plant systems genetics:

from markers to whole genomes

Brian S. Yandell, UW-Madison, www.stat.wisc.edu/~yandell/PlantSysGen January 2017

outline

- Introduction [PDF | HTML] (32 pages)
- Quantitative Trait Loci (QTL) [PDF | HTML] (43)
- Association Mapping [PDF | HTML] (24)
- Genome-Wide Selection [PDF | HTML] (12)
- Multiple Traits [PDF | HTML] (18)
- Systems Genetics Tools [PDF | HTML] (14)

http://www.stat.wisc.edu/~yandell/talk/PlantSysGen

overview

Systems genetics is an approach to understand the flow of biological information that underlies complex traits.

how to relate phenotype to genotype

- genetic effects (QTL & polygenes)
- prediction & selection (MAS, GS)

with changing technology

- laboratory protocols
- statistical methods
- computational tools

Figure: plantcellbiology.masters.grkraj.org

goal of system genetics studies

- predict performance of future offspring
 - genome-wide selection
- estimate genetic architecture of traits
 - quantitative trait loci (QTL)

Great time to become involved in modern approaches!

- many challenges
- many opportunities for substantial contributions
- help unravel important problems in biological systems
- · data tools are maturing

does genotype influence phenotype?

Goals for genetic architecture

- identify quantitative trait loci (QTL)
 - (and interactions among QTL)
- $\cdot~$ find interval estimates of QTL location
- estimate QTL effects

Goals for predicting future performance

- predict breeding value of individuals
- select best individuals using genome

PHE = GEN + ENV

phenotype = genotype + environment

- GEN = QTL + poly
 - genotype = local + polygenic effects
- ENV = design + predictors + error
 - design factors (blocks, locations, ...)
 - predictor variables (heat, light, soil additives, ...)
 - measurement error (independent)

Falconer & Mackay (1960–1996)

GEN = QTL + poly

- QTL: quantitative trait loci
 - local to an identified genomic region
 - large Mendelian effects on mean
- poly: polygenic association across genome
 - depends on population structure (kinship)
 - measures relationships away from QTL
 - average of many small effects

PHE = GEN + ENV example

PHE = GEN + ENV example

PHE = GEN + ENV example

thanks up front

- Karl Broman, UW-Madison
- Jeff Endelman, UW-Madison
- Guilherme Rosa, UW-Madison
- Eleazar Eskin, UCLA
- Gary Churchill, Jackson Labs
- Alan Attie, UW-Madison
- UW-Madison sabbatical program
- Kasetsart Univeristy, Thailand
 (Piya Kittipadakul & Janejira Duangjit)

Olbrich Botanical Garden, Madison, WI

UW-Madison collaboration

- Plant Breeding & Plant Genetics Program
 - Statistical Genetics & Genomics Focus
- Biometry Program
- Biostatistics & Medical Informatics Department (BMI)
- Statistics Department
- Laboratory of Genetics
- Animal Breeding & Genetics

UW-Madison Biometry Program

- joint faculty with Statistics
 - Cecile Ane (Botany)
 - Murray Clayton (Plant Pathology)
 - Brian Yandell (Horticulture)
 - Jun Zhu (Entomology)
- collaborative research & consulting
- teaching courses at all levels
 - introductory data science methods
 - Bayesian methods, spatial statistics
- Biometry Masters program

UW Biometry Consulting model

- faculty & staff time paid by UW (CALS)
 - no visit cost
 - builds long-term collaboration
 - not limited by program/project size
- \cdot mentoring of research enterprise
 - gradaute student training
 - faculty & staff relationship building
 - encourage research teams for grants
- campus-level vision of data & research
 - and human capital

RA Fisher (1948) defined biometry

Biometry is "the active pursuit of biological knowledge by quantitative methods ... [through] constant experience in analysing and interpreting observational data of the most diverse types.... [W]e come to think of ourselves ... in terms of the community of our interests with those doing similar work in other departments."

at inaugural meeting of the Biometric Society

UW-Madison Biostat & Med Info (BMI)

- faculy expertise in variety of research areas
- collaborations large in human health
 - but extended across campus
- statistical genetics & genomics
 - Newton, Kendziorski, Keles, Dewey, Broman, Wang
- \cdot bioinformatics
 - Shavlik, Page, Craven, Dewey, Coen, Roy, Gitter
- image analysis
 - Dyer, Chung, Singh
- affiliate faculty
 - Gianola, Rosa, Yandell

UW-Madison community

- plants (Endelman, de Leon Gatti, Guttierez)
- animals (Rosa, Gianola, Kirkpatrick)
- genetics (Payseur, Doebley)
- microbes (Gasch, Rey, ...)
- evolution & phylogenetics (Ane, Larget, Baum, Spooner)
- high throughput methods
 - computers: Livny, Negrut, Wilson
 - chemistry: Coon, Pagliarini
 - botany: Spalding

approach in these talks

mix of presentation style to plant-based audience

- theory
 - set the stage
 - show big picture
- applied: using R packages
 - <u>qtl</u>: basic gene mapping
 - rrBLUP: genome-wide prediction & polygenes
 - qtl2: high throughput gene mapping
- source: https://github.com/byandell/PlantSysGen
- slides: http://www.stat.wisc.edu/~yandell/talk/PlantSysGen

challenges in systems genetics

simpler models yield clearer results

- compare 2 conditions
- examine linear trend
- control for other factors

but reality may be more complicated

- masking of genetic effect (by background, etc.)
- subtle timing (when to measure)
- hard to measure key features (shape, quality)
- unknown details of processes under study

evolution of laboratory protocol

genetic information (genotype)

