6. Model Selection for Multiple QTL

- reality of multiple QTL
- selecting a class of QTL models
- comparing QTL models
 - QTL model selection criteria
- assessing performance of model selection
- issues of detecting epistasis
- searching through QTL models: ch 7

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

what is the goal of QTL study?

- uncover underlying biochemistry
 - identify how networks function, break down
 - find useful candidates for (medical) intervention
 - epistasis may play key role
 - statistical goal: maximize number of correctly identified QTL
- basic science/evolution
 - how is the genome organized?
 - identify units of natural selection
 - additive effects may be most important (Wright/Fisher debate)
 - statistical goal: maximize number of correctly identified QTL
- select "elite" individuals
 - predict phenotype (breeding value) using suite of characteristics (phenotypes) translated into a few QTL
 - statistical goal: mimimize prediction error

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

6.1 reality of multiple QTL

- · evaluate objective
 - likelihood or posterior
- search over "space" of genetic architectures
 - number and positions of loci
 - gene action: additive, dominance, epistasis
 - how to efficiently search the model space?
- select "best" or "better" model(s)
 - what criteria to use? where to draw the line?
- estimate "features" of model
 - means, variances & covariances, confidence regions
 - marginal or conditional distributions

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

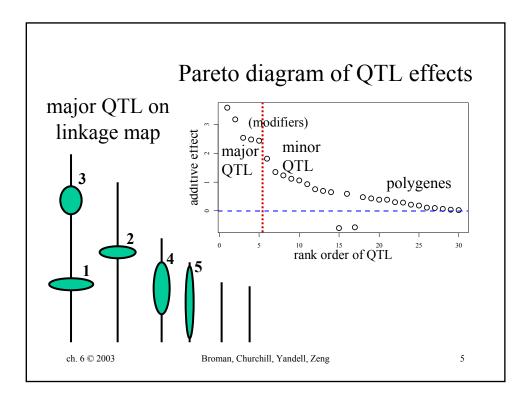
3

advantages of multiple QTL approach

- improve statistical power, precision
 - increase number of OTL detected
 - better estimates of loci: less bias, smaller intervals
- improve inference of complex genetic architecture
 - patterns and individual elements of epistasis
 - appropriate estimates of means, variances, covariances
 - · asymptotically unbiased, efficient
 - assess relative contributions of different OTL
- improve estimates of genotypic values
 - less bias (more accurate) and smaller variance (more precise)
 - mean squared error = $MSE = (bias)^2 + variance$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng



limits of estimation for QTL?

- marker assisted selection (Bernardo 2001 *Crop Sci*)
 - 10 QTL ok, 50 QTL are too many
 - phenotype better predictor than genotype when too many QTL
 - increasing sample size does not give multiple QTL any advantage
 - hard to select many QTL simultaneously
 - 3^m possible genotypes to choose from
 - sampling & chance variation: only see some patterns
- genetic linkage = multi-collinearity (multiple regression)
 - collinearity leads to correlated estimates of gene effects
 - precision of each effect drops as more predictors are added
- want to balance bias and variance
 - a few QTL can dramatically reduce bias
 - many predictors (QTL) can increase variance
- depends on sample size, heritability, environmental variation

QTL below limits of detection?

- problem of selection bias
 - QTL of modest effect detected sometimes
 - their effects are biased upwards when detected
- how can we avoid sharp in/out dichotomy?
 - caution about only examining the "best" model
 - consider probability that a QTL is in the model
- build m = number of QTL detected into QTL model
 - directly allow uncertainty in genetic architecture
 - model selection over number of QTL, architecture

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

7

6.2 selecting a class of QTL models

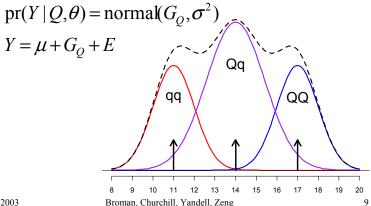
- number of QTL
 - single QTL
 - multiple QTL: known or unknown number
- · location of QTL
 - known locations
 - widely spaced (no 2 in marker interval) or arbitrarily close
- gene action
 - additive (A) and/or dominance (D) effects
 - epistatic effects
 - statistical hierarchy (AA, AD, DA, DD)
 - tree-structured contrasts (qqq/qqq vs. other 8 genotypes)
 - phenotype distribution (normal, binomial, Poisson, ...)

