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Bayesian analysis of microarray traits
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studying diabetes in an F2
• segregating cross of inbred lines

– B6.ob x BTBR.ob → F1 → F2
– selected mice with ob/ob alleles at leptin gene (chr 6)
– measured and mapped body weight, insulin, glucose at various 

ages (Stoehr et al. 2000 Diabetes)
– sacrificed at 14 weeks, tissues preserved

• gene expression data
– Affymetrix microarrays on parental strains, F1

• (Nadler et al. 2000 PNAS; Ntambi et al. 2002 PNAS)
– RT-PCR for a few mRNA on 108 F2 mice liver tissues

• (Lan et al. 2003 Diabetes; Lan et al. 2003 Genetics)
– Affymetrix microarrays on 60 F2 mice liver tissues

• design (Jin et al. 2004 Genetics tent. accept)
• analysis (work in prep.)
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Type 2 Diabetes Mellitus
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Insulin Requirement

from Unger & Orci FASEB J. (2001) 15,312

decompensation
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glucose insulin

(courtesy AD Attie)
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why map gene expression
as a quantitative trait?

• cis- or trans-action?
– does gene control its own expression? 
– or is it influenced by one or more other genomic regions?
– evidence for both modes (Brem et al. 2002 Science)

• simultaneously measure all mRNA in a tissue
– ~5,000 mRNA active per cell on average
– ~30,000 genes in genome
– use genetic recombination as natural experiment

• mechanics of gene expression mapping
– measure gene expression in intercross (F2) population
– map expression as quantitative trait (QTL)
– adjust for multiple testing
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LOD map for PDI:
cis-regulation (Lan et al. 2003)
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Multiple Interval Mapping (QTLCart)
SCD1: multiple QTL plus epistasis!
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Bayesian model assessment:
number of QTL for SCD1
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Bayesian LOD and h2 for SCD1
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Bayesian model assessment:
chromosome QTL pattern for SCD1
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trans-acting QTL for SCD1
(no epistasis yet: see Yi, Xu, Allison 2003)

dominance?
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2-D scan: assumes only 2 QTL!

epistasis
LOD
peaks

joint
LOD
peaks
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sub-peaks can be easily overlooked!
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epistatic model fit
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Cockerham epistatic effects
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our Bayesian QTL software
• R: www.r-project.org

– freely available statistical computing application R
– library(bim) builds on Broman’s library(qtl)

• QTLCart: statgen.ncsu.edu/qtlcart
– Bmapqtl incorporated into QTLCart (S Wang 2003)

• www.stat.wisc.edu/~yandell/qtl/software/bmqtl
• R/bim

– initially designed by JM Satagopan (1996)
– major revision and extension by PJ Gaffney (2001)

• whole genome, multivariate and long range updates
• speed improvements, pre-burnin

– built as official R library (H Wu, Yandell, Gaffney, CF Jin 2003)
• R/bmqtl

– collaboration with N Yi, H Wu, GA Churchill
– initial working module: Winter 2005
– improved module and official release: Summer/Fall 2005
– major NIH grant (PI: Yi)
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modern high throughput biology
• measuring the molecular dogma of biology

– DNA → RNA → protein → metabolites
– measured one at a time only a few years ago

• massive array of measurements on whole systems (“omics”)
– thousands measured per individual (experimental unit)
– all (or most) components of system measured simultaneously

• whole genome of DNA: genes, promoters, etc.
• all expressed RNA in a tissue or cell
• all proteins
• all metabolites

• systems biology: focus on network interconnections
– chains of behavior in ecological community
– underlying biochemical pathways

• genetics as one experimental tool
– perturb system by creating new experimental cross
– each individual is a unique mosaic
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• reduce 30,000 traits to 300-3,000 heritable traits

• probability a trait is heritable
pr(H|Y,Q) = pr(Y|Q,H) pr(H|Q) / pr(Y|Q) Bayes rule

pr(Y|Q) = pr(Y|Q,H) pr(H|Q) + pr(Y|Q, not H) pr(not H|Q)

