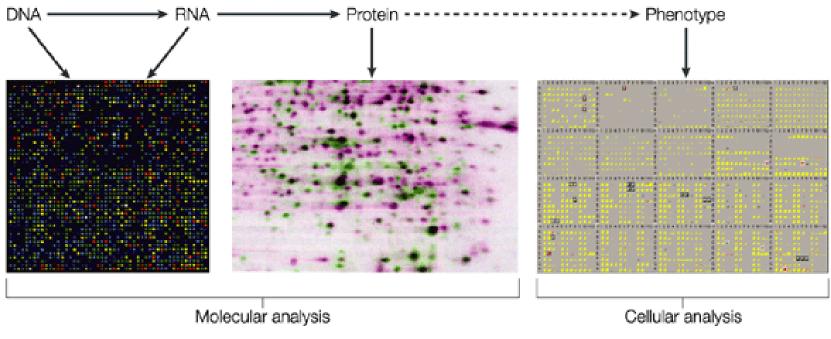


High Throughput Gene Mapping Brian S. Yandell

Summer Research Program in Biostatistics June 2004 www.stat.wisc.edu/~yandell/statgen

UW-Madison

central dogma via microarrays (Bochner 2003)



Nature Reviews | Genetics

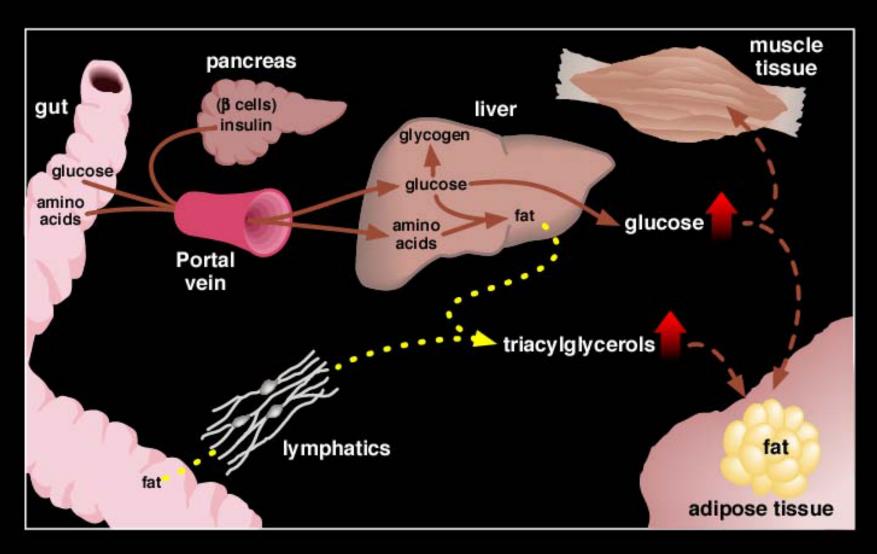
what can you do?

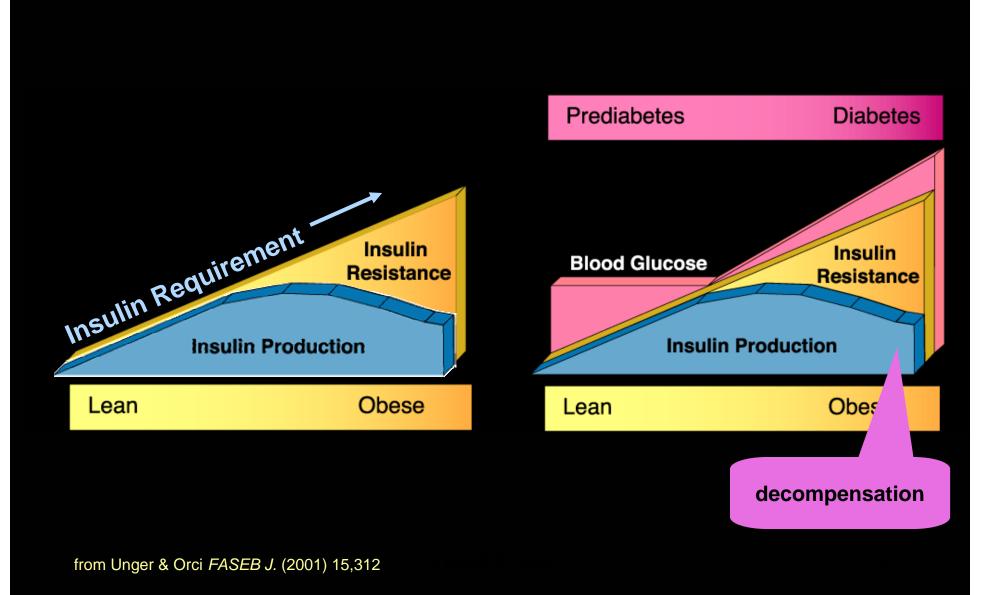
- participate in hierarchy of research teams
 - biostatistics: Yandell, Kendziorski, 3-5 grad students
 - bioinformatics: Attie, Lan (biochem), Craven + 2 CS grad students
 - biochemistry: (optional) weekly interdisciplinary lab meetings
- conduct data analysis of 1-2 large data sets
 - 30,000 responses, 60 individuals, 200 genetic markers
 - learn multivariate statistical & quantitative statistical methods
 - develop innovative graphical summaries
- develop statistical computing tools
 - learn about construction of R libraries and archiving
 - develop new code with potential wide usage
 - transfer research methods to practice through user-friendly code

