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Outline

• Non-normal phenotypes
– Limitations of normal assumption
– Quick fixes: transformations
– Fancy approaches: semi-parametric “families”
– Bottom line: normal OK for location, not effects

• Bayesian interval mapping
– Multiple QTL model selection
– Graphical diagnostic tools
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interval mapping basics
• observed measurements

– Y = phenotypic trait
– X = markers & linkage map

• i = individual index 1,…,n
• missing data

– missing marker data
– Q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– λ = QT locus (or loci)
– θ = phenotype model parameters
– m = number of QTL

• pr(Q|X,λ,m) recombination model
– grounded by linkage map, experimental cross
– recombination yields multinomial for Q given X

• pr(Y|Q,θ,m) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters θ (could be non-parametric)

observed X Y

missing Q

unknown λ θ
after

Sen Churchill (2001)
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recombination model pr(Q|X,λ) 
• locus λ is distance along linkage map

– identifies flanking marker region
• flanking markers provide good approximation

– map assumed known from earlier study
– inaccuracy slight using only flanking markers

• extend to next flanking markers if missing data
– could consider more complicated relationship

• but little change in results

pr(Q|X,λ) = pr(geno | map, locus) ≈
pr(geno | flanking markers, locus)

kX 1+kXQ?

λ
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idealized phenotype model
• trait = mean + additive + error
• trait = effect_of_geno + error
• pr( trait | geno, effects )
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limitations of normal assumption
• measurements not normal

– categorical traits: counts (e.g. number of tumors)
• use methods specific for counts
• binomial, Poisson, negative binomial

– traits measured over time and/or space
• survival time (e.g. days to flowering)
• developmental process; signal transduction between cells
• TP Speed (pers. comm.); Ma, Casella, Wu (2002)

• false positives due to miss-specified model
– how to check model assumptions?

• want more robust estimates of effects
– parametric: only center (mean), spread (SD)
– shape of distribution may be important
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quick fixes: transformations
• binary trait (yes/no, hi/lo, …)

– map directly as another marker
– categorical: break into binary traits?
– mixed binary/continuous: condition on Y > 0?

• known model for biological mechanism
– counts Poisson 
– fractions binomial
– clustered negative binomial

• transform to stabilize variance
– counts √Y = sqrt(Y)
– concentration log(Y) or log(Y+c) 
– fractions arcsin(√Y)

• transform to symmetry (approx. normal)
– fraction log(Y/(1-Y)) or log((Y+c)/(1+c-Y))

• empirical transform based on histogram
– watch out: hard to do well even without mixture
– probably better to map untransformed, then examine residuals
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QTL for binomial data
• approximate methods: marker regression

– Zeng (1993,1994); Visscher et al. (1996); McIntyre et 
al. (2001)

• interval mapping, CIM
– Xu Atchley (1996); Yi Xu (2000)
– Y ~ binomial(1,π ), π depends on genotype Q
– pr(Y|Q) = (πQ)Y (1 – πQ)(1–Y)

– substitute this phenotype model in EM iteration
• or just map it as another marker!

– but may have complex
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threshold or latent variable idea
• "real", unobserved phenotype Z is continuous
• observed phenotype Y is ordinal value

– no/yes; poor/fair/good/excellent
– pr(Y = j) = pr(τj–1 < Z ≤ τj)
– pr(Y ≤ j) = pr(Z ≤ τj)

• use logistic regression idea (Hackett Weller 1995)
– substitute new phenotype model in to EM algorithm
– or use Bayesian posterior approach
– extended to multiple QTL (papers in press)

1)]exp(1[)|(pr)|(pr −−++=≤=≤ jQj GQZQjY τµτ
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quantitative & qualitative traits
• Broman (2003): spike in phenotype

– large fraction of phenotype has one value
– map binary trait (is/is not that value)
– map continuous trait given not that value

• multiple traits
– Williams et al. (1999)

• multiple binary & normal traits
• variance component analysis

– Corander Sillanpaa (2002)
• multiple discrete & continuous traits
• latent (unobserved) variables
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other parametric approaches
• Poisson counts

– Mackay Fry (1996)
• trait = bristle number

– Shepel et al (1998)
• trait = tumor count

• negative binomial
– Lan et al. (2001)

