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Basic Idea

• study QTLs across segregating population
– simultaneous search for multiple QTLs

• phenotype is pattern of microarray expression
– examine many facets of biological process

– multiple traits using principle components

• account for low abundance and signal variability
– detect transcription factors and receptors

– robustly adapt to variability given mean expression

Low Abundance on Microarrays
• background adjustment

– remove local “geography”
– comparing within and between chips

• negative values after adjustment
– low abundance genes

• virtually absent in one condition
• could be important: transcription factors, receptors

– large measurement variability
• early technology (bleeding edge)

• prevalence across genes on a chip
– 0-20% per chip
– 10-50% across multiple conditions

Why not use log transform?

• log is natural choice
– tremendous scale range (100-1000 fold common)

– intuitive appeal, e.g. concentrations of chemicals (pH)

– looks pretty good in practice (roughly normal)

– easy to test if no difference across conditions

• approximate transform to normal
– normal scores of ranks (Li et al. 2000)

– very close to log if that is appropriate

– handles negative background-adjusted values

Comparison with E. coli Data

• 4,000+ genes (whole genome)

• Newton et al. (2000) J Comp Biol
– Bayesian odds of differential expression

• IPTG-b known to affect only a few genes
– ~150 genes at low abundance

– including key genes

E. coli with IPTG-b
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Normal Scores Procedure

adjusted expression A = Q – B
rank order R = rank(A) / (n+1)
normal scores N = qnorm( R )

average intensity X = (N1+N2)/2
difference Y = N1 – N2

variance Var(Y | X) ≈σ2(X)
standardization S = [Y – µ(X)]/σ(X)

2. rank order genes
R=rank(A)/(n+1)

1. adjust for
background

A=Q – B

3. normal scores
N=qnorm(R)

4. contrast
conditions
Y=N1 – N2

0. acquire data
Q, B

X = mean

Y
 =
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t 6. center & spread

5. mean intensity
X=mean(N)

7. standardize

Z=Y – center
   spread

Robust Center & Spread

• center and spread vary with mean expression X

• partitioned into many (about 400) slices
– genes sorted based on X

– containing roughly the same number of genes

• slices summarized by median and MAD
– median = center of data

– MAD = median absolute deviation

– robust to outliers (e.g. changing genes)

• smooth median & MAD over slices

Robust Spread Details

• MAD ~ same distribution across X up to scale
– MADi  = σi Zi,  Zi ~ Z, i = 1,…,400

– log(MADi ) = log(σi) + log( Zi), I = 1,…,400

• regress log(MADi) on Xi with smoothing splines
– smoothing parameter tuned automatically

• generalized cross validation (Wahba 1990)

• globally rescale anti-log of smooth curve
– Var(Y|X) ≈ σ2(X)

• can force σ2(X) to be decreasing

Diabetes & Obesity Study
• 13,000+ gene fragments (11,000+ genes)

– oligonuleotides, Affymetrix gene chips

– mean(PM) - mean(NM) adjusted expression levels

• six conditions in 2x3 factorial
– lean vs. obese

– B6, F1, BTBR mouse genotype

• adipose tissue
– influence whole-body fuel partitioning

– might be aberrant  in obese and/or diabetic subjects

• Nadler et al. (2000) PNAS

Low Abundance Genes for Obesity
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Low Abundance Obesity Genes
• low mean expression on at least 1 of 6 conditions

– negative adjusted values

– ignored by clustering routines

• transcription factors
– I-κB modulates transcription - inflammatory processes

– RXR nuclear hormone receptor - forms heterodimers
with several nuclear hormone receptors

• regulation proteins
– protein kinase A

– glycogen synthase kinase-3

• roughly 100 genes
– 90 new since Nadler (2000) PNAS

Comparing Conditions
• comparing two conditions

– ratio-based decisions (Chen et al. 1997)
• constant variance of ratio on log scale, use normality

– Bayesian inference (Newton et al. 2000, Tsodikov et al. 2000)
• Gamma-Gamma model
• variance proportional to squared intensity

– error model (Roberts et al. 2000, Hughes et al. 2000)
• variance proportional to squared intensity
• transform to log scale, use normality

• anova (Kerr et al. 2000, Dudoit et al. 2000)
– handles multiple conditions in anova model
– constant variance on log scale, use normality

Looking for Expression Patterns
• differential expression: Y = N1 – N2

– Score = [Y – center]/spread ~ Normal(0,1) ?

– classify genes in one of two groups:
• no differential expression (most genes)

• differential expression more dispersed than N(0,1)

– formal test of outlier?
• multiple comparisons issues

– posterior probability in differential group?
• Bayesian or classical approach

• general pattern recognition
– clustering / discrimination

– linear discriminants (Fisher) vs. fancier methods

Microarray ANOVAs
• Kerr et al. (2000)

• gene by condition interaction
– Nijk = genei + conditionj + gene*conditionij + rep errorijk

• conditions organized in factorial design
– experimental units may be whole or part of array

• genes are random effects
– focus on outliers (BLUPs), not variance components

– gene*conditionij = differential expression

– allow variance to depend on genei main effect

• replication to improve precision, catch gross errors

Microarray Random Effects
• variance component for non-changing genes

– robust estimate of MS(G*C) using smoothed MAD

– rescale normal score response N by spread σ(X)

– look for differential expression
• or use clustering methods

• variance component for replication
– robust estimate of MSE using smoothed MAD

– look for outliers = gross errors

Principle Components
• Alter et al. (2000) for microarrays

– see also Hilsenbeck et al. (1999)

• Nij = Nijk = gene i for condition j (for rep k)
– principle components (singular value decomposition)

– N = UDVT

• D has eigen-values down diagonal
• U has eigen-conditions as columns, genes as rows
• V has eigen-genes as rows, conditions as column

• model for eigen-gene i
– Vijk = genei + conditionj + gene*conditionij + rep errorijk



PCA Pros and Cons
• advantages

– eigen-genes V1, V2, ... are orthogonal

– may only need a few
• how fast do eigen-values D drop?

• disadvantages
– UDVT may be expensive to compute

– less efficient if many large eigen-values

– may be difficult to interpret some eigen-genes
• depends on choice of conditions

– decomposition does not reflect experimental design
• could improve via linear discriminant analysis (Fisher 1936)

Microarray QTLs using PCAs
• condition = genotype, array = individual

• Vijk = genei + QTLj + gene*QTLij + individualijk
• QTL genotype depends on flanking markers

– mixture model across possible QTL genotypes

– single vs. multiple QTL

• single QTL may influence numerous genes
– epistasis = inter-genic interaction

– modification of biochemical pathway(s)

Multiple QTLs
• Zeng, Kao, et al. (1999, 2000)

– multiple interval mapping (MIM)

• Satagopan, Yandell (1996); Stevens, Fisch
(1998); Silanpää, Arjas (1998, 1999)
– Bayesian interval mapping using RJ-MCMC

• True et al. (1997); Zeng et al. (2000)
– first principle components as trait

– MIM with interactions

LDAs for QTLs
• PCAs computed once

– individuals are random sample from segregating
population

– expect major genotype effects to follow PCs

• LDAs could adjust to genotypes
– start with PCs, hopefully close to LDs

– LDA depends on unknown QTLs: decompose BW-1

• B is between genotype variation (QTL effects)

• W is within genotype variation (error)

– expensive computation: any shortcuts?

Obesity Genotype Main Effects
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