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Outline

• why study diabetes in a mouse model?
• why map gene expression?
• what are QTL?

– why multiple QTL?
– how to select genetic architecture?

• how to map massive gene expression?
• preliminary results



26 February 2003 Genetics © Brian S. Yandell 3

Type 2 Diabetes Mellitus
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Insulin Requirement

from Unger & Orci FASEB J. (2001) 15,312

decompensation
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glucose insulin

(courtesy AD Attie)
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studying diabetes in an F2
• segregating cross of inbred lines

– B6.ob x BTBR.ob → F1 → F2
– selected mice with ob/ob alleles at leptin gene (chr 6)
– measured and mapped body weight, insulin, glucose at various ages 

(Stoehr et al. 2000 Diabetes)
– sacrificed at 14 weeks, tissues preserved

• gene expression data
– Affymetrix microarrays on parental strains, F1

• key tissues: adipose, liver, muscle, β-cells
• novel discoveries of differential expression (Nadler et al. 2000 PNAS; Lan et 

al. 2002 in review; Ntambi et al. 2002 PNAS)
– RT-PCR on 108 F2 mice liver tissues

• 15 genes, selected as important in diabetes pathways
• SCD1, PEPCK, ACO, FAS, GPAT, PPARgamma, PPARalpha, G6Pase, 

PDI,…
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why map gene expression
as a quantitative trait?

• cis- or trans-action?
– does gene control its own expression? 
– evidence for both modes (Brem et al. 2002 Science)

• mechanics of gene expression mapping
– measure gene expression in intercross (F2) population
– map expression as quantitative trait (QTL technology)
– adjust for multiple testing via false discovery rate

• research groups working on expression QTLs
– review by Cheung and Spielman (2002 Nat Gen Suppl)
– Kruglyak (Brem et al. 2002 Science)
– Doerge et al. (Purdue); Jansen et al. (Waginingen)
– Williams et al. (U KY); Lusis et al. (UCLA)
– Dumas et al. (2000 J Hypertension)

26 February 2003 Genetics © Brian S. Yandell 8

What is a QTL?
• QTL = quantitative trait locus (or loci)

– trait = phenotype = characteristic of interest
– quantitative = measured somehow

• qualitative traits can often be directly mapped
• quantitative traits not readily mapped

– locus = location in genome affecting trait
• gene or collection of tightly linked genes
• some physical feature of genome
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LOD map for PDI: cis-regulation
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observed X Y

missing Q

unknown λ θ

interval mapping basics
• observed measurements

– Y = phenotypic trait
– X = markers & linkage map

• i = individual index 1,…,n
• missing data

– missing marker data
– Q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown genetic architecture

– λ = QT locus (or loci)
– θ = genetic action
– m = number of QTL

• pr(Q|X,λ,m) recombination model
– grounded by linkage map, experimental cross
– recombination yields multinomial for Q given X

• pr(Y|Q,θ,m) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters θ (could be non-parametric)

after
Sen Churchill (2001)
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interval mapping
details and interpretation

• likelihood models relation of data to unknown architecture
– L(λ,θ|m) = pr(Y|X,λ,θ,m)

= producti [sumQ pr(Q|Xi,λ,m) pr(Yi|Q,θ,m)]
– complicated to evaluate: product of sum of products

• classical interval mapping: maximize LOD
– LOD(λ) = maxθ log10 L(λ,θ|Y,m)/L(µ|Y)

• scan loci systematically across genome
– threshold for testing presence  vs. no QTL

• theory for single QTL
(Lander Botstein 1989; Dupuis Siegmund 1999 Genetics)

• permutation tests for more general setting
(Churchill Doerge 1994; Doerge Churchill 1996 Genetics)

• study genetic architecture 
– assess with Bayesian Information Criteria (BIC)

observed X Y

missing Q

unknown λ θ
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high throughput:
which genes are the key players?

• one approach:
clustering of expression
seed by insulin, glucose

• advantage:
subset relevant to trait

• disadvantage:
still many genes to study
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trans-regulation by multiple QTL?
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Multiple Interval Mapping
SCD1: multiple QTL plus epistasis!
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2-QTL scan for SCD1

epistasis LOD

joint LOD
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multiple QTL & gene expression
• does one locus affect expression of many genes?