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

normal phenotype

- trait = mean + genetic + environment
- pr(trait Y | genotype Q, effects θ)



ch. 6 © 2003

typical assumptions

- normal environmental variation
 - residuals e (not Y!) have bell-shaped histogram
- genetic value G_Q is composite of m QTL

$$-Q = (Q_1, Q_2, ..., Q_m)$$

• genetic effect uncorrelated with environment

$$Y = \mu + G_Q + e, e \sim N(0, \sigma^2)$$

$$E(Y | Q, \theta) = \mu + G_Q, \text{var}(Y | Q, \theta) = \sigma^2$$

$$\theta = (\mu, G_Q, \sigma^2) \text{ effects}$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

F2 intercross phenotype model

- here assume only one QTL
- genotypes QQ, Qq, qq
- genotypic values $G_{\rm QQ},\,G_{\rm Qq},\,G_{\rm qq}$
- decompose as additive, dominance effects

genotype: $Q =$	QQ	Qq	qq
general form	μ + θ_{QQ}	μ + θ_{Qq}	$\mu + \theta_{qq}$
Mather-Jinx: G_Q =	μ + α	μ + δ	μ – α
Fisher-Cockerham: $G_Q =$	$\mu + \alpha - \frac{\delta}{2}$	$\mu + \frac{\delta}{2}$	μ - α - $\frac{\delta}{2}$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

11

partitioning multiple QTL

$$Y = \mu + G_O + e$$
, $var(e) = \sigma^2$

• partition of genotypic value (no epistasis)

$$G_Q = \theta_{Q(1)} + \theta_{Q(2)} + \dots + \theta_{Q(m)}$$
 or $G_Q = \text{sum}_i \theta_{Q(i)}$

• partition of genetic variance

$$\operatorname{var}(G_Q) = \sigma_G^2 = \operatorname{sum}_j \sigma_{G(j)}^2, \sigma_{G(j)}^2 = \operatorname{var}(\theta_{Q(j)})$$

• partition of heritability h^2

$$h^2 = \frac{\sigma_G^2}{\sigma_G^2 + \sigma^2} = \operatorname{sum}_j \frac{\sigma_{G(j)}^2}{\sigma_G^2 + \sigma^2}$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

6.3 comparing QTL models

- residual sum of squares
- information criteria
 - Bayes information criteria (BIC)
- · Bayes factors

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

13

residual sum of squares

- residual sum of squares = RSS
 - imagine dense marker map, or only examine markers
 - (deviation of phenotype from genotypic value)²
 - $RSS = sum_i (Y_i \mu G_{Oi})^2$
 - RSS never increases as model grows in size
 - goal: small RSS with "simple" model
- degrees of freedom
 - model degrees of freedom p
 - p = m for backcross with m QTL
 - p = 2m for F2 intercross with m QTL
 - · more model df when epistasis allowed
 - error degrees of freedom dfe = n p

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

classical linear models criteria

- mean squared error = MSE
 - MSE = RSS/dfe = (bias)² + variance
 - bias/variance tradeoff is key issue!
- classical linear models criteria
 - Mallow's $C_p = RSS(p)/MSE(full) (n-2p)$
 - · balances bias with increased variance
 - sensitive to estimate of MSE for "fullest" model
 - adjusted $R^2 = 1 (1 R^2)(n 1)(n p)$
 - common practice to adjust for optimistic explained variation
 - both may yield too large a model

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

15

resampling approaches

- bootstrap
 - resample with replacement from data
- cross-validation
 - repeatedly divide data into estimation and test sets
- sequential permutation tests
 - condition on QTL already in model
 - stop when added QTL is not significant
- disadvantage for model selection
 - focus on best prediction of phenotype
 - computationally expensive

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

information criteria: RSS

- maximum likelihood with a penalty
 - penalize model "complexity" (many parameters)
 - balance fit (likelihood) with model complexity
 - normal data: likelihood = $(n/2)\log[RSS(p)]$
- common information criteria:

```
- Akaike AIC = log[RSS(p)] + 2 p / n
```