studying diabetes in an F2

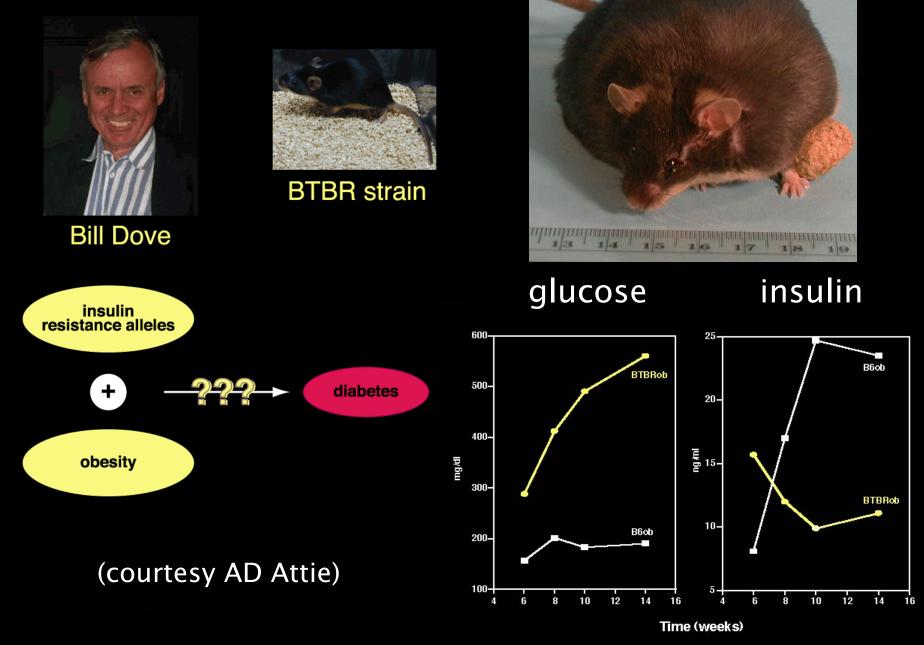
- segregating cross of inbred lines
 - B6.ob x BTBR.ob \rightarrow F1 \rightarrow F2
 - selected mice with ob/ob alleles at leptin gene (chr 6)
 - measured and mapped body weight, insulin, glucose at various ages (Stoehr et al. 2000 *Diabetes*)
 - sacrificed at 14 weeks, tissues preserved
- gene expression data
 - Affymetrix microarrays on parental strains, F1
 - (Nadler et al. 2000 *PNAS*; Ntambi et al. 2002 *PNAS*)
 - RT-PCR for a few mRNA on 108 F2 mice liver tissues
 - (Lan et al. 2003 *Diabetes;* Lan et al. 2003 *Genetics*)
 - Affymetrix microarrays on 60 F2 mice liver tissues
 - design (Jin et al. 2004 *Genetics* tent. accept)
 - analysis (work in progress)

Type 2 Diabetes Mellitus





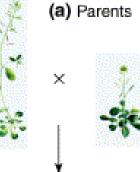
Insulin Resistant Mice



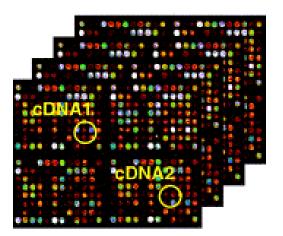
why map gene expression as a quantitative trait?

