Statistical Genomics

Typos and Comments

These comments on Ben Liu’s (1998) Statistical Ge-
nomics are provided by Brian Yandell with assis-
tance from David Butruille. Barry Pittendrigh, Di-
ane Austin, Pablo Quijada and others in the Fall 1998
Statistical Genomics class have contributed as well.
See

www.stat.wisc.edu/~yandell/statgen/

for further details.

ppp-ll:
page ppp, line 1l (from bottom if negative)

ppp.rr.ll:
page ppp, paragraph rr, line 1l (from bottom if nega-
tive)

1: Introduction

2, Table 1.2:

One might quibble with the use of “Classical Ge-
nomics” for the contents of this book. It is primar-
ily “Statistical Genetics” it seems, with some atten-
tion to genomics issues. Also, some would argue that
Sequence Comparison should be listed under “DNA
Sequence Analysis”, although it surely involves con-
siderable “Genome Informatics”.

3: Introduction to Genomics

52, Table 3.2:

There is a similar table in Kearsey and Pooni (1996,
p- 177). Tt gives references on total genome size to
Weaver and Hedrick (1989) and Arumaganathan and
Earle (1991).

4: Statistics in Genomics

90, Table 4.2:
mean of binomial should be np
90.2.11:

o0

mgf(X) =3 et

z=0

94.1:

L(8) = L(8|z) = PR{X = z|6}
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94.2.6—:

L(®) = Lin,p) = --- =

The logarithm is
log{1(0)} = log( " ) + wlog(p) + (n — z) log(1 — )

(and elsewhere there is confusion of § and p)

95, Section 4.3.3:

Good to point out here that variance is the inverse
of information: the higher the information, the lower
the variance.

101, Equation (4.36), and 103.8:

Strictly speaking, the non-centrality parameter is not
the expected value of the statistic, as the notation
E(G) implies. Rather, one substitutes the “true” pa-
rameter @ for the estimator  in the statistic to find
the non-centrality parameter. Liu uses ¢ for the non-
centrality parameter on p. 103, but various authors
use 4 or 2. The mean and variance of a non-central
chi-square with parameter ¢ and degrees of freedom
df are

E(Xg,df) =df +cand V(xi,df) = 2df +4c .

For large df, the non-central chi-square is approxi-
mately normal. See for instance Yandell (1997) or
Johnson, Kotz and Balakrishnan (1994).

111.8:

Replace 0.5 by 1

119, Equation (4.67):

62 = 1/nI(6)

120-121:

There is some confusion here as Liu considers 8; as
random variables, while they were parameters esti-
mated by 6; on the previous page. Double sums
should have Z;;ll

122-123:

The random variables are the confidence limits Tj
and T5. The parameter 8 should not have a “hat” on
it for (4.76) through (4.79).

125-128:

The rough 95% confidence interval guidelines of 2
units for log likelihoods and 1 for LOD scores are just
that. More exactly, 2 units of log likelihood corre-
sponds to 4 units of a x? variate, which would yield a
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95.45% confidence interval. Similarly, 1 unit of LOD
score is 21og(10) ~ 4.605 units of a x? variate, which
would yield a 96.81% confidence interval. Notice that
the 1 LOD intervals are larger than the 2 log likeli-
hood intervals, since they have higher confidence of
covering the true §. The ‘exact’ 95% would be 1.921
units of log likelihood or 0.8341 units of LOD score.
However keep the following in mind: (i) the x? is only
an approximation to the distribution; (ii) the degrees
of freedom are not always 1 (depends on the num-
ber of parameter restrictions in the hypothesis — here
0 =0.5).

126, Figure 4.6:

“likelihood function of Equation (4.83)”

134.2.:

Here and through later sections of the book, L(#) now
refers to the log likelihood, rather than the likelihood
as developed in this chapter.

5: Single-Locus Models

140.2.:

The item n is used in two contexts here. Change all
but the last n in this paragraph to N, the number
of individuals, leaving n as the number of detectable
genotypic classes.

141, Table 5.2:

Notice that the smallest p-value across the 10 plants
is .24 (or .26 in Table 5.3). One would expect to
have one plant with p-value less than .1 under the
null hypothesis of 3:1 ratio. However, it is believed
that Mendel stopped counting when he found more
or less the ratio he expected. That is, these larger-
than-expected p-values support the idea that Mendel
shaded his data to support his theory.