• number of tumors

• exponential
– Jansen (1992)

Mackay Fry (1996 Genetics)
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marker density & sample size: 2 QTL
modest sample size

dense vs. sparse markers
large sample size

dense vs. sparse markers

Wright Kong (1997 Genetics)
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robust locus estimate for 
non-normal phenotype

Wright Kong (1997 Genetics)

large sample size &
dense marker map:
no need for normality

but what happens for
modest sample sizes?
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what shape is your histogram?
• histogram conditional on known QT genotype

– pr(Y|qq,θ) model shape with genotype qq
– pr(Y|Qq,θ) model shape with genotype Qq
– pr(Y|QQ,θ) model shape with genotype QQ 

• is the QTL at a given locus λ?
– no QTL pr(Y|qq,θ) = pr(Y|Qq,θ) = pr(Y|QQ,θ)
– QTL present pr(Y|X,λ,θ) = sumQ pr(Q|X,λ) pr(Y|Q,θ)

• what shape is your phenotype model?
– parametric pr(Y|Q,θ) = f(Y | µ, GQ, σ2)
– semi-parametricpr(Y|Q,θ) = f(Y) exp(YβQ)
– non-parametric pr(Y|Q,θ) = FQ(Y)
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semi-parametric QTL
• phenotype model pr(Y|Q,θ) = f(Y)exp(YβQ)

– f (Y) is some unknown distribution shape (density)
– exp(YβQ) `tilts’ f based on genotype Q and phenotype Y

• test for QTL at locus λ
– β = (βqq, βQq, βQQ) unknown effect parameters
– no QTL: βQ = 0 for all Q, or pr(Y|Q,θ) = f(Y)

• includes many standard phenotype models without having 
to choose among them
normal pr(Y|Q,θ) = N(GQ,σ2)
Poisson pr(Y|Q,θ) = Poisson(GQ)
exponential, binomial, …, but not negative binomial
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semi-parametric empirical likelihood
• likelihood: basis for scanning the genome

product over i = 1,…,n individuals
L(θ ,λ|Y) = producti pr(Yi|Xi,λ)

= producti sumQ pr(Q|Xi,λ) pr(Yi|Q,θ)
• empirical likelihood (Owen 1988)

L(θ,λ|Y,X) = producti [sumQ pr(Q|Xi,λ) f(Yi) exp(YiβQ)]
= producti f(Yi) wi

with weights wi = sumQ pr(Q|Xi,λ) exp(YiβQ)
• relies only on flanking markers Xi
• 4 possible values for BC, 9 for F2, etc.

• profile of likelihood: L(λ|Y,X) = maxθ L(θ,λ|Y,X)
(rescaled LOD score)
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semi-parametric formal tests
• clever tricks

– partial and conditional empirical LOD
• Zou, Fine, Yandell (2002 Biometrika); Zou Fine (2003 Bioka)
• Jin, Fine, Yandell (in prep)

– generalized estimating equations
• Lange, Whittaker (2001 Genetics)

• tests similar to normal LOD
– single locus test: approximate χ2 with 1 d.f.
– genome-wide scan: same critical values
– permutation test: possible with some extra work
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histograms and CDFs
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histograms capture shape
but are not very accurate

CDFs are more accurate
but not always intuitive
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rat study of breast cancer
Lan et al. (2001 Genetics)

• rat backcross
– two inbred strains

• Wistar-Furth susceptible
• Wistar-Kyoto resistant

– backcross to WF
– 383 females
– chromosome 5, 58 markers

• search for resistance genes
• Y = # mammary carcinomas
• where is the QTL? dash = normal

solid = semi-parametric
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what shape histograms by genotype?
Zou et al. Biometrika (2002)

WF/WF WKy/WF

line = normal, + = semi-parametric, o = confidence interval
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non-parametric interval mapping
• phenotype model pr(Y|Q,θ ) = FQ(Y) 

– θ = F = (Fqq,FQq,FQQ) arbitrary distribution functions

• interval mapping Wilcoxon rank-sum test
– replaced Y by rank(Y)
– Kruglyak Lander (1995); Poole Drinkwater (1996); Broman (2003)