- Bayes/Schwartz BIC = log[RSS(p)] + p log(n) / n
- BIC-delta BIC_{δ} = log[RSS(p)] + $\delta p \log(n) / n$
- Hannon-Quinn HQIC = log[RSS(p)] + p log[log(n)] / n
- general form: IC = $\log[RSS(p)] + p D(n) / n$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

17

rationale/intuition

- minimizing IC ≈ using threshold on LOD
 - LOD = $(n/2) \log_{10} [RSS(p_2)/RSS(p_1)]$
 - p_2 = df for larger model; p_1 = df for reduced model
 - threshold = $(p_1-p_2) D(n) / 2 \log(10)$
- Broman-Speed (2002) recommendation
 - pick D(n) = threshold / 2 log(10)
 - $\delta = 2$ threshold $/ \log_{10}(n)$
 - threshold ≈ 2.5 for genome-wide 5% level
 - $\delta = 2.56, 2.10, 1.85$ for n = 100, 250, 500
 - BIC_{δ} $\approx \log[RSS(p)] + 2.56 p \log(n) / n$ when n = 100
 - BIC_{δ} $\approx \log[RSS(p)] + 11.5 p / n$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

recall: from RSS to LR to LOD

- normal data at a marker
 - $RSS(p) = sum_i (Y_i \mu G_{Oi})^2$
 - depends on data and model with p parameters
 - -LR = ratio of likelihoods for two models
 - p_2 = df for larger model; p_1 = df for reduced model
 - $-2 \log(LR) = n \log [RSS(p_2)/RSS(p_1)]$
 - $-LOD = \log_{10}(LR) = \log(LR)/\log(10)$
- normal data for interval mapping
 - likelihoods are more complicated
 - mixture of RSS across possible genotypes
 - same relationship of LR to LOD
- non-normal data: RSS replaced by deviance (later)

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

10

information criteria: likelihoods

- L(p) = likelihood for model with p parameters
- common information criteria:
 - Akaike AIC = $-2 \log[L(p)] + 2 p$
 - Bayes/Schwartz BIC = $-2 \log[L(p)] + p \log(n)$
 - BIC-delta BIC_{δ} = -2 log[L(p)] + $\delta p \log(n)$
 - Hannon-Quinn HQIC = $-2 \log[L(p)] + p \log[\log(n)]$
 - general form: $IC = -2 \log[L(p)] + p D(n)$
- comparison of models
 - $-LR(p_1,p_2) = L(p_2) / L(p_1)$
 - $IC(p_1,p_2) = 2 \log[LR(p_1,p_2)] + (p_2 p_1) D(n)$

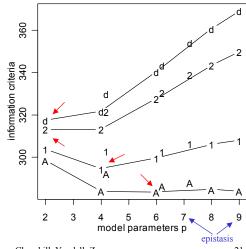
ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

information criteria vs. model size

- WinQTL 2.0
- SCD data on F2
- A=AIC
- 1=BIC(1)
- 2=BIC(2)
- d=BIC(δ)
- · models
 - 1,2,3,4 QTL
 - 2+5+9+2
 - epistasis
 - 2:2 AD

ch. 6 © 2003



Broman, Churchill, Yandell, Zeng

- 2

Bayes factors

Which model (1 or 2 or 3 QTLs?) has higher probability of supporting the data?

- ratio of posterior odds to prior odds
- ratio of model likelihoods

$$B_{12} = \frac{\operatorname{pr}(\operatorname{model}_1 | Y) / \operatorname{pr}(\operatorname{model}_2 | Y)}{\operatorname{pr}(\operatorname{model}_1) / \operatorname{pr}(\operatorname{model}_2)} = \frac{\operatorname{pr}(Y | \operatorname{model}_1)}{\operatorname{pr}(Y | \operatorname{model}_2)}$$

BF(1:2)	2log(BF)	evidence for 1st	
< 1	< 0	negative	
1 to 3	0 to 2	negligible	
3 to 12	2 to 5	positive	
12 to 150	5 to 10	strong	
> 150	> 10	verv strong	