143.4.:

Just a clarification. (.5)° is the probability that all 5
individuals are AA, and similarly for aa, in a back-
cross or doubled haploid cross. That is 2(.5)% is the
probability that a particular marker is not polymor-
phic for 5 individuals. When one considers codomi-
nant markers in F2, then a marker will be monomor-
phic if all individuals are the same, either AA (with
prob. (.25)%) or aa (ditto) or Aa (with prob. (.5)%);
add these three up to get .0332.

144, Figure 5.2:

The lower curve is for a test based on the null hy-
pothesis of a 1:1 ratio when in fact the true ratio is
3:1.

145.1.:
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Once again, the “parametric value” Gg is the non-
centrality parameter discussed on p. 101. It is de-
rived by substituting the expectation of the observed
value. The non-centrality for a null hypothesized ra-
tio of 1:1 when the true ratio is 3:1 is given in Equa-
tion (5.8). A similar form for the reverse situation
(guess 3:1, true 1:1) is

0.5 0.5
2{0.5nlog [ﬁ] + 0.5n log [0_25::]}

which comes out to be 0.2877n. The following table
may help. Here the value of n = 15 is used as in the

book.
null true non-centrality power
1:1  3:1 0.2616n = 3.924 0.51
31 1:1 0.2877n =4.316 0.55

These power values are plotted for n from 5 to 100 in
Figure 5.2.

145, Equation (5.9):

This follows from a little algebra. Notice that the
expected number of the first class is = : 1 ratio is
nz/(z + 1), and for the second class is n/(z + 1).
These add up to n = a + b. Set up the chi-square
statistic as sum of (obs — exp)?/exp with just two
terms here, and simplify the algebra. Same exact
calculations for the y : 1 ratio.

146, Equation (5.12):

The numerator inside the square brackets should be
295 — 405, The way to develop this is to plug in the
solutions for @ and b from (5.10) into equation (5.9).
Now set this equal to the « critical value of the chi-
square distribution and solve for n.

148.7:

“and the covariance between” (drop the word “esti-
mated”)

148.13:

The variance simplifies as well to

var(p;) = pi(1 — pi) /2N

148.2.—149.1.:

The discussion on the bottom half of 148 through the
top half of 149 concerning dominant markers is some-
what confusing. Consider first the case with only two
alleles. Then p; +p; = 1 and np = N —nj ;. A little
algebra with Equation (5.17) shows that p; +p; = 1,
even though the form is more complicated. Further,
the Equation (5.18) and the equation above it for a
recessive allele also have this property. With only two
alleles, there is no iteration needed via EM, and both
of these give the same estimate.
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Now on to more than two alleles, but where one
allele (A;) is dominant to the recessive allele A;. In
this case, p; + p; < 1 and one cannot observe the
genotype A;; distinct from A;;. However, one can
still observe all other genotypes distinctly (e.g. A,
k # i,j and others). In this case, the EM method
becomes important. The initial values might be taken
from (5.18) and from the equation above it for the
recessive allele. But the conditional probabilities in
(5.16) are not quite right:

p;+pip;
p? +2p;ip;
Pipj

P[Aj|pi]

P? +2p;ip;

The fallacy is that the conditioning is with respect
to these two alleles, not all the alleles. Similarly the
denominators in (5.17) must be changed from [1 —p?]
to p? + 2p;p; . 1 tried out the EM, and it converges
in one step.

149.3.1:

“with a certain codominant allele”

150.3.:

The formula in Equation (5.23) and then rest of this
page seem to be wrong.

151-154:

The discussion of allele frequencies which decay ge-
ometrically (or exponentially) is thin. Here p; =
(1 = X)A*1 for i = 1,--- has heterozygosity

1—)\)?
H:l—prml—%.

[The approximation (=) comes in since there are a
finite number of alleles I. The sum of a geometric
series Y oo ' is 1/(1—z); here z = A\%.] The effective
number of alleles (see related discussion of effective
number of alleles ch. 16, p. 483, and 19, p. 560-561)
for a gene is N, = 1/(1 — H), which in this case is

1-X2 142X
A=N2 1-X"

N, =

This can be found, for instance, in Crow and Kimura
(1970). The following relation between A and N,

X 1/3 2/3=4/6 9/11 19/21 39/41
N, 2 5 10 20 40

explains the choices of X in tables.