- *cis* or *trans*-action?
 - does gene control its own expression?
 - or is it influenced by one or more other genomic regions?
 - evidence for both modes (Brem et al. 2002 Science)
- simultaneously measure all mRNA in a tissue
 - ~5,000 mRNA active per cell on average
 - ~30,000 genes in genome
 - use genetic recombination as natural experiment
- mechanics of gene expression mapping
 - measure gene expression in intercross (F2) population
 - map expression as quantitative trait (QTL)
 - adjust for multiple testing

idea of mapping microarrays (Jansen Nap 2001)

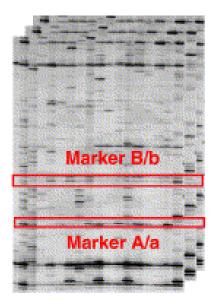


(c) Microarray per offspring



(b) Segregating population

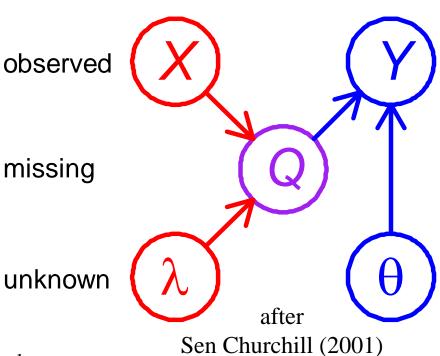
(d) Markers per offspring



Yandell © 2004

interval mapping basics

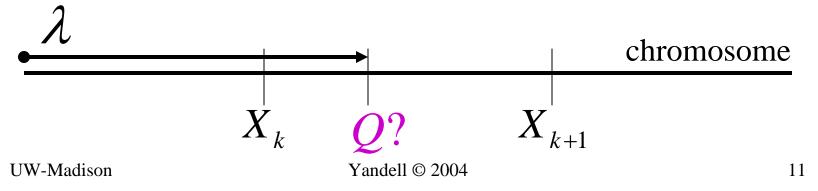
- observed measurements
 - Y = phenotypic trait
 - X = markers & linkage map
 - i = individual index 1,...,n
- missing data
 - missing marker data
 - Q = QT genotypes
 - alleles QQ, Qq, or qq at locus
- unknown quantities
 - $\lambda = QT$ locus (or loci)
 - θ = phenotype model parameters
 - -m =number of QTL
- $pr(Q|X, \lambda, m)$ recombination model
 - grounded by linkage map, experimental cross
 - recombination yields multinomial for Q given X
- $pr(Y|Q, \theta, m)$ phenotype model
 - distribution shape (assumed normal here)
 - unknown parameters θ (could be non-parametric)



recombination model $pr(Q|X,\lambda)$

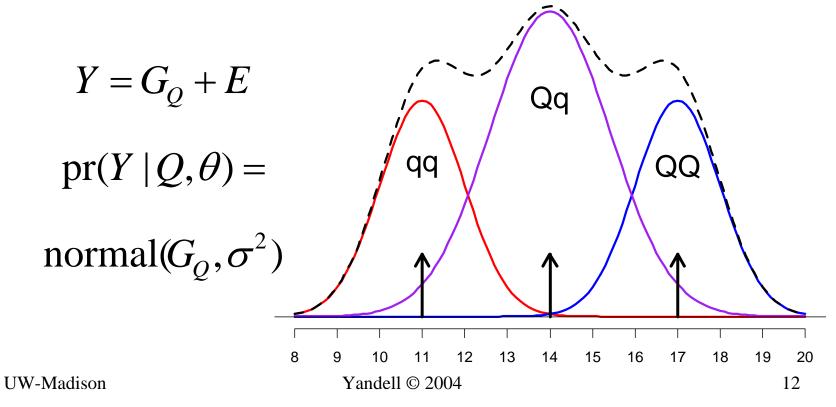
- locus λ is distance along linkage map
 - identifies flanking marker region
- flanking markers provide good approximation
 - map assumed known from earlier study
 - inaccuracy slight using only flanking markers
 - extend to next flanking markers if missing data
 - could consider more complicated relationship
 - but little change in results

 $pr(Q|X,\lambda) = pr(geno | map, locus) \approx$ pr(geno | flanking markers, locus)