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

Bayes factors & likelihood ratio

$$B_{12} = \frac{\operatorname{pr}(\operatorname{model}_{1} | Y) / \operatorname{pr}(\operatorname{model}_{2} | Y)}{\operatorname{pr}(\operatorname{model}_{1}) / \operatorname{pr}(\operatorname{model}_{2})} = \frac{\operatorname{pr}(Y | \operatorname{model}_{1})}{\operatorname{pr}(Y | \operatorname{model}_{2})}$$

- equivalent to LR statistic when
 - comparing two nested models
 - simple hypotheses (e.g. 1 vs 2 QTL)
- Bayes Information Criteria (BIC) in general
 - Schwartz introduced for model selection
 - penalty for different number of parameters p

$$-2\log(B_{12}) = -2\log(LR) - (p_2 - p_1)\log(n)$$

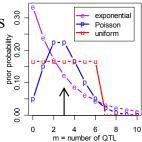
ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

23

QTL Bayes factors

- compare models
 - by number of QTL *m*
 - by pattern of QTL across genome
- need prior and posterior for models
 - prior pr(m) chosen by user
 - posterior pr(m|Y,X)
 - · sampled marginal histogram
 - shape affected by prior pr(*m*)
 - prior for patterns more complicate



$$BF_{m,m+1} = \frac{\text{pr}(m|Y,X)/\text{pr}(m)}{\text{pr}(m+1|Y,X)/\text{pr}(m+1)}$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

computing marginal means

 $\operatorname{pr}(Y \mid \operatorname{model}_{k}) = \int \operatorname{pr}(Y \mid \theta_{k}, \operatorname{model}_{k}) \operatorname{pr}(\theta_{k} \mid \operatorname{model}_{k}) d\theta_{k}$

- · very difficult based on separate model runs
 - run MCMC for model k
 - average $pr(Y|\theta_k)$ across model parameters θ_k
 - · arithmetic mean
 - can be inefficient if prior differs from posterior
 - · weighted harmonic mean
 - more efficient but less stable
 - · stabilized harmonic mean (SHM)
 - average over "nuisance parameters" (e.g. variance)
 - more work, but estimate is more stable (Satagopan et al. 2000)
- easy when model itself is a parameter
 - reversible jump-MCMC: marginal summaries of number of QTL
 - sampling across models of different sizes (tricky--later)

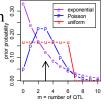
ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

25

computing QTL Bayes factors

- easy to compute Bayes factors from samples
 - sample posterior using MCMC
 - posterior pr(m|Y,X) is marginal histogram
 - posterior affected by prior pr(m)



- BF insensitive to shape of prior
 - geometric, Poisson, uniform
 - precision improves when prior mimics posterior
- BF sensitivity to prior variance on effects θ
 - prior variance should reflect data variability
 - resolved by using hyper-priors
 - automatic algorithm; no need for user tuning

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

partitioning multiple QTL prior

• partition of genotypic value (no epistasis)

$$Y = \mu + G_O + e$$
, $var(e) = \sigma^2$

• partition of genetic variance

$$G_Q = \theta_{Q(1)} + \theta_{Q(2)} + \dots + \theta_{Q(m)}$$

• partition of heritability h^2

$$G_Q \sim N(0, \sigma_G^2), \theta_{Q(j)} \sim N(0, \sigma_G^2/m)$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

27

multiple QTL phenotype model

- phenotype influenced by genotype & environment $pr(Y|Q,\theta) \sim N(G_Q, \sigma^2)$, or $Y = \mu + G_Q + environment$
- partition mean into separate QTL effects

$$G_Q$$
 = main effects + epistatic interactions
$$G_Q = \theta_{1Q} + \ldots + \theta_{mQ} + \ldots$$

priors on mean and effects

 $\mu \sim N(\mu_0, \kappa_0 \sigma^2)$ grand mean

model independent genotypic effect

 $G_Q \sim N(0, \kappa_1 \sigma^2)$ model independent genotypi $\theta_{jQ} \sim N(0, \kappa_1 \sigma^2/m)$ effects down-weighted by m

