Genome-Wide Selection



evolution of QTL models

original ideas focused on rare & costly markers
models & methods refined as technology advanced
- single marker regression
-+ QTL (quantitative trait loci)
- single locus models: interval mapping for QTL
- QTL model search: QTLs & epistasis
+ polygenes (association mapping)
- adjust for population structure
- capture "missing heritability"

- genome-wide selection
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what is genomic selection?

use statistical modeling to predict how a plant will perform
before it is field-tested
+ genomic selection (GS)
- marker assisted selection (MAS)
- genome-wide selection (GS)
- other uses of word (relevent to systems genetics)
- natural selection: survival of the fittest
- model selection: search for QTLs

- selection bias: overestimate of QTL effects
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why use genomic selection?

- traitis highly polygenic (genetically variable)
- influenced by a few key genomic regions
- high heritability (low environmental variation)

+ measuring trait is costly

difficult or expensive process (technology)

measuring tool may be highly variable

time-consuming (plant has to grow first)

desire to streamline multi-year selection
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what is genomic selection?

- forms of genome-wide selection
- marker-assisted: with phenotypes
- marker-based: without phenotypes
- use markers to improve selection for complex traits
- predict phenotype from marker genotype
- select candidates based on best marker genotypes

- use training set to predict test set of individuals
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old paradigm: marker prediction

+ 1990s & 2000s: markers were expensive
+economic strategy:

- first identify significant markers (QTL analysis)

- use best markers to genotype selection candidates
- estimate marker effects by multiple regression

- treat genetic effects as fixed and few

- EQ) = puq.q =(q1,92,93)
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marker assisted selection (MAS)
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new paradigm: use "all" markers

-+ new paradigm with technology advances
- improved statistical methods and software
- cheap markers

+using only significant markers to predict trait ...
- gives good estimates (maybe) of markers ...
- but does not maximize accuracy

- simple but effective approach
- treat marker effects as random

- use all markers (away from QTL if any)
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old vs new

Cycle 0, B73 x Mo17
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Genomewide Selection versus Marker-assisted
Recurrent Selection to Improve Grain Yield and
Stover-quality Traits for Cellulosic Ethanol
in Maize
Jon M. Massman, Hans-Joachim G. Jung, and Rex Bernardo*

Crop Science 2013
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mixed model approach

MAS approach y = g, + e, V(e) = %1
* estimate fixed QTL effects i, (MLEs)
+ predict phenotype using fixed effects y = 1,

GS approachy = u+g+e,V(g) = 6K

' estimate kinship K from all markers M as for poly
* predict random effect g using BLUP
* predict phenotypey = g
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genomic prediction

- DO example
- rrBLUP fit without QTL

- correlation 0.79

phenolype

. polygene prediction I‘ »
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poly + QTL genomic prediction

DO example
rrBLUP fit with QTL
correlation 0.74

phenolype

BF BF EG

CE
CE

AF

CE

85
polygene prediction

12/12



