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2 Key Statistical Issues for QTL
• general notation and data structure
• recombination model

– two linked markers
– flanking markers to a QTL
– map distance and map functions

• modelling the phenotype
– phenotype model
– model likelihood
– Bayesian posterior

• missing data concepts and algorithms
• model selection
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interval mapping basics
• observed measurements

– Y = phenotypic trait
– X = markers & linkage map

• i = individual index 1,…,n
• missing data

– missing marker data
– Q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown genetic architecture

– λ = QT locus (or loci)
– θ = genetic action
– m = number of QTL

• pr(Q|X,λ,m) recombination model
– grounded by linkage map, experimental cross
– recombination yields multinomial for Q given X

• pr(Y|Q,θ,m) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters θ (could be non-parametric)

observed X Y

missing Q

unknown λ θ
after

Sen Churchill (2001)
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2.1 general notation and data structure

• Y = phenotype values
– as concept and realized (observed) values

• X = marker genotypes
– type of experimental cross
– linkage map construction

• marker orders, positions, linkage phases
– observed marker genotypes (possibly with error)

• pr(Y,X) = joint probability
– what we “know” about Y and X for this experiment
– usually assume linkage map is “known”
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conditional data likelihood

• condition on markers and linkage map

• pr(X) comprises information on linkage map
– not influenced by phenotype
– thus can “ignore” for QTL purposes

)(pr
),(pr)|(pr

X
XYXY =
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unknown QTL genotypes
• usually have sparse linkage map of markers

– want to condition on actual QTL genotype Q
pr(Y|Q)

– but actual QTL affecting phenotype not known
• need to consider all possibilities

– average pr(Y|Q) over all possible genotypes Q
– weight by recombination pr(Q|X) 

∑=
Q

XQQYXY )|(pr)|(pr)|(pr
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enter the (Greek) parameters
• θ = genetic effects, or gene action

– additive, dominance, epistasis
– may include reference values

• grand mean (µ), environmental variance (σ2)

• λ = location(s) of QTL
– measured along “linear” genome
– related to recombination and map distance

∑==
Q

XQQYXYXYL ),|(pr),|(pr),,|(pr),|,( λθλθλθ
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2.2 recombination model
• locus λ is distance along linkage map

– identifies flanking marker region
• flanking markers provide good approximation

– map assumed known from earlier study
– inaccuracy slight using only flanking markers

• extend to next flanking markers if missing data
– could consider more complicated relationship

• but little change in results

pr(Q|X,λ) = pr(geno | map, locus) ≈
pr(geno | flanking markers, locus)

kX 1+kXQ?

λ
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• backcross design
– n individuals, 2 markers
– follow one gamete

• recombinants
– Ab, aB
– nR = n12 + n21

• non-recombinants
– ab, AB
– nNR = n11 + n22

• recombination rate

2.2.1 two linked markers
A B
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no linkage?
• test for no linkage: r = 1/2
• assumption: all individuals have same rate

– implies binomial variation

• normal or chi-square test statistic
n
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binomial probabilities
binomial prob
n = 30,100
r = 0.4,0.2

normal approx
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likelihood ratio and LOD test
• likelihood for linked markers

• likelihood for unlinked markers

• likelihood ratio and LOD
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test statistic: distribution

• Z2 and G2 are generally close to each other
– Z2 based on properties of counts
– G2 and LOD based on likelihood principle
– both have approximate chi-square distribution

• (non)central chi-square distribution

22
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backcross examples

• n=100 individuals, nR= 40 recombinants
– r = 0.4, se(r) = 0.049
– Z = -2.04, Z2 = 4.17, p-value = 0.041
– G2 = 4.03, LOD = 0.874, p-value = 0.045

• n=100 individuals, nR= 20 recombinants
– r = 0.2, se(r) = 0.04
– Z = -7.5, Z2 = 56.25, p-value < 0.0001
– G2 = 38.55, LOD = 8.37, p-value < 0.0001
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backcross examples

• n=30 individuals, nR= 12 recombinants
– r = 0.4, se(r) = 0.089
– Z = -1.12, Z2 = 1.25, p-value = 0.26
– G2 = 1.21, LOD = 0.262, p-value = 0.27

• n=30 individuals, nR= 6 recombinants
– r = 0.2, se(r) = 0.073
– Z = -4.11, Z2 = 16.87, p-value < 0.0001
– G2 = 11.56, LOD = 2.51, p-value < 0.0001
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simulations of LOD distribution 

n=100,r=0.3,0.5
1000 samples
histogram

chi-square curve
rescaled by 2log(10)

central
r = 0.5

non-central
r = 0.3
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LOD and LR over possible r
n = 30
nR=12 or 6
evaluate at 

all possible r
not just “best” 

