = product, pr(¥,\X, 1)
= product; sumy, pr(QIX,A) pr(¥;|Q, 6
 problem: unknown phenotype model
— parametric pr(Y|0, 0 =AY | 4 Gy, 0%)
— semi-parametric  pr(¥|Q, 6) = f{Y) exp(Y/3,)
— non-parametric  pr(¥|Q, 6 = F(Y)
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useful models & transformations

* binary trait (yes/no, hi/lo, ...)
— map directly as another marker
— categorical: break into binary traits?
— mixed binary/continuous: condition on Y > 0?

* known model for biological mechanism

— counts Poisson
— fractions binomial
— clustered negative binomial
 transform to stabilize variance
— counts VY = sqrt(Y)
— concentration log(Y) or log(Y+c)
— fractions arcsin(VY)
* transform to symmetry (approx. normal)
— fraction log(Y/(1-Y)) or log((Y+c)/(1+c-Y))

» empirical transform based on histogram
— watch out: hard to do well even without mixture
— probably better to map untransformed, then examine residuals
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semi-parametric QTL

* phenotype model pr(Y|Q, 6) = f(Y)exp(YL3,)

— unknown parameters 8= (f, f)
* f(Y) is a (unknown) density if there is no QTL

° ﬁ: (ﬁqqa ﬂQqn ﬁQQ)
* exp(Yf3,) "tilts’ fbased on genotype O and phenotype ¥

* test for QTL at locus A
— By=0forall O, or pr(Y|0, 6) = AY)

* includes many standard phenotype models
normal pr(Y]0, 6) = M(G,0?)
Poisson pr(Y1Q, &) = Poisson(G)
exponential, binomial, ..., but not negative binomial
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QTL for binomial data

 approximate methods: marker regression

— Zeng (1993,1994); Visscher et al. (1996); McIntyre et
al. (2001)

* interval mapping, CIM
— Xu Atchley (1996); Yi Xu (2000)
— Y~ binomial(1,77), /7 depends on genotype O
= pr(Y|Q) = (1) (1 - )1

— substitute this phenotype model in EM iteration

* or just map it as another marker!
— but may have complex
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EM algorithm for binomial QTL

» E-step: posterior probability of genotype QO

X;, A Y (1= 7)1
pr(Qlyi,Xi’/],ﬂQ):pr(Q| ) )(nQ) ( ITQ)

sum,, of numerator
* M-step: MLE of binomial probability 7z,
— Sumi szr(Q ‘ K’:X'a/‘:ﬂg)

1

sum, pr(Q|Y, X, A,71,)

1

0
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threshold or latent variable i1dea

 "real", unobserved phenotype Z is continuous
 observed phenotype Y is ordinal value
— no/yes; poor/fair/good/excellent
- pr(Y=))=pr(T_, <Z<T)
—pr(Y<))=pr(Z<T)
* use logistic regression idea (Hackett Weller 1995)
— substitute new phenotype model in to EM algorithm
— or use Bayesian posterior approach
— extended to multiple QTL (papers in press)

pr(Y <j|Q)=pr(Z<T,|Q)=[1+exp(U+ G, —1))]"
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quantitative & qualitative traits

» Broman (2003): spike in phenotype
— large fraction of phenotype has one value
— map binary trait (is/is not that value)
— map continuous trait given not that value

» multiple traits
— Williams et al. (1999)

» multiple binary & normal traits
+ variance component analysis

— Corander Sillanpaa (2002)

+ multiple discrete & continuous traits
* latent (unobserved) variables
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other parametric approaches

 Poisson counts S !
~ Mackay Fry (1996) ACE |

* trait = bristle number é ’ m@i{%ﬁf&k«&hr:fwm

— Shepel et al (1998) 3 W e

e trait = tumor count
* negative binomial
~ Lan et al. (2001)

e number of tumors

 exponential

— Jansen (1992
( ) Mackay Fry (1996 Genetics)
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Sternopleural Bristle Number
& W [ u__u

semi-parametric empirical likelithood

* phenotype model pr(¥|Q,6) = f(Y) exp(Y/3,)
— “point mass” at each measured phenotype Y,
— subject to distribution constraints for each Q:
1 = sum, f{Y)) exp(Y,3))
* non-parametric empirical likelihood (Owen 1988)
L(BAY.X) = product, [sum,, pr(QIX,A) AIY,) exp(¥,B,)]
= product, /(1) [sumy, pr(QLX,,A) exp(Y,5,)]
= product; (Y, w,
— weights w, = w(Y}|X,,8 1) rely only on flanking markers
* 4 possible values for BC, 9 for F2, etc.
* profile likelihood: L(A|Y,X) = max, L(6,AY,X)
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semi-parametric formal tests

