Quantitative Trait Loci

Brian S. Yandell, UW-Madison January 2017

evolution of QTL models

original ideas focused on rare & costly markers models & methods refined as technology advanced

- **single marker regression ·**
- **QTL (quantitative trait loci) ·**
	- **single locus models: interval mapping for QTL -**
	- QTL model search: QTLs & epistasis **-**
- GWA (genome-wide association mapping) **·**
	- adjust for population structure **-**
	- capture "missing heritability" **-**
	- genome-wide selection

strategy for QTL mapping

- Want to figure out what is going on **·**
	- preliminary search: find important story **-**
	- need strategies to uncover patterns **-**
- Want to tell story in publication **·**
- How to accomplish QTL mapping goal **·**
	- organic search for patterns **-**
	- organize methods as you go **-**
	- document steps (so you can redo) **-**

phenotype data: flowering time

Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) Genetics

genotype data

Genetic map for Osborn's *Brassica napus* study

Genetic map

genotypes on chr N2

Markers

genotypes reordered by flower4

Markers

marker regression (BC or DH)

- Also known as ANOVA **·**
- Split sample into groups
	- by genotype at marker **-**
	- red = missing genotype
- Do a t-test or ANOVA **·**
- Repeat for each marker **·**

Soller *et al.* (1976)

marker regression model

 $y = \mu_m + e$

- *y* = phenotypic trait
- \cdot $m =$ marker genotype (0,1)
- \cdot μ_m = mean for genotype *m*
- $e =$ error = unexplained variation

Marker regression:

- fit model for each marker across genome **·**
- pick most significant marker **·**

pros & cons of marker regression

- Advantages **·**
	- simple; no need for genetic map **-**
	- easy to add covariates
	- easily extended to more complex models
	- ignores marker position on genome **-**
- Disadvantages **·**
	- excludse individuals with missing genotype data
	- imperfect information about QTL location **-**
	- suffers in low density scans **-**
	- only considers one QTL at a time

statistical structure

- missing data problem: Markers \longleftrightarrow QTL
- model selection problem: QTL, covariates \longrightarrow phenotype

interval mapping (IM)

- Assume a single QTL model. **·**
- \cdot posit each genome position λ , one at a time, as putative QTL
	- **-** *q* = genotypes at locus *λ*

 $pr(y|q)$: $y = \mu_q + e$

mixing proportions over flanking markers **·**

pr(q|m) : table of proportions

- model is mixture over possible QTL genotypes q
- mixture of normals **·**

Lander & Botstein (1989) Genetics

Calculate pr(q|m) assuming

- no crossover interference **·**
- no genotyping errors

- to allow for genotyping errors
- to incorporate dominant markers **·**

Calculate pr(q|m) assuming

- no crossover interference **·**
- no genotyping errors

- to allow for genotyping errors
- to incorporate dominant markers **·**

Calculate pr(q|m) assuming

- no crossover interference **·**
- no genotyping errors

- to allow for genotyping errors
- to incorporate dominant markers **·**

Calculate pr(q|m) assuming

- no crossover interference **·**
- no genotyping errors

- to allow for genotyping errors
- to incorporate dominant markers **·**

Calculate pr(q|m) assuming

- no crossover interference **·**
- no genotyping errors

- to allow for genotyping errors
- to incorporate dominant markers **·**

Calculate pr(q|m) assuming

- no crossover interference **·**
- no genotyping errors

- to allow for genotyping errors
- to incorporate dominant markers **·**

phenotype given unknown genotype

 $pr(y|m) = \sum pr(y|q)pr(q|m)$

- 2 markers separated by 20 cM **·**
	- **-** QTL closer to left marker
- phenotype distribution **·**
	- **-** given marker genotypes
- mixture components **·**
	- **-** dashed curves

[interval mapping idea](http://www.biostat.wisc.edu/~kbroman/D3/em_alg/)

think marker regression with fuzzy groups

interval mapping (IM) details

QTL genotype given markers: $pr(q|m)$

phenotype given QTL: $pr(y|q) = N(y|\mu_q, \sigma^2)$ (normal density)

$$
\mathrm{pr}(y|m) = \sum_{q} \mathrm{pr}(y|q) \mathrm{pr}(q|m)
$$

log likelihood over individuals:

$$
l(\mu_0, \mu_1, \sigma) = \sum_i \log \mathrm{pr}(y_i|m_i)
$$

 $\hat{\mu}_0$, $\hat{\mu}_1$, $\hat{\sigma}$ to maximize $l(\mu_0, \mu_1, \sigma)$ (MLEs)

EM algorithm (Dempster et al. 1977)