LR like a density
LOD is basis for 

hypothesis test 
estimate interval 
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LR, LOD and p-values

p-value p-value
LR LOD 1 d.f. 2 d.f.
10 1 0.0319 0.1
31.6 1.5 0.0086 0.0316
100 2 0.0024 0.01
1000 3 0.0002 0.001
10000 4 <0.0001 0.0001
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LOD-based interval estimate for r
point estimate 
interval estimate

from LOD peak
down 1.5 LOD
(or 1 or 2 or …)

n = 30, nR = 12, 6
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LOD-based interval calculations
confidence 96.8% 99.1% 99.76%
n nR r 1 LOD 1.5 LOD 2 LOD

30 3 0.1 0.03-0.25 0.02-0.29 0.01-0.33
100 10 0.1 0.05-0.17 0.04-0.19 0.04-0.21
30 6 0.2 0.08-0.37 0.06-0.42 0.05-0.46
100 20 0.2 0.13-0.29 0.11-0.31 0.10-0.33
30 12 0.4 0.23-0.50 0.19-0.50 0.17-0.50
100 40 0.4 0.30-0.50 0.28-0.50 0.26-0.50

Note skew in intervals for small recombination rates.
Note upper boundary of 0.5.
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LOD-based intervals
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likelihood & Bayesian posterior
• recall the likelihood and likelihood ratio:

• posterior turns likelihood into a density
– assume r may be any value prior to seeing data
– posterior = likelihood x prior / constant
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LR and Bayes posterior
imagine LR as density

area under curve = 1
pr(r | nR ) = LR(r) / A

what is probability that r
is between 0.25 and 
0.5?

where is interval with 
highest posterior 
mass? (HPD region)

example: n=30, nR =12,6
95% HPD regions
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HPD-based interval calculations
HPD level 96.8% 99.1% 99.76%
n nR r

30 3 0.1 0.03-0.25 0.02-0.29 0.01-0.33
100 10 0.1 0.05-0.17 0.05-0.19 0.04-0.21
30 6 0.2 0.08-0.37 0.07-0.41 0.05-0.45
100 20 0.2 0.13-0.29 0.12-0.31 0.10-0.33
30 12 0.4 0.25-0.50 0.22-0.50 0.19-0.50
100 40 0.4 0.31-0.50 0.30-0.50 0.28-0.50

Note how these almost agree with LOD-based intervals.
Density height for HPD varies by n and r.

ch. 2 © 2003 Broman, Churchill, Yandell, Zeng 24

Bayesian posteriors for r
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• Reverend Thomas Bayes (1702-1761)
– part-time mathematician
– buried in Bunhill Cemetary, Moongate, London
– famous paper in 1763 Phil Trans Roy Soc London
– was Bayes the first with this idea? (Laplace)

• billiard balls on rectangular table
– two balls tossed at random (uniform) on table
– where is first ball if the second is to its left (right)?

who was Bayes?

prior pr(θ) = 1
likelihood pr(Y | θ)= θY(1- θ)1-Y

posterior pr(θ |Y)= ?

θ

Y=1 Y=0

first
second
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where is the first ball?
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what is Bayes theorem?
• before and after observing data

– prior: pr(θ) = pr(parameters)
– posterior: pr(θ|Y) = pr(parameters|data)

• posterior = likelihood * prior / constant
– usual likelihood of parameters given data
– normalizing constant pr(Y) depends only on data

• constant often drops out of calculation
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Bayes rule for recombination r
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two markers in F2 intercross
• two meioses

– follow both gametes
– 16 possibilities

• ambiguity with AaBb
– 0 or 2 recombinations

• log likelihood ratio:
lkjlj

( ))5.0(/)(logsumlog xxxx frfnLR =
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two markers in F2 intercross
• γ = probability of double recombinant

– for AaBb genotype, haplotype not known
– need to “guess” the recombinant fraction of n11 offspring

• γ and r are inter-related
– no “closed” solution, need to iterate
– guess γ , use to estimate r, improve γ , etc.
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EM algorithm for F2 recombination
• initial guess: r = 0.5, γ = 0.5
• Expectation (E) step

– substitute expected values for nuisance γ
– update γ given current value of r

• Maximization (M) step
– maximize likelihood for parameter r
– update r given current value of γ

• iterate E-step and M-step until “convergence”
– stop when change in log-likelihood is small

– usually change in r is small at this point
( ))5.0(/)(logsumlog xxxx frfnLR =
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2.2.2 flanking markers to QTL

• most genotype information is local
– linkage drops off with distance
– approximate by using only flanking markers
– exception: linkage disequilibrium

• different chromosome regions could be correlated
• due to selection, etc.
• not a problem for backcross or F2 intercross

• missing marker data: use next flanking marker

A QrAQ
BrQB

rAB
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backcross QTL & flanking markers
1 meiosis
8 possible genotypes
3 recombination rates
small distances & rates?

no double crossovers
ρ = rAQ /rAB

A QrAQ
BrQB

rAB
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F2 QTL & flanking markers
2 meioses
27 possible genotypes
3 recombination rates
EM steps on γ and rAB
small distances & rates?

no double crossovers

A QrAQ
BrQB

rAB
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2.2.3 map distance & map functions
• How to relate genetic linkage to physical distance?