determine hyper-parameters via Empirical Bayes

$$\mu_0 \approx \overline{Y} \text{ and } \kappa_1 \approx \frac{h^2}{1 - h^2} = \frac{\sigma_G^2}{\sigma^2}$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

phenotype posterior mean

- phenotype influenced by genotype & environment $pr(Y|Q,\theta) \sim N(G_O, \sigma^2)$, or $Y = \mu + G_O + \text{environment}$
- relation of posterior mean to LS estimate

$$G_{Q} \mid Y, m \sim N(B_{Q}\hat{G}_{Q}, B_{Q}C_{Q}\sigma^{2})$$

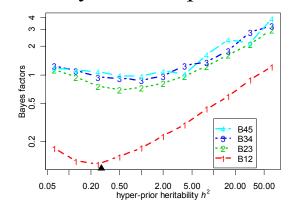
$$\approx N(\hat{G}_{Q}, C_{Q}\sigma^{2})$$
LS estimate $\hat{G}_{Q} = \sum_{i} \sum_{j} \hat{\theta}_{ijQ} = \sum_{i} w_{iQ}Y_{i}$
variance $V(\hat{G}_{Q}) = \sum_{i} w_{iQ}^{2}\sigma^{2} = C_{Q}\sigma^{2}$
shrinkage $B_{Q} = \kappa/(\kappa + C_{Q}) \rightarrow 1$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

29

BF sensitivity to fixed prior for effects



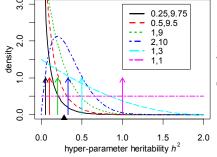
$$\theta_{jQ} \sim N(0, \sigma_G^2/m), \sigma_G^2 = h^2 \sigma_{total}^2, h^2 \text{ fixed}$$

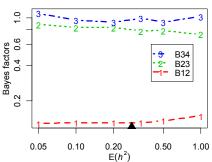
ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

BF insensitivity to random effects prior

insensitivity to hyper-prior





$$\theta_{jQ} \sim N(0, \sigma_G^2/m), \sigma_G^2 = h^2 \sigma_{\text{total}}^2, \frac{1}{2} h^2 \sim \text{Beta}(a, b)$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

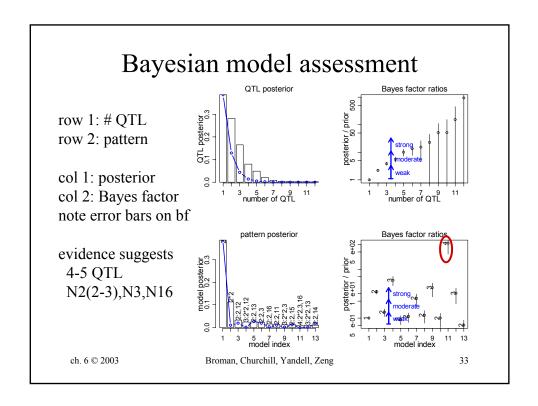
31

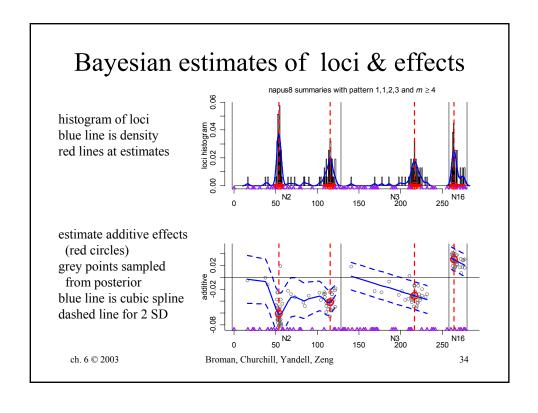
B. napus 8-week vernalization whole genome study