160, Figure 5.6:

The power curves rise so quickly for small sample size
because there is a high probability of picking up a new
allele with each new individual.
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6: Two-Locus: Controlled Crosses

165 & 167, Table 6.2 & Table 6.3:

Locus A column, cross 1, the test statistic should be
.03 instead of .06

169.2:

which has ¢ — 1 degrees of freedom, will test - - -
171, Equation (6.8):

Replace log Ly(z) by L(6). Also, here and elsewhere
Liu drops the extra set of brackets around the [- - -]?
term. The expectation is of this squared term, rather
than the square of the expectation.

172, Equation (6.10):

+fslog(1 — 26 + 26°) + - --

This log likelihood and others ignore the fractions
(e.g. f1log(0.25)). This is OK, since they drop out
in (6.11) when taking the derivative in terms of 6.
173.1.4:

Replace log Ly (z) by L(6)

173.2.1:

“Setting Equation (6.11)” ---

174.2:

Second term should be “20log” rather than “40log”.
172, Table 6.8:

It would help to lay this out as well as a square table
with AA, Aa, aa along the rows and BB, Bb, bb
along the columns. Cell entries could be the expected
frequency. Then show how this collapses to Table
6.10, p. 174, by summing over the first two rows and
the first two columns.

185.2.5:

In the second line of SD for F2 population, the sample
size is 200 rather than 400.

185.2.11:

The square bracket term should each be inverted.

1 2(3 — 40 + 20?) 1

Nrs+ Npo [6(2-6)(3—-20+62)  6(1-6)

186187, Figures 6.3 & 6.4:

The y-axis is wrong (descending) in both of the left-
most (F2) panels. Confidence interval is based on
maximum log likelihood + 2 (-101.03) instead of log
likelihood — 2 as indicated in the F2 panel of Figure
6.3.

189, Equation (6.30):

Drop the N inside the square brackets.

189-190:
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There may be some errors in the calculations for the
GEo non-centrality parameters.

190.2.:

The Power and Sample Size section is confusing, par-
ticularly the notation [x2.]~!. First, there is a critical
value £ = Xq;qr set by the hypothesis test to insure
the test has size a. The investigator wants to ensure
the test has some selected power . That implies that
the non-centrality parameter Gg has to be “so big”.
A picture showing non-central chi-squares could be
used to illustrate that as G g increases, the probabil-
ity Pr[Xgs,qr > ] increases from o (when Gg = 0)
to 1 (for large Gg). This material is first introduced
on p. 131, sec. 4.7.

190.2.7-8:

G is the expected log likelihood. Ggo is Gg/N, the
expected log likelihood divided by the sample size.
195.2.8-10:

The simplification has a mistake. f; should be re-
placed by 2f; everywhere. This changes the solution,
but later he considers f4 = 0 so this drops out. Note
that then N = f; + fo + f3 (line 17 of paragraph).
196197, Figure 6.8 & Tables 6.26, 6.27:

It appears that ¢ and C are reversed in Figure 6.8,
based on Table 6.26. It would help if all the C’s (and
¢’s) were changed to D’s (and d’s), as in Table 6.27, to
prevent confusion with the next section, Table 6.28,
where a new codominant marker C is created from
TDLM’s. Table 6.27 should say “dominant marker
D”.

198, Equation (6.36):

This is I(rz|r1), the conditional information on ro
given ry.

201:

The additive distortion parameters a and b have
slightly different meanings in the BC and F2 breed-
ing systems. There is no direct relation between
them. To examine this, collapse to just the A lo-
cus. In the BC case, one has Aa:aa and A:a being
(.5 + 2a) : (.5 — 2a), while in the F2 case, one has
AA:Aa:aa as (1254 3a*) : .5 : (.25 — 3a*), or on a
gamete bases A:a is (.5 + 1.5a*) : (.5 — 1.5a*). Note
that there is no obvious mechanistic interpretation
here, and one cannot take the gamete ratios for the
BC and recover the genotype ratios for the F2.

201, Figure 6.10:

Does it make biological sense to have a and b be func-
tions of 0 (e.g. a =b= .16 or .20)?
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7: Two-Locus: Natural Populations

217.2.-2:

Prlx3_, 2 Gcl > a
and
Pr[x—, > Gr] >

219, Equation 7.3:

Here again is the likelihood, using L(#) notation.
Should not have a “hat” in L p555(6).

219.3.2:

Reference for Nordheim et al. (1984) is missing from
references. This paragraph on the Bayes procedure
could be better developed for readability.

