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evolution of QTL models

original ideas focused on rare & costly markers
models & methods refined as technology advanced

single marker regression

QTL (quantitative trait loci)

GWA (genome-wide association mapping)

·

·

single locus models: interval mapping for QTL

QTL model search: QTLs & epistasis

-

-

·

adjust for population structure

capture "missing heritability"

genome-wide selection

-

-

-
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strategy for QTL mapping

Want to figure out what is going on

Want to tell story in publication

How to accomplish QTL mapping goal

·

preliminary search: find important story

need strategies to uncover patterns

-

-

·

·

organic search for patterns

organize methods as you go

document steps (so you can redo)

-

-

-

3/43



phenotype data: flowering time

Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) Genetics
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genotype data

Genetic map for Osborn's Brassica napus study
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genotypes on chr N2
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genotypes reordered by flower4
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marker regression (BC or DH)

Soller et al. (1976)

Also known as ANOVA

Split sample into groups

Do a t-test or ANOVA

Repeat for each marker

·

·

by genotype at marker

red = missing genotype

-

-

·

·
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marker regression model

Marker regression:

y = + eμm

 = phenotypic trait

 = marker genotype (0,1)

 = mean for genotype 

 = error = unexplained variation

· y

· m

· μm m

· e

fit model for each marker across genome

pick most significant marker

·

·
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pros & cons of marker regression

Advantages

Disadvantages

·

simple; no need for genetic map

easy to add covariates

easily extended to more complex models

ignores marker position on genome

-

-

-

-

·

excludse individuals with missing genotype data

imperfect information about QTL location

suffers in low density scans

only considers one QTL at a time

-

-

-

-
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statistical structure

missing data problem: Markers  QTL

model selection problem: QTL, covariates  phenotype

· ⟷
· ⟶
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interval mapping (IM)

Lander & Botstein (1989) Genetics

Assume a single QTL model.

posit each genome position , one at a time, as putative QTL

·

· λ

 = genotypes at locus - q λ

#$(y|q) : y = + eμq

mixing proportions over flanking markers

model is mixture over possible QTL genotypes 

mixture of normals

·

#$(q|m) : %&'() *+ #$*#*$%,*-.

· q

·
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genotype probabilities

Calculate  assuming

Or use the hidden Markov model (HMM)} technology

pr(q|m)

no crossover interference

no genotyping errors

·

·

to allow for genotyping errors

to incorporate dominant markers

·

·
13/43



genotype probabilities

Calculate  assuming

Or use the hidden Markov model (HMM)} technology

pr(q|m)

no crossover interference

no genotyping errors

·

·

to allow for genotyping errors

to incorporate dominant markers

·

·
14/43



genotype probabilities

Calculate  assuming

Or use the hidden Markov model (HMM)} technology

pr(q|m)

no crossover interference

no genotyping errors

·

·

to allow for genotyping errors

to incorporate dominant markers

·

·
15/43



genotype probabilities

Calculate  assuming

Or use the hidden Markov model (HMM)} technology

pr(q|m)

no crossover interference

no genotyping errors

·

·

to allow for genotyping errors

to incorporate dominant markers

·

·
16/43



genotype probabilities

Calculate  assuming

Or use the hidden Markov model (HMM)} technology

pr(q|m)

no crossover interference

no genotyping errors

·

·

to allow for genotyping errors

to incorporate dominant markers

·

·
17/43



genotype probabilities

Calculate  assuming

Or use the hidden Markov model (HMM)} technology

pr(q|m)

no crossover interference

no genotyping errors

·

·

to allow for genotyping errors

to incorporate dominant markers

·

·
18/43



phenotype given unknown genotype

#$(y|m) = ∑ #$(y|q)#$(q|m)

2 markers separated by 20 cM

phenotype distribution

mixture components

·

QTL closer to left marker-

·

given marker genotypes-

·

dashed curves-
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interval mapping idea

think marker regression with fuzzy groups

20/43

http://www.biostat.wisc.edu/~kbroman/D3/em_alg/


interval mapping (IM) details

QTL genotype given markers: 

phenotype given QTL:  (normal density)

log likelihood over individuals:

find , ,  to maximize  (MLEs)

#$(q|m)

#$(y|q) = N(y| , )μq σ 2

#$(y|m) = #$(y|q)#$(q|m)∑
q

l( , , σ) = log #$( | )μ0 μ1 ∑
i

yi mi

μ̂ 0 μ̂ 1 σ ̂ l( , , σ)μ0 μ1
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EM algorithm (Dempster et al. 1977)