• phenotype averaged over genotypic mean µ
pr(Y|Q, not H) = f0(Y) = ∫ f(Y|G ) pr(G) dG if not H

pr(Y|Q, H) = f1(Y|Q) = ∏q  f0(Yq ) if heritable

Yq = {Yi | Qi =q} = trait values with genotype Q=q

finding heritable traits
(from Christina Kendziorski)
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hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

( )⋅pr~qG

QqG qqG

( )QQQQ ~ GfY ⋅

( )QqQq ~ GfY ⋅

( )qqqq ~ GfY ⋅

QQG

mRNA phenotype models
given genotypic mean Gq

common prior on Gq across all mRNA
(use empirical Bayes to estimate prior)

qqGQqG

QQG
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why study multiple traits together?
• avoid reductionist approach to biology

– address physiological/biochemical mechanisms
– Schmalhausen (1942); Falconer (1952)

• separate close linkage from pleiotropy
– 1 locus or 2 linked loci?

• identify epistatic interaction or canalization
– influence of genetic background

• establish QTL x environment interactions
• decompose genetic correlation among traits
• increase power to detect QTL
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expression meta-traits: pleiotropy
• reduce 3,000 heritable traits to 3 meta-traits(!)
• what are expression meta-traits?

– pleiotropy: a few genes can affect many traits
• transcription factors, regulators

– weighted averages: Z = YW
• principle components, discriminant analysis

• infer genetic architecture of meta-traits
– model selection issues are subtle

• missing data, non-linear search
• what is the best criterion for model selection?

– time consuming process
• heavy computation load for many traits
• subjective judgement on what is best
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PC for two correlated mRNA
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PC across microarray functional groups
Affy chips on 60 mice
~40,000 mRNA

2500+ mRNA show DE
(via EB arrays with
marker regression)

1500+ organized in
85 functional groups
2-35 mRNA / group

which are interesting? 
examine PC1, PC2 

circle size = # unique mRNA
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84 PC meta-traits by functional group
focus on 2 interesting groups
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red lines: peak
for PC meta-trait

black/blue: peaks
for mRNA traits

arrows: cis-action?
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(portion of) chr 4 region chr 15 region

?
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relating meta-traits to mRNA traits
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building graphical models

• infer genetic architecture of meta-trait
– E(Z | Q, M) = µq = β0 + ∑{q in M} βqk

• find mRNA traits correlated with meta-trait
– Z ≈ YW for modest number of traits Y

• extend meta-trait genetic architecture
– M = genetic architecture for Y
– expect subset of QTL to affect each mRNA
– may be additional QTL for some mRNA
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posterior for graphical models
•posterior for graph given multivariate trait & architecture
pr(G | Y, Q, M) = pr(Y | Q, G) pr(G | M) / pr(Y | Q)

–pr(G | M) = prior on valid graphs given architecture

•multivariate phenotype averaged over genotypic mean µ
pr(Y | Q, G) = f1(Y | Q, G) = ∏q f0(Yq | G)

f0(Yq | G) = ∫ f(Yq | µ, G) pr(µ) dµ

•graphical model G implies correlation structure on Y

•genotype mean prior assumed independent across traits
pr(µ) = ∏t pr(µt)
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from graphical models to pathways

• build graphical models
QTL → RNA1 → RNA2
– class of possible models
– best model = putative biochemical pathway

• parallel biochemical investigation
– candidate genes in QTL regions
– laboratory experiments on pathway components
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graphical models (with Elias Chaibub)
f1(Y | Q, G=g) = f1(Y1 | Q)  f1(Y2 | Q, Y1)

R2D2 P2

QTL R1D1 P1

observable
trans-action

unobservable
meta-traitQTL RNADNA

observable
cis-action?

protein
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summary
• expression QTL are complicated

– need to consider multiple interacting QTL
• coherent approach for high-throughput traits

– identify heritable traits
– dimension reduction to meta-traits
– mapping genetic architecture
– extension via graphical models to networks

• many open questions
– model selection
– computation efficiency
– inference on graphical models


