QTL Studies with Microarray Data

Long Han¹, Yi Lin², Fei Zou², Patrick J. Gaffney², Samuel T. Nadler¹, Jonathan P. Stoehr¹, Alan D. Attie¹, Brian S. Yandell^{2,3}

¹Biochemistry, ²Statistics, ³Horticulture, University of Wisconsin-Madison November 2000

Basic Idea

- study QTLs across segregating population – simultaneous search for multiple QTLs
- phenotype is pattern of microarray expression

 examine many facets of biological process
 multiple traits using principle components
- account for low abundance and signal variability
 - detect transcription factors and receptors
 robustly adapt to variability given mean expression

Low Abundance on Microarrays

- background adjustment
 - remove local "geography"
- comparing within and between chips
- negative values after adjustment
 - low abundance genes
 - virtually absent in one condition
 - could be important: transcription factors, receptors
 - large measurement variability
 early technology (bleeding edge)
- prevalence across genes on a chip
- 0-20% per chip
- 10-50% across multiple conditions

Why not use log transform?

- log is natural choice
 - tremendous scale range (100-1000 fold common)
 - intuitive appeal, e.g. concentrations of chemicals (pH)
 - looks pretty good in practice (roughly normal)
 - easy to test if no difference across conditions
- · approximate transform to normal
 - normal scores of ranks (Li et al. 2000)
 - very close to log if that is appropriate
 - handles negative background-adjusted values

Comparison with E. coli Data

- 4,000+ genes (whole genome)
- Newton et al. (2000) J Comp Biol
 Bayesian odds of differential expression
- IPTG-b known to affect only a few genes
 - ~150 genes at low abundance
 - including key genes

Normal Scores Procedure

adjusted expression	A = Q - B
rank order	$R = \operatorname{rank}(A)$
normal scores	N = qnorm

average intensity difference variance standardization $R = \operatorname{rank}(A) / (n+1)$ $N = \operatorname{qnorm}(R)$ $X = (N_1 + N_2)/2$ $Y = N_1 - N_2$ $\operatorname{Var}(Y \mid X) \approx \sigma^2(X)$ $S = [Y - \mu(X)]/\sigma(X)$

Robust Center & Spread

- center and spread vary with mean expression X
- partitioned into many (about 400) slices
 - genes sorted based on X
 - containing roughly the same number of genes
- · slices summarized by median and MAD
 - median = center of data
 - MAD = median absolute deviation
 - robust to outliers (e.g. changing genes)
- smooth median & MAD over slices

Robust Spread Details

- MAD ~ same distribution across X up to scale – MAD_i = $\sigma_i Z_i$, $Z_i \sim Z$, i = 1,...,400
 - $-\log(MAD_i) = \log(\sigma_i) + \log(Z_i), I = 1,...,400$
- regress log(MAD_i) on X_i with smoothing splines
 smoothing parameter tuned automatically
 generalized cross validation (Wahba 1990)
- globally rescale anti-log of smooth curve $- \operatorname{Var}(Y|X) \approx \sigma^2(X)$
- can force $\sigma^2(X)$ to be decreasing

Diabetes & Obesity Study

- 13,000+ gene fragments (11,000+ genes)
 oligonuleotides, Affymetrix gene chips
 - mean(PM) mean(NM) adjusted expression levels
- six conditions in 2x3 factorial
- lean vs. obese
- B6, F1, BTBR mouse genotype
- · adipose tissue
 - influence whole-body fuel partitioning
 - might be aberrant in obese and/or diabetic subjects
- Nadler et al. (2000) PNAS

Low Abundance Obesity Genes

- low mean expression on at least 1 of 6 conditions
- negative adjusted values
 - ignored by clustering routines
- transcription factors
 - I-KB modulates transcription inflammatory processes
 - RXR nuclear hormone receptor forms heterodimers
 - with several nuclear hormone receptors
- · regulation proteins
 - protein kinase A
 - glycogen synthase kinase-3
- · roughly 100 genes
 - 90 new since Nadler (2000) PNAS