E step: (pseudo)weights for individual , QTL genotype 

 set so that 

M step: (pseudo)values for QTL group means and variance

EM algorithm: set ; iterate E&M to converge

i q

= #$(q| , , , ) = ∗ #$(q| )N( | , )wiq mi yi μ̂ σ ̂ ci mi yi μ̂ q σ ̂ 

ci = 1∑q wiq

= /μ̂ q ∑
i

yiwiq ∑
i

wiq

= ( − /nσ ̂ 2 ∑
i

∑
q

wiq yi μ̂ q)2

= #$(q| )wiq mi
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Haley-Knott regression

Idea: just run one iteration
of EM algorithm

Haley, Knott (1992

Martinez, Curnow (1992

becomes marker
regression on genotype
probabilities

ignores mixture of
normals issue

now widely used for
dense marker maps
(high throughput)

·

·

·
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LOD Scores

LOD score measures strength of evidence for QTL at locus 
 likelihood ratio of models:

QTL model: means are MLEs  with QTL at 

No QTL model: mean is unconditional MLE 

SD computed given model means: 

λ
log10

model with QTL at  (mean depends on QTL genotype  at )

model with no QTL (common mean for all individuals)

· λ q λ

·

(*3(λ) = [l( , , ) − l( , )]/ log(10)μ̂ 0λ μ̂ 1λ σ ̂ λ μ̂ σ ̂ 

,μ̂ 0λ μ̂ 1λ λ

=μ̂ ȳ

,σ ̂ λ σ ̂ 
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LOD profile of flowering time
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LOD profile for one chromosome

LOD and means by genotype scans on chr N2
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Interactive LOD scan
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http://www.biostat.wisc.edu/~kbroman/D3/lod_and_effect/


pros and cons of IM

Advantages

Disadvantages

·

takes proper account of missing data

allows examination of positions between markers

gives improved estimates of QTL effects

provides pretty graphs (important!)

-

-

-

-

·

increased computation time

requires specialized software

difficult to generalize and extend

only one QTL at a time

-

-

-

-
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LOD thresholds: how large is large?

Large LOD scores = evidence for presence of a QTL
LOD threshold = 95 %ile of histogram of max LOD genome-wide (if
there are no QTLs anywhere)

Derivation:

Analytical calculations (Lander & Botstein 1989)

Simulations (Lander & Botstein 1989)

Permutation tests (Churchill & Doerge 1994)

·

·

·
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null distribution of the LOD score

Null distribution from
simulation

Dashed curve:

Solid curve:

·

backcross with typical size
genome

-

·

LOD score histogram for
any one point

-

·

max LOD histogram,
genome-wide

-
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permutation test schematic

shuffle phenotypes independent of genotype data
repeat 10,000 times
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10,000 permutation results
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interactive permutations
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http://www.biostat.wisc.edu/~kbroman/D3/lod_random/


LOD support intervals
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LOD thresholds for flowering time

significant area is quite broad …
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LOD thresholds for flowering time

but 1.5 LOD support interval is narrower
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flowering time adjusted for QTL
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QTL model search

Goals

Challenges

·

identify QTL (and possible interactions among QTL)

estimate interval for QTL location

estimate QTL effects

-

-

-

·

how many QTL? which ones?

more complicated to fit each multiple QTL model

need rules to search across many QTL models

-

-

-
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pros & cons of multiple QTL models

benefits

shortcomings

·

reduce residual variation

increased power

separate linked QTL

identify interactions among QTL (epistasis)

-

-

-

-

·

only includes significant loci

gets complicated very quickly

selection bias: overestimate effects of included loci

many loci of small effect ignored …

-

-

-

-
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special nature of QTL models

What is special here?

See Broman MultiQTL talk for more details

continuum of ordinal-valued predictors (the genetic loci)

association among these QTL predictors

loci on different chromosomes are independent

along chromosome:

·

·

·

·

simple (and known) correlation structure-
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https://www.biostat.wisc.edu/~kbroman/teaching/misc/Jax/2016/multiqtl.pdf


selection bias

estimated QTL effect QTL varies
from true effect

detect QTL when estimated
effect is large

experiments with detected QTL
often have larger estimated
than true effect

selection bias largest in QTLs
with small or moderate effects

true QTL effects smaller than
those observed

·

·

·

·

·
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implications of selection bias

See Broman (2003) and Haley, Knott (1992).

Beavis WD (1994). The power and deceit of QTL experiments: Lessons from comparative

QTL studies. In DB Wilkinson, (ed) 49th Ann Corn Sorghum Res Conf, pp 252–268. Amer

Seed Trade Asso, Washington, DC.

estimated % variance explained by identified QTLs: too high

repeating an experiment: different QTL (Beavis effect)

congenics (or near isogenic lines): off base

marker-assisted selection: missed effect

·

·

·

·
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Pareto chart: from QTL to GWA
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