219, Equation 7.4:

Should have parentheses and no “hat” (appears
twice): LBCPU—K(Q)de

221, Table 7.5:

Mixtures of recombinants (every other term) should
have expected frequencies 0.25(1 — 26 + 26?). This
also changes Equation (7.5) to

Lyp(8) = (fr + fs + f5 + fr + fo)[log(8) + log(1 — )]

+(fo+ fa+ fo + fz)log(1 — 26 + 26°)

and changes the remainder of this subsection. The
Solution is much more complicated, requiring the so-
lution of a cubic polynomial in 6.

222, Table 7.6:

Outcrossed progeny for AaBB has expected frequency
0.5v[(1 — u)(1 — 0) + uf]. Selfed progeny for AaBb
has expected frequency 0.25(1 — 260 + 26?) as in Table
6.7, p. 172. Tt would help to have a table similar to
Table 7.4, such as

Maternal Gamete

Pollen AB Ab
Gamete 0.5(1 — 6) 0.56
AB AABB AABb

uv 0.5uv(1l — 8) 0.5uv0

Ab AABB AABDb

u(l —v) 0.5u(l —v)(1 —8) 0.5u(1 — v)6
aB AABB AABDb

(1 —u)v 0.5(1 — u)v(l — 6) 0.5(1 — u)vé
ab AABB AABb

(1—wu)(1—v) | 0.5(1—u)(1—2)(1—8) 0.5(1—u)1—02)6

Maternal Gamete

Pollen aB ab
Gamete 0.56 0.5(1 — 6)
AB AaBB AaBb

uv 0.5uv6 0.5uv(1l — )

Ab AaBB AaBb

u(l — v) 0.5u(1 — v)8 0.5u(1 — v)(1 — 8)
aB AaBB AaBb

(1 — u)v 0.5(1 — u)vé 0.5(1 — u)v(1 — )
ab AaBB AaBb

(1—wu)(1—v) | 0.5(1—u)(1—2)8 0.5(1—u)(1l—2v)1-—28)

This material is used in Table 7.6 and Table 7.11.
222.4.2:
“A anb B are linked with a recombination of §”
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223, Table 7.8:

“frequency of u”

224-226:

In a linkage analysis experiment as conducted nowa-
days, one usually plans to take information on many
loci for any given plant (or other type of organism)
and use these plants or there progenies to make QTL
analysis. In such case the population parameter ¢
is not as critical as knowing which plant is actually
the result of a self or the result of an outcross (us-
ing information about all the marker loci, inference
should be possible in that regard). This is very im-
portant because the selfed plant will be suffering from
inbreeding depression and it would be a serious con-
founding factor in the QTL analysis if not taken into
account.

225, Table 7.10:

Average Information is correct, but estimates are not.

Maternal | i

AA TLAA/[(I - U)(nAA + nAa)]
Aa (Mg —maa)/[(naa +nqe)(1 — 2u)]
aa nAa/[u(naa + nAa)]

225, Figure 7.2:

This is (absolute) average information from Table
7.10, but vertical axis is mislabeled. In left and right
figures, the maximum information for homozygotes
(AA and aa) is 1/.09 = 11, while in the middle panel,
the maximum is 1/.25 = 4. It does not make sense to
consider relative information here, since homozygotes
and heterozygotes (Aa) can have zero information.
226, Table 7.11, & 227.1.8-9:

“p; = po; is the expected frequency of genotype i for
the outcrossed progeny in Table 7.6.” Notice that
conditional probabilities for Maternal Plant in out-
cross complement those of Pollen Plant: if genotype
is AABD and Pollen gamete is AB, then Maternal ga-
mete must be Ab. I would propose redefining p, -
to refer only to selfing. Thus the conditional proba-
bilities for recombinants among selfed progeny given
the genotype (numbered as in Table 7.6 and 7.11)
would be parsas = pmreB = 1.0, pm24s = PrMaaB =
PMe6Ab = PMsaB = 0, PMsab = Pmsen = 0.56 and all
other pariape = Prmia = 0.0. With this redefinition,
Equation (7.15), page 227, seems correct.

227.2.-2:

Numerical Recipes is a classic, but there might be
more recent sources. Online software can be found at
NetLib (netlib.bell-labs.com/netlib) or StatLib
(1ib.stat.cmu.edu).

227:
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Put ‘hat’s over the initial estimates, as 6° and simi-
larly for v and v at bottom of page.