• estimator of horizontal shift in distribution
– Hodges-Lehmann estimator: pr(Y|Q,θ ) = FQ(Y) = F(Y+Qβ)
– Zou, Yandell Fine (2003 Genetics, in press)

• non-parametric cumulative distribution
– Fine, Zou, Yandell (2001 ms)

• stochastic ordering
– Hoff et al. (2002)
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non-parametric QTL CDFs
• estimate non-parametric phenotype model

– cumulative distributions FQ(y) = pr(Y ≤ y |Q)
– can use to check parametric model validity

• basic idea:
pr(Y ≤ y |X,λ) = sumQ pr(Q|X,λ)FQ(y) 
– depends on X only through flanking markers
– few possible flanking marker genotypes

• 4 for BC, 9 for F2, etc.

• readily extended to censored data
– time to flowering for non-vernalized plants
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what QTL influence flowering time?
no vernalization: censored survival

• Brassica napus
– Major female

• needs vernalization
– Stellar male

• insensitive
– 99 double haploids

• Y = log(days to flower)
– over 50% Major at QTL 

never flowered
– log not fully effective grey = normal, red = non-parametric
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what shape is flowering distribution?
B. napus Stellar B. napus Major

line = normal, + = non-parametric, o = confidence interval
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interval mapping basics
• observed measurements

– Y = phenotypic trait
– X = markers & linkage map

• i = individual index 1,…,n
• missing data

– missing marker data
– Q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– λ = QT locus (or loci)
– θ = phenotype model parameters
– m = number of QTL

• pr(Q|X,λ,m) recombination model
– grounded by linkage map, experimental cross
– recombination yields multinomial for Q given X

• pr(Y|Q,θ,m) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters θ (could be non-parametric)

observed X Y

missing Q

unknown λ θ
after

Sen Churchill (2001)
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Bayesian interval mapping
• likelihood mixes over genotypes Q

L(λ,θ|Y) = producti [sumQ pr(Q|Xi,λ) pr(Yi|Q,θ)]
– maximize likelihood to estimate loci & effects

• Bayesian posterior samples Q as missing data
pr(λ,Q,θ|Y,X) = pr(λ,θ) producti pr(Qi|Xi,λ) pr(Yi|Qi,θ)
– marginal summaries to estimate loci & effects

• loci: pr(λ|Y,X) = sumQ,θ pr(λ,Q,θ|Y,X)
• effects: pr(θ|Y,X) = sumQ,λ pr(λ,Q,θ|Y,X)

– sample unknowns from posterior
• prior beliefs built into pr(λ,θ) 
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why worry about multiple QTL?
• many, many QTL may affect most any trait

– how many QTL are detectable with these data?
• limits to useful detection (Bernardo 2000)
• depends on sample size, heritability, environmental variation

– consider probability that a QTL is in the model
• avoid sharp in/out dichotomy
• major QTL usually selected, minor QTL sampled infrequently 

• build M = model = genetic architecture into model
– M = {loci 1,2,…,m, plus interactions 12,13,…}
– directly allow uncertainty in genetic architecture
– model selection over number of QTL, genetic architecture
– use Bayes factors and model averaging

• to identify “better” models
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• phenotype affected by genotype & environment
pr(Y|Q,θ) ~  N(GQ , σ2)
Y = GQ + environment

• partition genotypic mean into QTL effects
GQ = µ + β1(Q) + . . . + βm(Q) + β12(Q) + . . . 
GQ = mean + main effects + epistatic interactions

• general form of QTL effects for model M
GQ = µ + sumj in M βj(Q)
|M| = number of terms in model M < 2m

multiple QTL phenotype model
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prior for phenotype model

• want prior for E(Y) that does not depend on model M
– watch out for bias toward larger models
– typically no prior information on genetic architecture

• priors on mean and effects for model M
model-independent expectation

model-independent grand mean

effects down-weighted by size of M
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• posterior depends

– prior specification
– classical (least squares) estimates
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effect of prior variance on posterior

normal prior, posterior for n = 1, posterior for n = 5 , true mean
(solid black)  (dotted blue)           (dashed red) (green arrow)