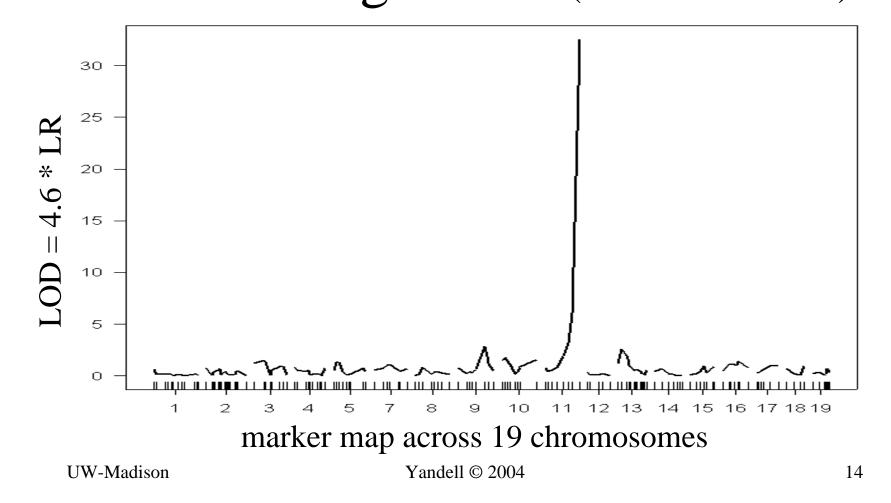
idealized phenotype model

- trait = mean + additive + error
- trait = effect_of_geno + error
- pr(trait | geno, effects)

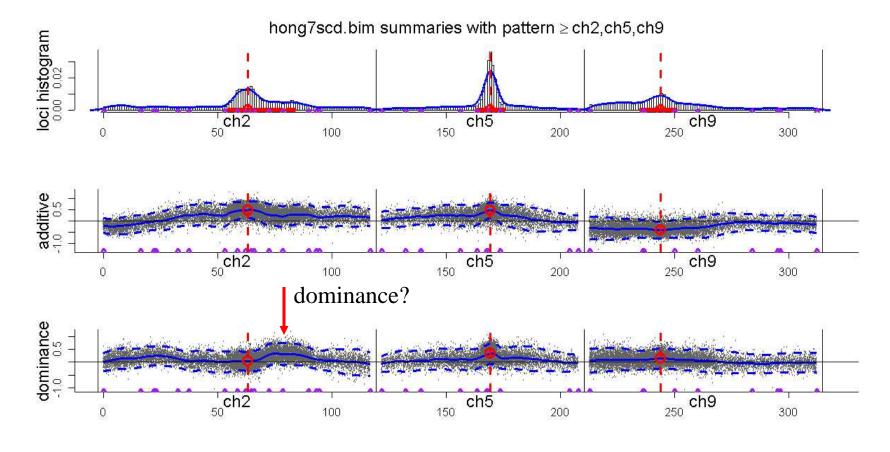


interval mapping objective

- likelihood mixes over genotypes Q
 L(λ,θ|Y) = product_i [sum_Q pr(Q|X_i,λ) pr(Y_i/Q,θ)]
 maximize likelihood to estimate loci & effects
 LOD = log10(L(λ,θ|Y) / null likelihood)
- Bayesian posterior samples Q as missing data
 pr(λ,Q,θ/Y,X) = pr(λ,θ) product_i pr(Q_i|X_i,λ) pr(Y_i/Q_i,θ)
 average over unknown Q to study loci & effects

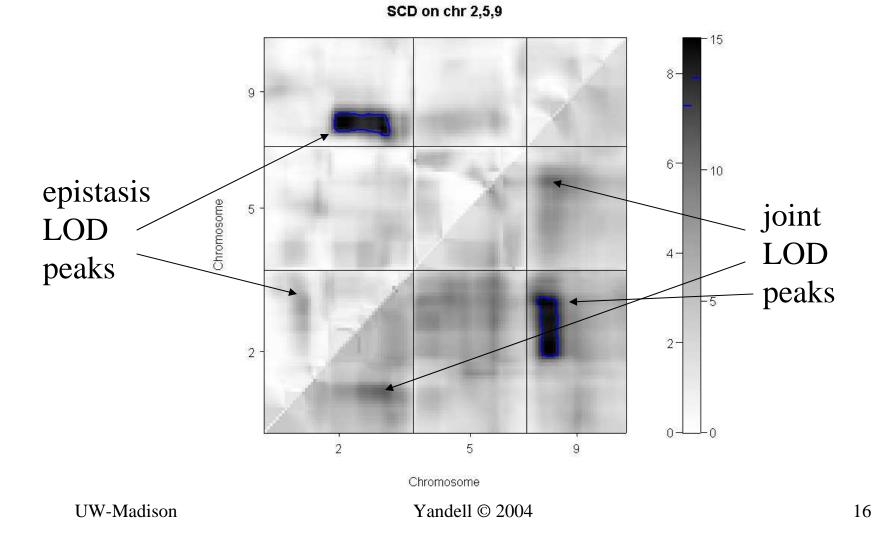


complicated *trans*-action for SCD1 (3-4 gene regions influence expression of SCD1)