228, Equation (7.16):

“The maximum likelihood estimates of u, v and 6
given the current estimates of probabilities pp, 45 and
PyiAE are, respectively,” -

227-229:

The idea in the iterations (say for Method II using
EM) is to use the current estimates of u, v and 6 to
compute the expectations (E step), and then use the
probabilities from the E step in the M step to update
the estimates. It would help to note that after each
iteration, the ‘0’ values are replaced by the ‘1’ val-
ues, e.g. replace 60 by @', etc. This could be made
explicit, for instance, in the last sentence of step [4]
after Equation (7.16).

8: Two-Locus: Linkage Disequilibrium

246, Table 8.1:

The notation f; is used elsewhere for the (observed)
frequencies. That is, E(f1) = p% 5 and so on.

247, Equation (8.12):

The notation switch is confusing. The ‘hat’s seem
to indicate that one is using the initial frequencies f;
to estimate gamete frequencies, but this is not used
consistently. The *’s seem to refer to the next gen-
eration. Why not use superscripts as is done with
DY g?

252—-254:

It would help to see the connection between Weir’s
approach and this approach to TDD. Otherwise, this
appears quite nice and clean.

9: Locus Ordering

276-278:

There is potential for confusion with the recombi-
nation parameters #; and 6, and with the observed
counts f;; ¢ =1,---,8. The text talks of ; and 6, as
the recombination rates between the first and second
ordered markers and between the second and third
ordered markers, respectively, using the example of
the order ABC. Thus 6, = 8,; and 63 = 6. for this
ordering. However, with a different ordering, they
correspond to different pairs of markers. The conse-
quence is that the expected frequencies in Table 9.2
are correct only if the ordering is ABC. This might
explain errors in Table 9.5 noted below. The author
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does make this explicit, and does define the log like-
lihood in Equation (9.1) in terms of Lspc. However,
it would be nice to see the §; and 6> dropped, and to
see the log likelihoods for the other two orders.

277, Equation (9.4):

Drop 2 from numerator in first equation.

277, Equation (9.5):

Last term in numerator should be 62,62 Var(fy.)-
This whole expression is derived from a Taylor ex-
pansion: V(f(y)) =~ [f'(v)]*V (v) (cf. Yandell (1997,
sec. 15.1). It is a little more complicated because
there are three random variates, the fs.

278, Equation (9.7):

Lapc(01,02,0) = ---

This is defined and valid only if f3 + fg = 0: no dou-
ble crossovers in the data.

278, Table 9.3:

Switch the 5 and 11 in the 2nd and 3rd row of the
last column.

278, Table 9.4:

Second column, 2nd and 3rd rows, respectively,
should be fs + fg and f3 + fr.

279, Table 9.5:

Drop the row for C' = 0, since this is impossible
for any order (all would have at least one double
crossover). Entry for C' = 1 and BAC order should
be —85.20.

280.4.-3:

Pr[BAC]

282, Equation (9.10):
R ={a1,as,---,a;} is not defined. The 6s should be

replaced with @s. In other words, n;;0;; is the number

of recombinants between loci i and j, and n;(1—6;;)
is the number of non-recombinants.
283, Equation (9.12):

PARF = --.

283, Equation (9.16):

-1
SALOD®N =" 24,0, ENgya,

i=1

283, Equation (9.17):

~

EN = [log;0(2) + é103510(‘9) +(1— é) logyo(1—6)] "
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284-289:

The author missed an opportunity to refer to the

DNA solution of the travelling salesman problem

(Adelman 1994). Further, this could readily replace

the abstract discussion of TSP. The basic idea is that

there are 7 cities connected by certain bridges and

roads. What order can a travelling salesman go to

visit all seven cities exactly once, without returning

to any. Adelman, a computer scientist, solves this

with 20-mers of DNA and PCR technology. (He ac-

tually spent a semester in a biology lab to learn tech-

niques.)

287.4.11:

There is some error in this equation, as ¢ is unde-

fined.

289, Table 9.7:

Either the first frequency should be 5 or the estimate

in the paragraph below should have 7 x 0.5. In any

event, the sum of terms is not 152: it is 154.5 or

155.5.

290.=2.-3:

“is G', the likelihood ratio - - -”

290.2.-1 & 290.4.5:

“orders BAC, ABC and ACB is 1 : 2.25 x 1074
3.88 x 10713” (that is, BAC:ABC is 4447:1 or

1:2.25 x 1074)

292, Table 9.8:

“2-R = .- - the previous adjacent locus”

10: Multi-Locus Models

325-327:

Evans et al. (1993) showed that most commonly used
map functions are not “multi-locus feasible”, extend-
ing the work of Karlin.
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