- genetic markers discovered by accident (RFLP,...)
- dense sets of polymorphic markers (SNP, GBS)
- \cdot whole genomes sequencing

trait information (phenotype)

- physiology (internal) & environment (external)
- molecules & images
- inexpensive, high volume assays 100 10,000s of plants

(individual cell technologies not covered here)

genotyping

- RFLPs & other early technologies
- structural variants
 - SNPs (single nucleotide polymorphisms)
 - InDels, inversions, larger blocks (100s-1000s of bps)
 - huge blocks (20K+ bps)
- GBS (genotype by sequence)
- read genotype from RNA-Seq
- Cautions:
 - missing data, mistakes in reads, sample mixups
 - biases in technologies
 - reference sequence vs other founders

evolution of statistical methods

- experimental design: how populations are created
 - two-founder experiments (backcross, intercross)
 - advanced crosses (RILs)
 - multi-parent populations (MPP)
- model selection: how phenotypes relate to genotypes
 - single marker regressions & interval mapping (QTL)
 - association mapping (including polygenes)
- \cdot estimation and prediction
 - genetic action (additive, dominance, epistasis)
 - marker assisted (MAS) & genomic selection (GS)

evolution of computational tools

Advances in measurement, design and analysis would be academic without advances in computational technology.

- faster machines -> faster throughput of more stuff
- methods translated into algorithms
 - open source code: freely distrubuted, easy to study
 - standalone programs
 - packages in language systems (R or Python or Matlab)
- \cdot collaboration and sharing
 - interconnectivity of algorithms and data resources
 - collaboration tools beyond email attachments
 - emerging collaboration systems

tools & workflow: big idea

team research aims

25/39

communication challenges

- English as 2nd, 3rd (4th?) language
- data experience and learned patterns
- stat experience and access to consultants
- math anxiety (see Sheila Tobias books)
- IT/computing experience and access to tools
- genetics knowledge
- communicating outside chosen field

Experimental Designs

- common breeding designs
 - backcross (BC)
 - intercross (F2)
 - doubled haploid (DH)
- advanced intercross lines
 - recombinant inbred lines (RILs)
 - near isogenic lines (NILs) & consomics
 - multi-parent populations (MPP)

common breeding designs

- 2 (inbred) founder alleles
- 2 generations
- backcross (BC): 1 meiosis
- doubled haploid (DH): 1 meiosis
- intercross (F2): 2 meioses

recombinant inbred lines (RIL)

- 2 or more inbred founders
- single F1 self-pollinated
- generations of random mating
- \cdot generations of selfing
- aim for homozygosity at all loci

www.nature.com/nrg/journal/v9/n3/images/nrg2291-f4.jpg

Selfing vs sib mating

Broman (2005) Genetics

near isogenic lines (NIL)

Advanced Intercrosses

Leah Solberg Woods doi:10.1152/physiolgenomics.00127.2013

multi-parent populations

- more than 2 inbred parents (4,8,20)
- \cdot developed over generations
 - generations of cross-breeding
 - generations of selfing (or sibs)
- increased meiotic events
 - fine mapping to small region
 - SNP level in one generation

Laura Vanderploeg, Jackson Labs

natural populations?

- are genetic markers location on map?
 - marker analysis only?
 - local linkage disequilibrium
 - benefits of linkage analysis
- do rare alleles affect phenotype?
 - power depend on rare allele frequency
 - uneven inoformation across markers
- multi-parent populations capture useful diversity

dataset used in this talk

- Tom Osborn *Brassica napus* intercross (F2)
- Edgar Spalding *Arabidopsis thaliana* advanced intercrosses
- *Mus musculus* Diversity Outbred (DO)
 - Elissa Chesler & collaborators (Recla et al. 2014)
 - Alan Attie & collaborators (in progress)

Osborn Brassica napus intercross

- 104 doubled haploid (DH) lines
- 300 markers on 19 chromosomes
 - originally scattered linkage groups
- 9 phenotypes (flowering time & seedling survival)

Ferreira, Satagopan, Yandell, Williams, Osborn (1995) TAG Satagopan, Yandell, Newton, Osborn (1996) Genetics

Moore/Spalding A. thaliana NIL & RILs

- Arabidopsis thaliana Ler x Cvi population
 - 92 near-isogenic lines (NIL); 2525 seedlings
 - 162 RILs; 2132 (RIL1) or 2325 (RIL2) seedlings
- genotypes: 102 (NIL) or 234 (RILs) markers on 5 chr
- phenotypes: 241 root tip angles, every 2 min
- automated image acquisition & analysis
 - images: 7000 lines x 241 time points
 - genome scans across all time points
- botany / computer science / biostatistics collaboration

Moore, Johnson, Kwak, Livny, Broman, Spalding (2013)

Diversity Outbred example

- 283 mice (generations 4 & 5)
- 320 (of 7851) SNP markers
- phenotype = OF_immobile_pct (of 1000s)
- Data: https://github.com/rqtl/qtl2data/
- Recla, Robledo, Gatti, Bult, Churchill, Chesler (2014)

Attie/Jax DO population

- 8 CC founder strains (generation 19-22)
- 500 mice in 5 waves
- multiple traits measured
 - 150K SNP GIGA-MUGA chip imputed to 40M SNPs
 - 100s clinical traits (insulin secretion)
 - 30K RNA-Seq expression traits

- 2K proteomic, 200 metabolomic, 200 lipidomic
- microbiome: 2K of 16s; 1M of sequencing