UW-Madison

statistical interaction for SCD1



multiple QTL phenotype model

- phenotype affected by genotype & environment $pr(Y/Q, \theta) \sim N(G_Q, \sigma^2)$ $Y = G_Q + environment$
- partition genotypic mean into QTL effects
 G_Q = μ + β₁(Q) + ... + β_m(Q) + β₁₂(Q) + ...
 G_Q = mean + main effects + epistatic interactions
 eneral form of QTL effects for model M
 - $G_Q = \mu + \sup_{j \text{ in } M} \beta_j(Q)$ /M/ = number of terms in model $M < 2^m$

coordinated expression in mouse genome (Schadt et al. 2003)

Low FPM group

6

9

15/

16

expression pleiotropy in yeast genome (Brem et al. 2002)

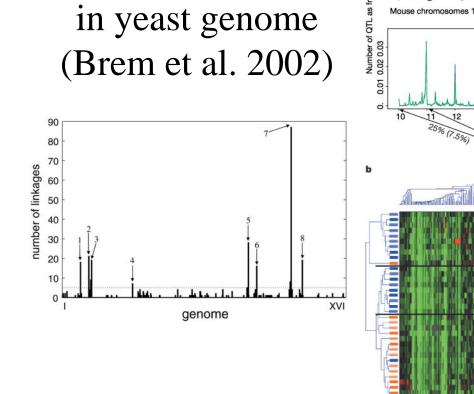
on of total 0. 0.01 0.02 0.03

Mouse chromosomes 1-19

13

23%

14



C Full F₂ set High FPM group 1 + low FPM group High FPM group 2 + low FPM group g LOD score 8 9 10 N 0 0.2 0.4 0.6 0.8 1.0 0 1.2 Chromosome 2 (morgans) 17 18 5% (5.5%) d High FPM group 1 scor High FPM group 2 OD

0.2

0.4

Chromosome 19 (morgans)

UW-Madison

Yandell © 2004

0.6

0.8

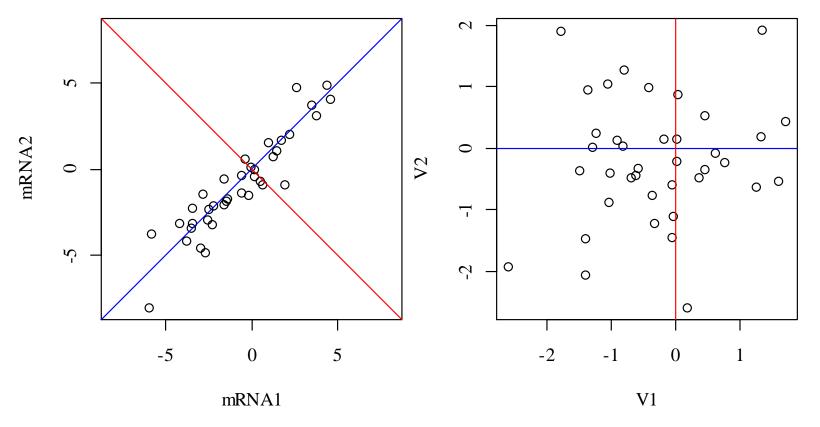
from gene expression to super-genes

- PC or SVD decomposition of multiple traits
 - Y = t traits $\times n$ individuals
 - decompose as $Y = UDW^{T}$
 - U, W = ortho-normal transforms (eigen-vectors)
 - D = diagonal matrix with singular values
- transform problem to principal components
 - W_1 and W_2 uncorrelated "super-traits"
- interval map each PC separately