* clever trick: use partial empirical LOD
— Zou, Fine, Yandell (2002 Biometrika)
— Lange, Whittaker (2001 Genetics) GEE

* has same formal behavior as parametric LOD
— single locus test:  approximately x> with 1 d.f.
— genome-wide scan: can use same critical values
— permutation test:  possible with some work

* can estimate cumulative distributions
— nice properties (converge to Gaussian processes)
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log empirical likelihood details

log(L(8A]Y,X)) = sum, log((Y))) +log(w;)
now profile with respect to S A
log(L(BA|Y.X)) = sum, log(£) +log(w)
+sumg, dH(1-sum, f; exp(Y,3,))
partial likelihood: set Lagrange multipliers 0, to 0

point mass density estimates
-1
£, =[sumg exp(¥,8,)p(Q| X. M)
with p(Q| X, A) = sum,pr(Q | X, 1)
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histograms and CDF's

histogram - cumulative distribution
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Y = phenotype Y = phenotype
histograms capture shape CDFs are more accurate
but are not very accurate but not always intuitive
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rat study of breast cancer
Lan et al. (2001 Genetics)

=
-

* rat backcross

T
14

B0

two inbred strains
» Wistar-Furth susceptible

I
50
—
0 12

» Wistar-Kyoto resistant

i s
— backcross to WF N o e
— 383 females I~
— chromosome 5, 58 markers j 1 I~
» search for resistance genes T
* Y =# mammary carcinomas Postion(CM)
 where is the QTL? dash = normal

solid = semi-parametric
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LOD Score




what shape histograms by genotype?
WF/WF WKy/WF

04 06 0B

Cumulative Distribution

02

Tumor Count Tumor Gount
line = normal, + = semi-parametric, o = confidence interval
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non-parametric methods

* phenotype model pr(Y]Q,8) = F(Y)
— 0= F = (F.Fqpl'qo) arbitrary distribution functions
* interval mapping Wilcoxon rank-sum test

— replaced Y by rank(Y)
* (Kruglyak Lander 1995; Poole Drinkwater 1996; Broman 2003)

— claimed no estimator of QTL effects
* non-parametric shift estimator
— semi-parametric shift (Hodges-Lehmann)
* Zou (2001) thesis, Zou, Yandell, Fine (2002 in review)
— non-parametric cumulative distribution
* Fine, Zou, Yandell (2001 in review)
* stochastic ordering (Hoff et al. 2002)
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rank-sum QTL methods

» phenotype model pr(Y]Q,8) = F(Y)
* replace Y by rank(Y) and perform IM

— extension of Wilcoxon rank-sum test
— fully non-parametric (Kruglyak Lander 1995; Poole Drinkwater 1996)

» Hodges-Lehmann estimator of shift 3
— most efficient if pr(Y]|Q,8) = F(Y+0OP)
— find (3 that matches medians

* problem: genotypes O unknown
* resolution: Haley-Knott (1992) regression scan

— works well in practice, but theory is elusive
* Zou, Yandell Fine (Genetics, in review)
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non-parametric QTL CDFs

* estimate non-parametric phenotype model
— cumulative distributions Fi,(v) = pr(¥Y < y [Q)
— can use to check parametric model validity

* basic idea:

pr(Y < ¥ [XA) = sumy pr(QIX N F 4(»)
— depends on X only through flanking markers

— few possible flanking marker genotypes
* 4 for BC, 9 for F2, etc.
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finding non-parametric QTL CDFs

cumulative distribution F,(y) = pr(¥ < y |0)
F={F, all possible QT genotypes O}

~ BC with 1 QTL: F = {Fq, Fo,}

find F to minimize over all phenotypes y
sum, [/(Y; < y) — sumg, pr(QIX, M F(»)]?

looks complicated, but simple to implement
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non-parametric CDF properties

» readily extended to censored data

— time to flowering for non-vernalized plants
* nice large sample properties

— estimates of F(y) = {F(y)} jointly normal

— point-wise, experiment-wise confidence bands
* more robust to heavy tails and outliers

* can use to assess parametric assumptions
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what QTL influence flowering time?
no vernalization: censored survival

* Brassica napus
— Major female
* needs vernalization
— Stellar male
* insensitive

— 99 double haploids

* Y =log(days to flower)

— over 50% Major at QTL - -
never flowered

— log not fully effective .
grey = normal, red = non-parametric
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what shape is flowering distribution?
B. napus Stellar B. napus Major

Cumulatve Distnbuton

Days to Fiower Days io Fiower

line = normal, + = non-parametric, o = confidence interval
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