– is this a controlling locus?
– is there coordinated expression across many genes?

• multiple QTL affecting gene expression?
– multiple controlling loci for key pathways?
– single QTL approach would be inadequate

• multiple QTL literature
– multiple interval mapping (Kao, et al. 1999 Genetics; Zeng et al. 2000 

Genetics; Broman Speed 2002 JRSSB)
– Bayesian interval mapping (Satagopan et al. 1996 Genetics; Satagopan

Yandell 1996; Stevens Fisch 1998 Biometrics; Silanpää Arjas 1998, 1999 Genetics; 
Sen Churchill 2001 Genetics; Gaffney 2001; Yi Xu 2002 Genetics)
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how many (detectable) QTL?
• many, many QTL may affect most any trait

– how many QTL are detectable with these data?
• limits to useful detection (Bernardo 2000)
• depends on sample size, heritability, environmental variation

– consider probability that a QTL is in the model
• avoid sharp in/out dichotomy
• major QTL usually selected, minor QTL sampled infrequently

• build m = number of QTL detected into QTL model
– directly allow uncertainty in genetic architecture
– model selection over number of QTL, architecture
– use Bayes factors and model averaging

• to identify “better” models
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Bayesian interpretation
• consider likelihood of data augmented by QTL genotypes

– pr(Y,Q|X,λ,θ,m) = producti pr(Q|Xi,λ,m) pr(Yi|Q,θ,m)

• reinterpret likelihood as posterior for architecture
– pr(λ,Q,θ,m|Y,X) = [producti pr(Qi|Xi,λ,m) pr(Yi|Qi,θ,m)] [pr(λ,θ|X,m)pr(m)]

= [augmented likelihood] x [prior] 

• examine posterior of architecture given data
– controlling loci λ and gene action θ

• pr(λ,θ|Y,X,m) = sumQ pr(λ,Q,θ|Y,X,m) with m fixed
• average over missing QTL genotypes

– number of QTL m
• pr(m|Y,X) = sum(λ,θ) pr(λ,θ|Y,X,m)pr(m)
• average over possible m-QTL architectures

• assess using Bayes factors
– extends Bayes Information Criterion to compare any 2 models

observed X Y

missing Q

unknown λ θ
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Bayes factors to assess models
• Bayes factor: which model best supports the data?

– ratio of posterior odds to prior odds
– ratio of model likelihoods

• equivalent to LR statistic when
– comparing two nested models
– simple hypotheses (e.g. 1 vs 2 QTL)

• related to Bayes Information Criteria (BIC)
– Schwartz introduced for model selection in general settings
– penalty to balance model size (p = number of parameters)
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computing QTL Bayes factors
• easy to compute Bayes factors from samples

– sample posterior using MCMC
– posterior pr(m|Y,X) is marginal histogram
– posterior affected by prior pr(m)

• BF insensitive to shape of prior
– geometric, Poisson, uniform
– precision improves when prior mimics posterior

• BF sensitivity to prior variance on effects θ
– prior variance should reflect data variability
– resolved by using hyper-priors

• automatic algorithm; no need for user tuning
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• Y = µ + GQ + environment
• partition genotypic effect into separate QTL effects

GQ = main QTL effects + epistatic interactions
GQ = θ1Q + . . . + θmQ + θ12Q + . . . 

• priors on mean and effects
GQ ~  N(0, h2s2) model independent genotypic prior
θjQ ~  N(0, κ1s2/m.) additive effects (down-weighted)
θj2Q ~  N(0, κ2s2/m.) epistatic interactions (down-weighted)

• hyper-parameters (to reduce sensitivity of Bayes factors to prior)
– s2 = total sample variance
– m.= m+m2  = number of QTL effects and interactions
– h2 = (mκ1+ m2κ2)/m.= unknown heritability,   h2/2~Beta(a,b)

multiple QTL phenotype model
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Bayesian model assessment:
number of QTL for SCD1
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Bayesian LOD and h2 for SCD1
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Bayesian model assessment:
chromosome QTL pattern for SCD1
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trans-acting QTL for SCD1
(no epistasis yet: see Yi Xu 2002)

dominance?
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2-D scan: assumes only 2 QTL!

epistasis LOD

joint LOD
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1-D and 2-D marginals
pr(QTL at λ | Y,X, m)

unlinked loci linked loci
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false detection rates and thresholds
• multiple comparisons: test QTL across genome