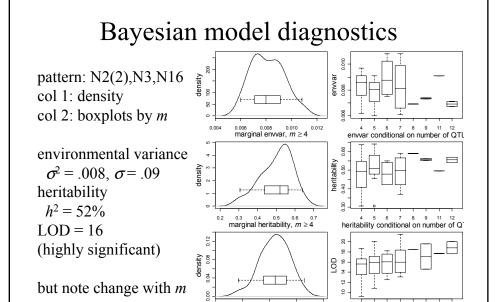
- 108 plants from double haploid
 - similar genetics to backcross: follow 1 gamete
 - parents are Major (biennial) and Stellar (annual)
- 300 markers across genome
 - 19 chromosomes
 - average 6cM between markers
 - median 3.8cM, max 34cM
 - 83% markers genotyped
- · phenotype is days to flowering
 - after 8 weeks of vernalization (cooling)
 - Stellar parent requires vernalization to flower
- Ferreira et al. (1994); Kole et al. (2001); Schranz et al. (2002)

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng







6.4 assessing performance of model selection procedures

marginal LOD, $m \ge 4$

Broman, Churchill, Yandell, Zeng

- Broman Speed (2002) article
 - http://www.biostat.jhsph.edu/~kbroman/presentations/rss ho.pdf
 - focuses on sparse marker map, no missing data
 - marker-based MCMC is different!
 - include/exclude markers in model
- model selection on "continuous" genome
 - infinity of possible predictors
 - uncertainty in position now more important
 - backward elimination requires some care
 - · cannot include everything!

ch. 6 © 2003

6.5 issues of detecting epistasis

- two QTL with epistasis
- partition into additive and dominance
 - Fisher-Cockerham model
- multiple QTL and higher order epistasis
- tree-structured phenotype models

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

37

two QTL with epistasis

• same phenotype model overview

$$Y = \mu + G_O + e$$
, $var(e) = \sigma^2$

• partition of genotypic value with epistasis

$$G_Q = \theta_{Q(1)} + \theta_{Q(2)} + \theta_{Q(1,2)}$$

• partition of genetic variance

$$\operatorname{var}(G_O) = \sigma_G^2 = \sigma_{G(1)}^2 + \sigma_{G(2)}^2 + \sigma_{G(1,2)}^2$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

Fisher-Cockerham interaction

- two QTL
- here show 3 of 9 genotypes (vary QTL 1)
- four interactions: aa, ad, da, aa

$$\begin{array}{cccc} Q_{1}Q_{1}Q_{2}Q_{2} & \mu + \alpha_{1} - \frac{\delta_{1}}{2} + \alpha_{2} - \frac{\delta_{2}}{2} + i_{aa} - \frac{i_{ad}}{2} - \frac{i_{da}}{2} + \frac{i_{dd}}{4} \\ Q_{1}q_{1}Q_{2}Q_{2} & \mu + \frac{\delta_{1}}{2} + \alpha_{2} - \frac{\delta_{2}}{2} - \frac{i_{dd}}{4} \\ q_{1}q_{1}Q_{2}Q_{2} & \mu - \alpha_{1} - \frac{\delta_{1}}{2} + \alpha_{2} - \frac{\delta_{2}}{2} - i_{aa} + \frac{i_{ad}}{2} - \frac{i_{da}}{2} + \frac{i_{dd}}{4} \end{array}$$