E step: (pseudo)weights for individual *i*, QTL genotype *q*

$$
w_{iq} = \text{pr}(q|m_i, y_i, \hat{\mu}, \hat{\sigma}) = c_i * \text{pr}(q|m_i)N(y_i|\hat{\mu}_q, \hat{\sigma})
$$

 c_i set so that $\sum_q w_{iq} = 1$

M step: (pseudo)values for QTL group means and variance

$$
\hat{\mu}_q = \sum_i y_i w_{iq} / \sum_i w_{iq}
$$

$$
\hat{\sigma}^2 = \sum_i \sum_q w_{iq} (y_i - \hat{\mu}_q)^2 / n
$$

EM algorithm: set $w_{iq} = \text{pr}(q|m_i)$; iterate E&M to converge

Haley-Knott regression

Idea: just run one iteration of EM algorithm

- becomes marker regression on genotype probabilities **·**
- ignores mixture of **·** normals issue
- now widely used for **·** dense marker maps (high throughput)

Haley, Knott (1992 Martinez, Curnow (1992

LOD Scores

LOD score measures strength of evidence for QTL at locus *λ* \log_{10} likelihood ratio of models:

- model with QTL at λ (mean depends on QTL genotype q at λ)
- model with no QTL (common mean for all individuals) **·**

 1 od(λ) = [$l(\hat{\mu}_{0\lambda}, \hat{\mu}_{1\lambda}, \hat{\sigma}_{\lambda}) - l(\hat{\mu}, \hat{\sigma})$]/ $\log(10)$

QTL model: means are MLEs $\hat{\mu}_{0\lambda}, \hat{\mu}_{1\lambda}$ with QTL at λ

No QTL model: mean is unconditional MLE $\hat{\mu} = \bar{y}$

SD computed given model means: *σλ* ̂, *σ*̂

LOD profile of flowering time

LOD profile for one chromosome

LOD and means by genotype scans on chr N2

[Interactive LOD scan](http://www.biostat.wisc.edu/~kbroman/D3/lod_and_effect/)

27/43

pros and cons of IM

- Advantages **·**
	- takes proper account of missing data **-**
	- allows examination of positions between markers **-**
	- gives improved estimates of QTL effects **-**
	- provides pretty graphs (important!) **-**
- Disadvantages **·**
	- increased computation time **-**
	- requires specialized software
	- difficult to generalize and extend **-**
	- only one QTL at a time

LOD thresholds: how large is large?

Large LOD scores = evidence for presence of a QTL LOD threshold = 95 %ile of histogram of max LOD genome-wide (if there are no QTLs anywhere)

Derivation:

- Analytical calculations (Lander & Botstein 1989) **·**
- Simulations (Lander & Botstein 1989) **·**
- Permutation tests (Churchill & Doerge 1994) **·**

null distribution of the LOD score

- Null distribution from **·** simulation
	- backcross with typical size genome
- Dashed curve: **·**
	- LOD score histogram for any one point
- Solid curve: **·**
	- max LOD histogram, genome-wide

permutation test schematic

shuffle phenotypes independent of genotype data repeat 10,000 times

10,000 permutation results

32/43

[interactive permutations](http://www.biostat.wisc.edu/~kbroman/D3/lod_random/)

GH.117C (chr 5, 34.2 cM)

LOD support intervals

34/43

LOD thresholds for flowering time

significant area is quite broad …

LOD thresholds for flowering time

but 1.5 LOD support interval is narrower

flowering time adjusted for QTL

QTL model search

- Goals **·**
	- identify QTL (and possible interactions among QTL) **-**
	- estimate interval for QTL location
	- estimate QTL effects
- Challenges **·**
	- how many QTL? which ones? **-**
	- more complicated to fit each multiple QTL model **-**
	- need rules to search across many QTL models **-**

pros & cons of multiple QTL models

- benefits **·**
	- reduce residual variation
	- increased power **-**
	- separate linked QTL
	- identify interactions among QTL (epistasis) **-**
- shortcomings **·**
	- only includes significant loci
	- gets complicated very quickly **-**
	- selection bias: overestimate effects of included loci **-**
	- many loci of small effect ignored … **-**

special nature of QTL models

What is special here?

- continuum of ordinal-valued predictors (the genetic loci) **·**
- association among these QTL predictors **·**
- loci on different chromosomes are independent **·**
- along chromosome: **·**
	- **-** simple (and known) correlation structure

See [Broman MultiQTL talk](https://www.biostat.wisc.edu/~kbroman/teaching/misc/Jax/2016/multiqtl.pdf) for more details

selection bias

- estimated QTL effect QTL varies from true effect
- detect QTL when estimated **·** effect is large
- experiments with detected QTL **·** often have larger estimated than true effect
- selection bias largest in QTLs with small or moderate effects
- true QTL effects smaller than those observed

implications of selection bias

- estimated % variance explained by identified QTLs: too high **·**
- repeating an experiment: different QTL (Beavis effect)
- congenics (or near isogenic lines): off base **·**
- marker-assisted selection: missed effect **·**

See Broman (2003) and Haley, Knott (1992).

Beavis WD (1994). The power and deceit of QTL experiments: Lessons from comparative QTL studies. In DB Wilkinson, (ed) 49th Ann Corn Sorghum Res Conf, pp 252–268. Amer Seed Trade Asso, Washington, DC.

Pareto chart: from QTL to GWA