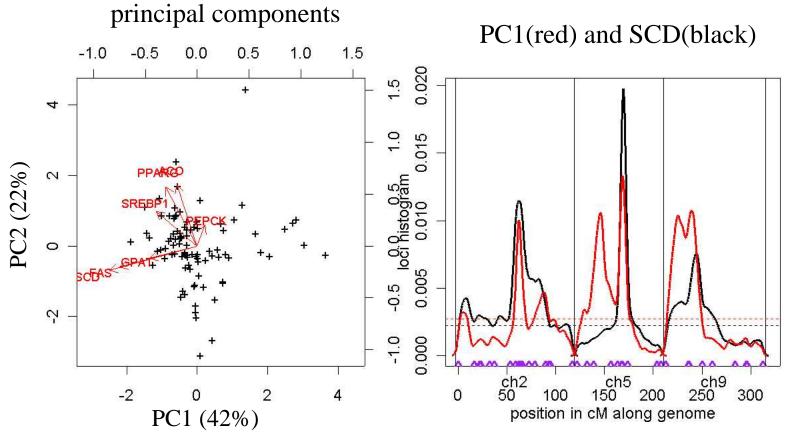
 $- W_1 = G^*_{1Q} + e^*_{1}$

• may only need to map a few PCs

PC simply rotates & rescales to find major axes of variation



multivariate screen for gene expressing mapping



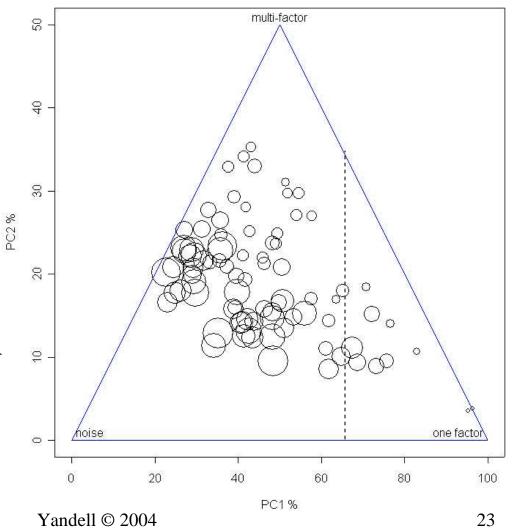
UW-Madison

PC across microarray functional groups

1500+ mRNA of 30,00085 functional groups60 mice2-35 mRNA / groupwhich are interesting?

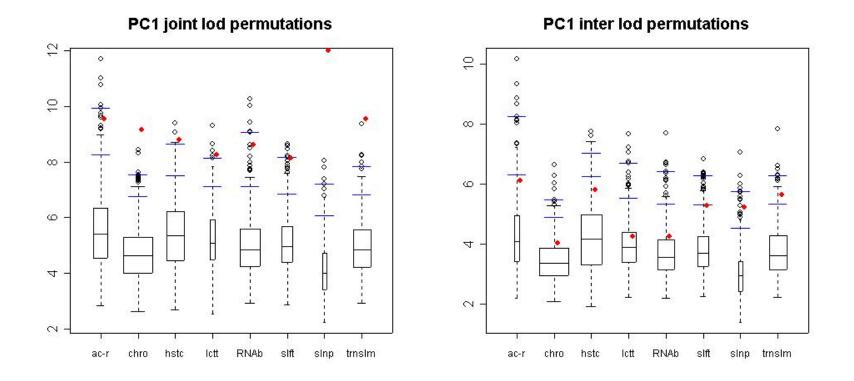
examine PC1, PC2

circle size = # unique mRNA



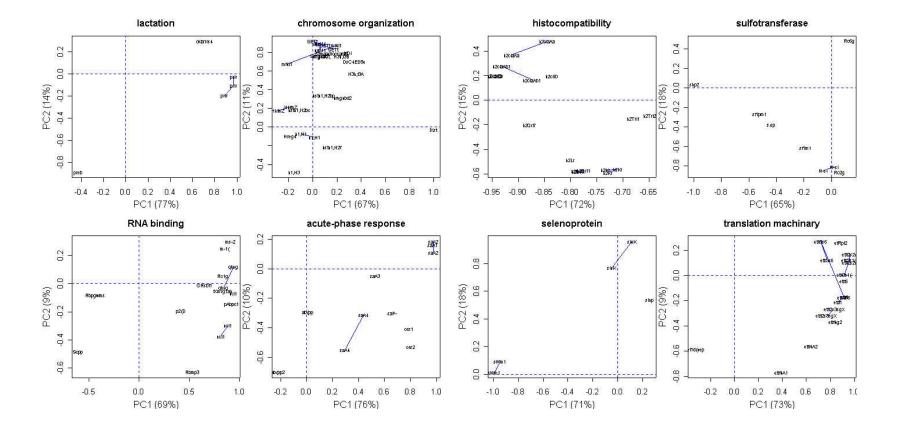
UW-Madison

how well does PC1 do? lod peaks for 2 QTL at best pair of chr vs. 500 permutations



