Reversible Jump Details

Brian S. Yandell
www.stat.wisc.edu/~yandell/statgen
University of Wisconsin-Madison
April 2008

reversible jump idea

- expand idea of MCMC to compare models
- adjust for parameters in different models
- augment smaller model with innovations
- constraints on larger model
- calculus "change of variables" is key
- add or drop parameter(s)
- carefully compute the Jacobian
- consider stepwise regression
- Mallick (1995) \& Green (1995)
- efficient calculation with Hausholder decomposition

model selection in regression

- known regressors (e.g. markers)
- models with 1 or 2 regressors
- jump between models
- centering regressors simplifies calculations

$$
\begin{aligned}
& m=1: Y_{i}=\mu+a\left(Q_{i 1}-\bar{Q}_{1}\right)+e_{i} \\
& m=2: Y_{i}=\mu+a_{1}\left(Q_{i 1}-\bar{Q}_{1}\right)+a_{2}\left(Q_{i 2}-\bar{Q}_{2}\right)+e_{i}
\end{aligned}
$$

slope estimate for 1 regressor

recall least squares estimate of slope
note relation of slope to correlation

$$
\begin{aligned}
& \hat{a}=\frac{r_{1 y} s_{y}}{s_{1}}, \quad r_{1 y}=\frac{\sum_{i=1}^{n}\left(Q_{i 1}-\overline{Q_{1}}\right)\left(Y_{i}-\bar{Y}\right) / n}{s_{1} s_{y}} \\
& s_{1}^{2}=\sum_{i=1}^{n}\left(Q_{i 1}-\overline{Q_{1}}\right)^{2} / n, s_{y}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} / n
\end{aligned}
$$

2 correlated regressors

slopes adjusted for other regressors
$\hat{a}_{1}=\frac{\left(r_{1 y}-r_{12} r_{2 y}\right) s_{y}}{s_{1}}=\hat{a}-\frac{r_{2 y} s_{y}}{s_{2}} c_{21}, \quad c_{21}=\frac{r_{12} s_{2}}{s_{1}}$
$\hat{a}_{2}=\frac{\left(r_{2 y}-r_{12} r_{1 y}\right) s_{y}}{s_{2}}, s_{2 \cdot 1}^{2}=\frac{\sum_{i=1}^{n}\left(Q_{i 2}-\bar{Q}_{2}-c_{21}\left(Q_{i 1}-\bar{Q}_{1}\right)\right)^{2}}{n}$

Gibbs Sampler for Model 1

- mean

$$
\mu \sim \phi\left(\eta+B_{n}(\bar{Y}-\eta), B_{n} \frac{\sigma^{2}}{n}\right), B_{n}=\frac{n}{n+\kappa}
$$

- slope

$$
a \sim \phi\left(B_{n} \frac{\sum_{i=1}^{n}\left(Q_{i 1}-\bar{Q}_{1}\right)\left(Y_{i}-\bar{Y}\right)}{n s_{1}^{2}}, B_{n} \frac{\sigma^{2}}{n s_{1}^{2}}\right)
$$

- variance

$$
\sigma^{2} \sim \operatorname{inv}-\chi^{2}\left(v+n, \frac{v \tau^{2}+\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}-a\left(Q_{i 1}-\bar{Q}_{1}\right)\right)^{2}}{v+n}\right)
$$

Gibbs Sampler for Model 2

- mean

$$
\begin{aligned}
& \mu \sim \phi\left(\eta+B_{n}(\bar{Y}-\eta), B_{n} \frac{\sigma^{2}}{n}\right) \\
& a_{2} \sim \phi\left(B_{n} \frac{\sum_{i=1}^{n}\left(Q_{i 2}-\bar{Q}_{2}\right)\left(Y_{i}-\bar{Y}-a_{1}\left(Q_{i 1}-\bar{Q}_{1}\right)\right)}{n s_{2.1}^{2}}, B_{n} \frac{\sigma^{2}}{n s_{2.1}^{2}}\right)
\end{aligned}
$$