– size = pr( LOD(λ) > threshold | no QTL at λ )
– threshold guards against a single false detection

• very conservative on genome-wide basis
– difficult to extend to multiple QTL

• positive false discovery rate (Storey 2001)
– pFDR = pr( no QTL at λ | LOD(λ) > threshold )
– Bayesian posterior HPD region based on threshold 

• Λ ={λ | LOD(λ) > threshold } ≈ {λ | pr(λ | Y,X,m ) large }
– extends naturally to multiple QTL
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pFDR and QTL posterior
• positive false detection rate

– pFDR = pr( no QTL at λ | Y,X, λ in Λ )
– pFDR = pr(H=0)*size

pr(m=0)*size+pr(m>0)*power
– power = posterior = pr(QTL in Λ | Y,X, m>0 )
– size = (length of Λ) / (length of genome)

• extends to other model comparisons
– m = 1 vs. m = 2 or more QTL
– pattern = ch1,ch2,ch3 vs. pattern > 2*ch1,ch2,ch3
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trans-acting QTL for SCD1

dominance?
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high throughput dilemma
• want to focus on gene expression network

– ideally capture pathway in a few dimensions
– allow for complicated genetic architecture

• may have multiple controlling loci
– could affect many genes in coordinated fashion
– could show evidence of epistasis
– quick assessment via interval mapping may be misleading

• mapping principle component as quantitative trait
– multiple interval mapping with epistatic interactions
– Liu et al. (1996 Genetics); Zeng et al. (2000 Genetics) Mahler et al. (2002 Genomics)
– elicit biochemical pathways (Henderson et al. Hoeschele 2001; Ong Page 2002)
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mapping first PC as a trait
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pFDR for PC1 analysis
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mapping controlling loci via PC
• Y = expression data from chips for F2 population

– principle components (singular value decomposition)
• Y = UDVT

• V has eigen-genes as rows, individuals as columns
– Hilsenbeck et al. (1999); Alter et al. (2000); West et al. (2000)

• V = combined expression of coordinated genes
– map V1, V2 as quantitative traits
– identify mRNA with strong correlation: coordinated 

expression? 
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Alter et al. (2000 PNAS)
yeast cell cycleY = UDVT
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PC simply rotates & rescales
to find major axes of variation
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multivariate screen
for gene expressing mapping
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Relation of Composite Phenotypes
to Individual mRNA Expressions

(after West et al. 2000)
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SVD Pros and Cons
• advantages

– superphenotypes V1, V2, ... are orthogonal
– may only need a few

• how fast do eigen-values D drop?

– can dramatically increase power to detect QTL

• disadvantages
– less efficient if many large eigen-values
– may be difficult to interpret some superphenotypes
– PCs may not reflect genetic differential expression

• could iterate on putative QTL to improve discrimination
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Ongoing & Future Work
• fine mapping via congenic lines

– ongoing for physiological traits
– candidate genes emerging

• new F2 population focusing on islets
– expression mapping on a large scale (100-200 mice)
– development of new methodology (Jin, Yang, Lan)

• model selection for genetic architecture
– fast computation for multiple QTL (Yi, Gaffney)
– high throughput model assessment
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Summary
• mouse model for diabetes

– studying pathways via gene expression
– massive number of phenotypes: expression arrays

• model selection for multiple QTL
– Bayes factors for model assessment
– posteriors can reveal subtle hints of QTL
– multiple trait mapping…

• dimension reduction to elicit pathways
– study genetic architecture of "supergenes"
– unravel correlation with individual mRNA

• connection to false discovery rate
– whole genome evaluation
– calibrate posterior region with pFDR
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software
• www.stat.wisc.edu/~yandell/qtl/software/Bmapqtl

– module using QtlCart format
– compiled in C for Windows/NT
– extensions in progress
– R post-processing graphics

• library(bim) is cross-compatible with library(qtl)

• Bayes factor and reversible jump MCMC computation
• enhances MCMCQTL and revjump software

– initially designed by JM Satagopan (1996)
– major revision and extension by PJ Gaffney (2001)

• whole genome
• multivariate update of effects; long range position updates
• substantial improvements in speed, efficiency
• pre-burnin: initial prior number of QTL very large