UW-Madison

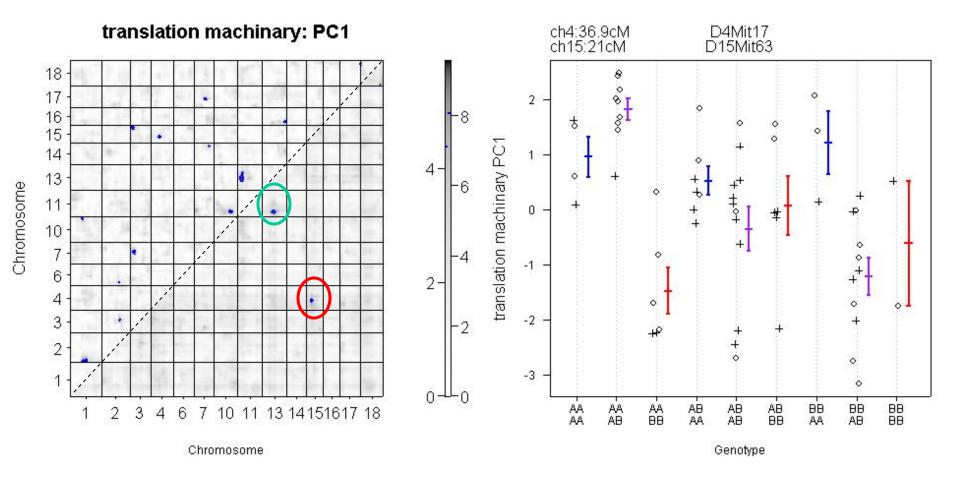
factor loadings for PC1&2



UW-Madison

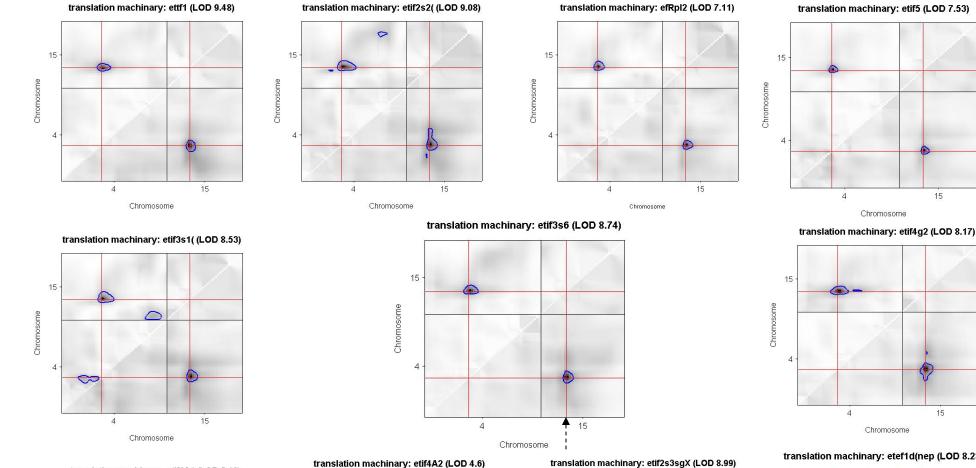
Yandell © 2004

focus on translation machinery (EIF)



UW-Madison

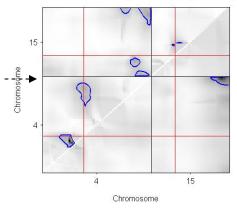
Yandell © 2004



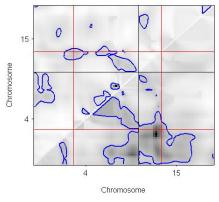
translation machinary: etef1d(nep (LOD 8.23)

15

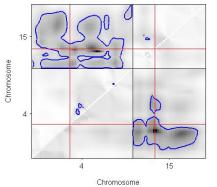
15

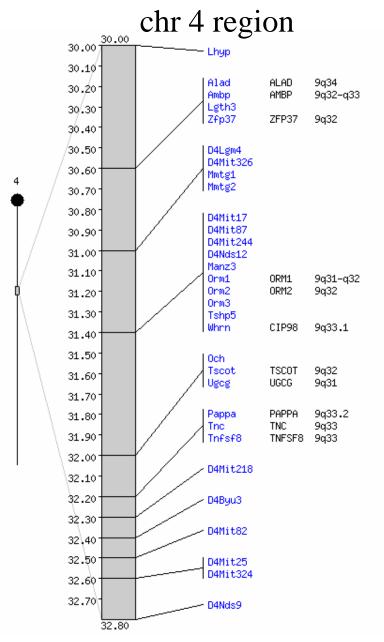


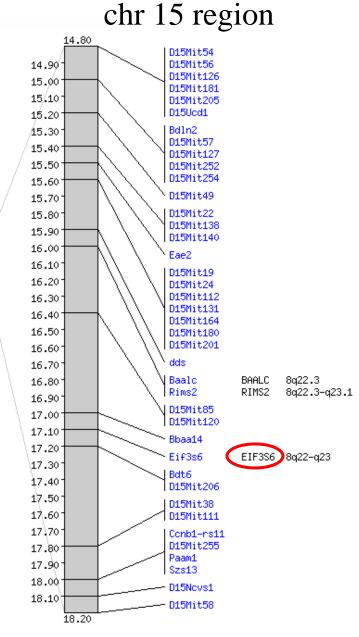
15 . Chromosome 4 4 15 Chromosome 1 © 2004



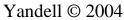
translation machinary: etif4A1 (LOD 5.16)