Comparing Conditions

- · comparing two conditions
 - ratio-based decisions (Chen et al. 1997) · constant variance of ratio on log scale, use normality
 - Bayesian inference (Newton et al. 2000, Tsodikov et al. 2000) Gamma-Gamma model
 - · variance proportional to squared intensity
 - error model (Roberts et al. 2000, Hughes et al. 2000) · variance proportional to squared intensity
 - · transform to log scale, use normality
- anova (Kerr et al. 2000, Dudoit et al. 2000) - handles multiple conditions in anova model
 - constant variance on log scale, use normality

Looking for Expression Patterns

- differential expression: $Y = N_1 N_2$
 - $Score = [Y center]/spread \sim Normal(0,1)$?
 - classify genes in one of two groups:
 - · no differential expression (most genes) • differential expression more dispersed than N(0,1)
 - formal test of outlier?
 - · multiple comparisons issues
 - posterior probability in differential group? · Bayesian or classical approach
- · general pattern recognition
 - clustering / discrimination
 - linear discriminants (Fisher) vs. fancier methods

Microarray ANOVAs

- Kerr et al. (2000)
- · gene by condition interaction
 - $-N_{iik} = \text{gene}_i + \text{condition}_i + \text{gene*condition}_{ii} + \text{rep error}_{iik}$
- conditions organized in factorial design - experimental units may be whole or part of array
- genes are random effects
 - focus on outliers (BLUPs), not variance components
 - gene*condition_{ii} = differential expression
 - allow variance to depend on gene, main effect
- replication to improve precision, catch gross errors

Microarray Random Effects

- · variance component for non-changing genes
 - robust estimate of MS(G*C) using smoothed MAD
 - rescale normal score response N by spread $\sigma(X)$
 - look for differential expression
 - · or use clustering methods
- · variance component for replication
 - robust estimate of MSE using smoothed MAD
 - look for outliers = gross errors

Principle Components

- Alter et al. (2000) for microarrays - see also Hilsenbeck et al. (1999)
- $N_{ij} = N_{ijk}$ = gene *i* for condition *j* (for rep *k*) - principle components (singular value decomposition)
 - $-N = UDV^{T}$
 - D has eigen-values down diagonal
 - · U has eigen-conditions as columns, genes as rows
- model for eigen-gene *i*
 - V_{ijk} = gene_i + condition_j + gene*condition_{ij} + rep error_{ijk}
- · V has eigen-genes as rows, conditions as column

PCA Pros and Cons

- advantages
 - eigen-genes V_1 , V_2 , ... are orthogonal
 - may only need a few
 - how fast do eigen-values D drop?
- disadvantages
 - UDV^T may be expensive to compute
 - less efficient if many large eigen-values
 - may be difficult to interpret some eigen-genes
 depends on choice of conditions
 - decomposition does not reflect experimental design
 could improve via linear discriminant analysis (Fisher 1936)

Microarray QTLs using PCAs

- condition = genotype, array = individual
- $V_{ijk} = \text{gene}_i + \text{QTL}_j + \text{gene}^* \text{QTL}_{ij} + \text{individual}_{ijk}$
- QTL genotype depends on flanking markers – mixture model across possible QTL genotypes
 - single vs. multiple QTL
- single QTL may influence numerous genes
 epistasis = inter-genic interaction
 - modification of biochemical pathway(s)

Multiple QTLs

- Zeng, Kao, et al. (1999, 2000)
 multiple interval mapping (MIM)
- Satagopan, Yandell (1996); Stevens, Fisch (1998); Silanpää, Arjas (1998, 1999)
 - Bayesian interval mapping using RJ-MCMC
- True et al. (1997); Zeng et al. (2000)
 - first principle components as trait
 - MIM with interactions

LDAs for QTLs

- · PCAs computed once
 - individuals are random sample from segregating population
 - expect major genotype effects to follow PCs
- · LDAs could adjust to genotypes
 - start with PCs, hopefully close to LDs
 - LDA depends on unknown QTLs: decompose BW⁻¹
 - *B* is between genotype variation (QTL effects)*W* is within genotype variation (error)
 - expensive computation: any shortcuts?