- slopes
- variance
$\sigma^{2} \sim \operatorname{inv}-\chi^{2}\left(v+n, \frac{v \tau^{2}+\sum_{i=1}^{n}\left(Y_{i}-\bar{Y} \cdot \sum_{k=1}^{2} a_{k}\left(Q_{i k}-\bar{Q}_{k}\right)\right)^{2}}{v+n}\right)$

updates from 2->1

- drop 2nd regressor
- adjust other regressor

$$
\begin{aligned}
& a \rightarrow a_{1}+a_{2} c_{21} \\
& a_{2} \rightarrow 0
\end{aligned}
$$

updates from 1->2

- add 2 nd slope, adjusting for collinearity
- adjust other slope \& variance

$$
\begin{aligned}
& z \sim \phi(0,1), \quad J=\frac{\sigma}{s_{2 \cdot 1} \sqrt{n}} \\
& a_{2} \rightarrow \hat{a}_{2}+z \times J, \quad \hat{a}_{2}=\frac{\sum_{i=1}^{n}\left(Q_{i 2}-\bar{Q}_{2}\right)\left(Y_{i}-\hat{\mu}-\hat{a}_{1}\left(Q_{i 1}-\bar{Q}_{1}\right)\right)}{n s_{2 \cdot 1}^{2}} \\
& a_{1} \rightarrow a-a_{2} c_{21}=a-z \times c_{21} J-\hat{a}_{2} c_{21}
\end{aligned}
$$

model selection in regression

- known regressors (e.g. markers)
- models with 1 or 2 regressors
- jump between models
- augment with new innovation z
m parameters innovations transformations

$$
\begin{array}{ll}
1 \rightarrow 2 \quad\left(\mu, a, \sigma^{2} ; z\right) \quad z \sim \phi(0,1) & \left\{\begin{array}{c}
a_{2} \rightarrow \hat{a}_{2}+z \times J \\
a_{1} \rightarrow a-a_{2} c_{21}
\end{array}\right\} \\
2 \rightarrow 1\left(\mu, a_{1}, a_{2}, \sigma^{2}\right) & \left\{\begin{array}{c}
a \rightarrow a_{1}+a_{2} c_{21} \\
z \rightarrow 0
\end{array}\right\}
\end{array}
$$

change of variables

- change variables from model 1 to model 2
- calculus issues for integration
- need to formally account for change of variables
- infinitessimal steps in integration (db)
- involves partial derivatives (next page)

$$
\begin{gathered}
\binom{a_{1}}{a_{2}}=\left[\begin{array}{ccc}
1 & -c_{21} J & -c_{21} \\
0 & J & 1
\end{array}\right] \times\left(\begin{array}{c}
a \\
z \\
\hat{a}_{2}
\end{array}\right)=g\left(a ; z \mid Y, Q_{1}, Q_{2}\right) \\
\int \pi\left(a_{1}, a_{2} \mid Y, Q_{1}, Q_{2}\right) d a_{1} d a_{2}=\int \pi\left(a ; z \mid Y, Q_{1}, Q_{2}\right) J d a d z
\end{gathered}
$$

Jacobian \& the calculus

- Jacobian sorts out change of variables
- careful: easy to mess up here!

$$
\begin{gathered}
g(a ; z)=\left(a_{1}, a_{2}\right), \frac{\partial g(a ; z)}{\partial a \partial z}=\left[\begin{array}{cc}
1 & -c_{21} J \\
0 & J
\end{array}\right] \\
\left|\operatorname{det}\left(\left[\begin{array}{cc}
1 & -c_{21} J \\
0 & J
\end{array}\right]\right)\right|=\left|1 \times J-0 \times\left(-c_{21} J\right)\right|=J \\
d a_{1} d a_{2}=\left|\operatorname{det}\left(\frac{\partial g\left(\mu, a, \sigma^{2} ; z\right)}{\partial a \partial z}\right)\right| d a_{1} d a_{2}=J d a d z
\end{gathered}
$$

credible set for additive

$90 \% \& 95 \%$ sets based on normal regression line corresponds to slope of updates

multivariate updating of effects

- more computations when $m>2$
- avoid matrix inverse
- Cholesky decomposition of matrix
- simultaneous updates

- effects at all loci
after
- accept new locus based on
- sampled new genos at locus
- sampled new effects at all loci
- also long-range positions updates

References

- Satagopan, Yandell (1996); Heath (1997); Sillanpää, Arjas (1998); Stephens, Fisch (1998)
- Green (1995); Richardson, Green (1997); Green 2003, 2004