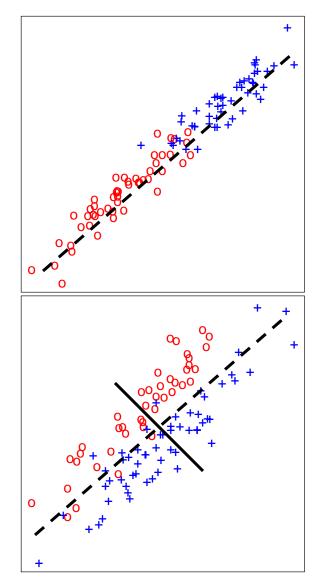




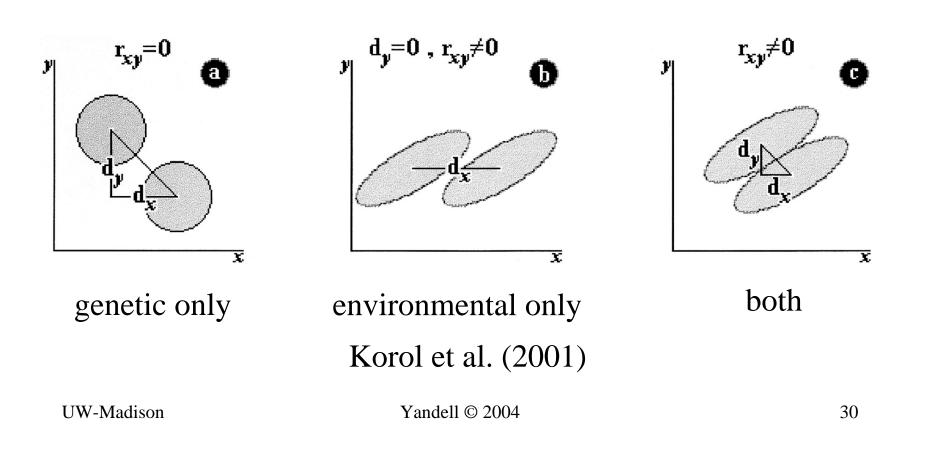


improvements on PC?

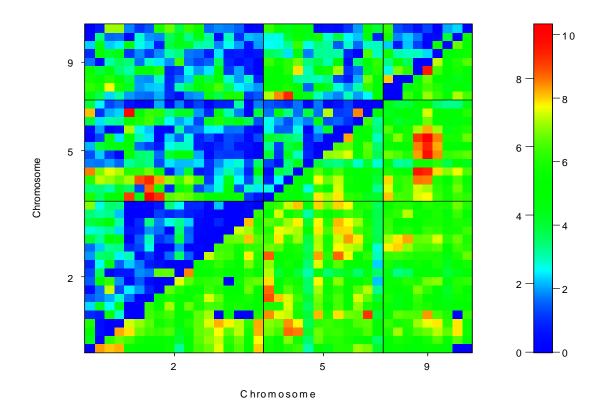
- what is our goal?
 - reduce dimensionality
 - focus on QTL
- PC reduces dimensionality
 - but may not relate to genetics
- discriminant analysis (DA)
 - rotate to improve discrimination
 - redo at each putative QTL
 - Gilbert and le Roy (2003,2004)



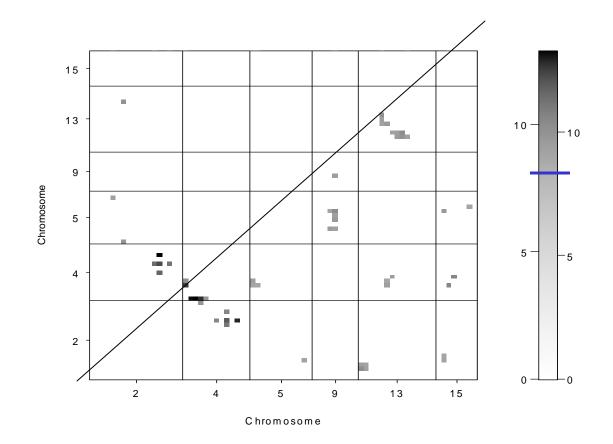
genetic & environmental correlation with multiple traits



discriminant analysis by marker pairs for SCD1-influencing chromosomes



DA for more chromosomes (mask values below 8)



what is the biological goal?

- understand biology of diabetes & obesity
- find genes influencing mRNA expression
 - localize genomic regions of high influence
 - coordinated regulation of many mRNA?
 - search databases for candidate genes there
- find mRNA expression with strong signals
 - prioritize subset of 30,000 mRNA
 - find genomic regions that influence them
- conduct followup experiments
 - new genetic crosses, more tissues
 - detailed assays of biochemical pathways