ch. 6 © 2003

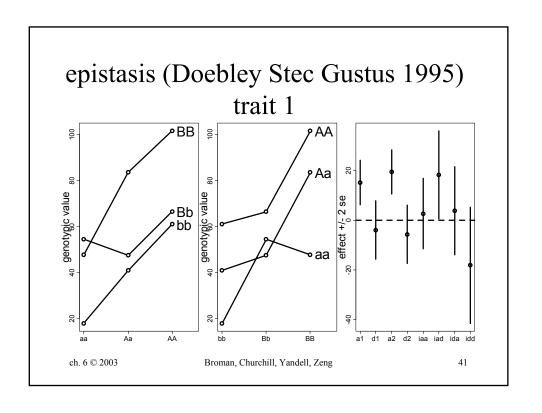
Broman, Churchill, Yandell, Zeng

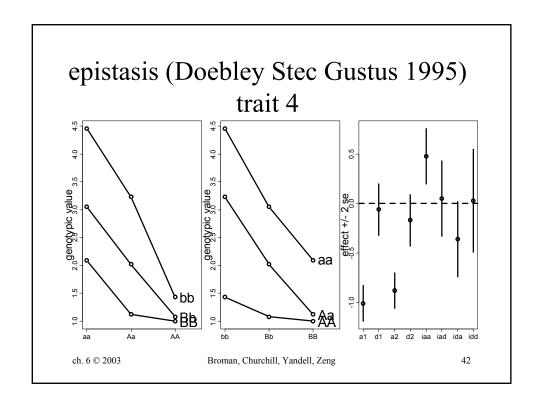
39

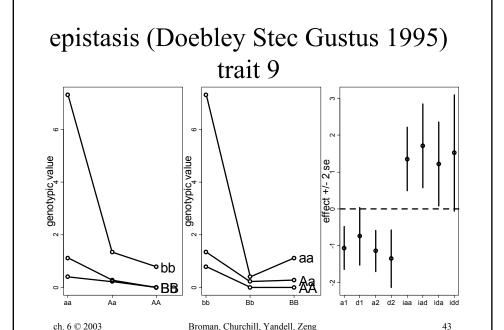
genotype effect coefficients

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng







multiple QTL with epistasis

- summation form of linear model $G_Q = \operatorname{sum}_i \theta_{Q(i)}$
- now include 2-QTL interactions $G_Q = \operatorname{sum}_j \, \theta_{1Qj} + \operatorname{sum}_j \, \theta_{2Qj}$
- extra subscript keeps track of order of term $\theta_{1Oj} = \theta_{O(j_1)}, \theta_{2Oj} = \theta_{O(j_1,j_2)}; j_1, j_2 = 1, \dots, m$
- partition of genetic variance

$$\sigma_G^2 = \sigma_{1G}^2 + \sigma_{2G}^2, \sigma_{kG}^2 = \operatorname{sum}_j \sigma_{kGj}^2, \sigma_{kGj}^2 = \operatorname{var}(\theta_{kQj})$$

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

higher order epistasis

- sum over order and over QTL index $G_O = \operatorname{sum}_k \operatorname{sum}_i \theta_{kiO}$
- extra subscript keeps track of order of term $\theta_{kjQ} = \theta_{(j_1,j_2,\cdots,j_k)Q}$
- partition of genetic variance

$$\sigma_G^2 = \operatorname{sum}_k \sigma_{kG}^2, \sigma_{kG}^2 = \operatorname{sum}_j \sigma_{kjG}^2, \sigma_{kjG}^2 = \operatorname{var}(\theta_{kjQ})$$

• would need large sample size to estimate!

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng

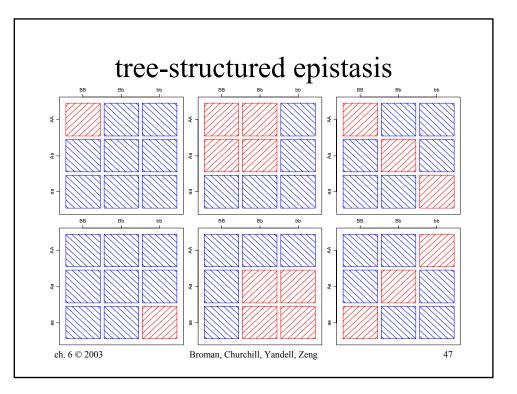
45

tree-structured phenotype model

- genotypic values divide into groups
 - $-G_{QQ}$, G_{Qq} = high mean phenotype
 - $-G_{qq} = low mean phenotype$
- extend idea to multiple QTL
 - 2 QTL in F2
 - up to 9 groups based on genotype
 - only 4 groups if full dominance
 - only 2 groups if double recessive is distinct
 - other possibilities that do not build on hierarchy

ch. 6 © 2003

Broman, Churchill, Yandell, Zeng



model selection with epistasis

- epistasis adds 1-4 model degrees of freedom
 - BC: 1, F2: 4 (AA, AD, DA, DD)
- always include epistasis?
 - BC: add 1 (no epistasis) or m+1 (all epistasis) df
- epistasis between significant QTL
 - check all possible pairs
 - include higher order epistasis?
- epistasis with non-significant QTL
 - whole genome paired with significant QTL
 - pairs of non-significant QTL