– math assumptions = crude approximations
– critical for map building, minor effect on QTL

• x = genetic map distance (1Morgan = 100cM)
– expected number of crossovers per meiosis between 

two loci on a single chromatid strand (Sturtevant 1913)

• typical map functions
– Morgan: interference rAB = rAQ + rQB

– Kosambi: intermediate rAB = (rAQ + rQB)/(1+4rAQ rQB)
– Haldane: no interference rAB = rAQ + rQB - 2rAQ rQB
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2.3 modelling the phenotype
• trait = mean + genetic + environment
• pr( trait Y | genotype Q, effects θ )

EGY
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Q
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caution: don’t trust raw histograms!

8 9 10 11 12 13 14 15 16

qq
Qq

QQ

no QTL?

8 9 10 11 12 13 14 15 16

qq
Qq

QQ

skewed?

8 9 10 11 12 13 14 15 16 17 18 19 20 21

qq
Qq

QQ

dominance?

0 1 2 3 4 5 6 7 8 9

qq

Qq
QQ

zeros?
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2.3.1 phenotype model
• how is phenotype related to genotype?
• typical assumptions

– normal environmental variation
• residuals e (not Y!) have bell-shaped histogram

– genetic value GQ is composite of a few QTL
• other polygenic effects same across all individuals

– genetic effect uncorrelated with environment

effects ),,(

),|(var,),|(
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F2 intercross phenotype model
• here assume only one QTL
• genotypes QQ, Qq, qq
• genotypic values GQQ, GQq, Gqq

• decompose as additive, dominance effects

222:Cockerham-Fisher
:Jinx-Mather

qqQqQQ: genotype
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2.3.2 model likelihood
• why study the likelihood?

– uncover hidden aspects of QTL
– loci λ, effects θ, given data (Y,X)

• what is evidence to support a QTL?
• where are the QTL? 
• how precise can estimate the loci & effects?
• what genetic architecture is supported?
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building the model likelihood
• likelihood links phenotype & recombination

– through unknown QTL genotypes Q
– mixture over all possible genotypes

• contribution from individual i

• product over all individuals
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and if there are no QTL?

• Y = µ + e, or L(µ | Y )
• no relationship with markers & map X
• for normal data, maximum likelihood yields
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maximum likelihood & LOD
• likelihood peaks at some (θ,λ)

– use “hat” (^) to signify value at maximum
• LOD profiles likelihood peak

– find θ to maximize likelihood for each λ
– profile (scan) loci λ over entire genome
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2.3.3 Bayesian posterior

• treat unknowns as random
– build “uncertainty” into model framework
– genetic architecture: gene action θ, QTL locus λ

• interpret weighted likelihood as a density
– weights based on prior “beliefs”
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choice of Bayesian priors
• elicited priors

– higher weight for more probable parameter values
• based on prior empirical knowledge

– use previous study to inform current study
• weather prediction, previous QTL studies on related organisms

• conjugate priors
– convenient mathematical form
– essential before computers, helpful now to simply computation
– large variances on priors reduces their influence on posterior

• non-informative priors 
– may have “no” information on unknown parameters
– prior with all parameter values equally likely

• may not sum to 1 (improper), which can complicate use
• always check sensitivity of posterior to choice of prior
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incorporate missing genotypes Q
• augment data with missing genotypes Q

– use recombination model to state uncertainty
– avoid likelihood mixture by augmentation

• marginal posterior on unknowns of interest
– average over fully augmented posterior
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Bayesian parameter estimates
• estimates are posterior means or modes

– mean = weighted average of all possible values
– mode = maximum

• can get joint or marginal estimates

( )),|,(pr sum argmaxˆ
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2.4 missing data concepts

• missing QTL genotype Q--see section 2.3
• missing marker data X

– errors in genotyping
– difficulty reading signal (on gel)
– marker not fully informative

• distinguish full data X from observed Xobs
– weighted average over all possible marker values

)|(pr),|(prsum),|(pr obsobs XXXQXQ X λλ =