2 3 4 5 6 7 8 9 11 13 15 17

κ = 0.5

2 3 4 5 6 7 8 9 11 13 15 17

κ = 1

2 3 4 5 6 7 8 9 11 13 15 17

κ = 22.0 κ=0.5
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prior & posterior for genotypes Q
• prior is recombination model

pr(Q|Xi ,λ)
• can explicitly decompose by individual i

– binomial (or trinomial) probability
• posterior for genotype depends on

– effects via trait model
– locus via recombination model

• posterior agrees exactly with interval mapping
– used in EM: estimation step
– but need to know locus λ and effects θ
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how does phenotype Y affect Q?
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prior & posterior for QT locus
• no prior information on locus

– uniform prior over genome
– use framework map

• choose interval proportional to 
length

• then pick uniform position within 
interval
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0.
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0.
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distance (cM)

• prior information from other 
studies

•concentrate on credible regions
•use posterior of previous study 
as new prior

posterior

prior
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prior & posterior on number of QTL 
• what prior on number of QTL?

– uniform over some range
– Poisson with prior mean
– geometric with prior mean

• prior influences posterior
– good: reflects prior belief

• push data in discovery process

– bad: skeptic revolts!
• “answer” depends on “guess”
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Bayes factors to assess models
•Bayes factor: which model best supports the data?

– ratio of posterior odds to prior odds
– ratio of model likelihoods

•equivalent to LR statistic when
– comparing two nested models
– simple hypotheses (e.g. 1 vs 2 QTL)

•Bayes Information Criteria (BIC)
– Schwartz introduced for model selection in general settings
– penalty to balance model size (p = number of parameters)
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QTL Bayes factors & RJ-MCMC
• easy to compute Bayes factors from MCMC samples

– posterior pr(m|Y,X) is marginal histogram

• BF insensitive to shape of prior
– geometric, Poisson, uniform
– precision improves when prior mimics posterior

• BF sensitivite to prior variance on effects θ
– prior variance should reflect data variability
– apparently resolved by using hyper-priors

• automatic algorithm; no need for tuning by user
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1 ++
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m/Xm|YBFm,m
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior
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MCMC idea for QTLs
• construct Markov chain around posterior

– want posterior as stable distribution of Markov chain
– in practice, the chain tends toward stable distribution

• initial values may have low posterior probability
• burn-in period to get chain mixing well

• update m-QTL model components from full conditionals
– update locus λ given Q,X (using Metropolis-Hastings step)
– update genotypes Q given λ,θ,Y,X (using Gibbs sampler)
– update effects θ given Q,Y (using Gibbs sampler)
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Gibbs sampler idea
• want to study two correlated normals
• could sample directly from bivariate normal
• Gibbs sampler:

– sample each from its full conditional
– pick order of sampling at random
– repeat N times
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Gibbs sampler samples: ρ = 0.6
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Metropolis-Hastings idea
• want to study distribution f(θ)
• take Monte Carlo samples

– unless too complicated
• Metropolis-Hastings samples:

– current sample value θ
– propose new value θ*

• from some distribution g(θ,θ*)
• Gibbs sampler: g(θ,θ*) = f(θ*)

– accept new value with prob A
• Gibbs sampler: A = 1
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MCMC realization
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Metropolis-Hastings samples
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reversible jump MCMC

action steps: draw one of three choices
• update m-QTL model with probability 1-b(m+1)-d(m)

– update current model using full conditionals
– sample m QTL loci, effects, and genotypes

• add a locus with probability b(m+1)
– propose a new locus along genome
– innovate new genotypes at locus and phenotype effect
– decide whether to accept the “birth” of new locus

• drop a locus with probability d(m)
– propose dropping one of existing loci
– decide whether to accept the “death” of locus

0 Lλ1 λm+1 λmλ2 …
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sampling the number of QTL 
• use reversible jump MCMC to change m

– bookkeeping helps in comparing models
– adjust to change of variables between models
– Green (1995); Richardson Green (1997)
– other approaches out there these days… 

• think model selection in multiple regression
– but regressors (QT genotypes) are unknown
– linked loci = collinear regressors = correlated effects

– consider additive effects with coding Qij= -1,0,1

)( jijjijQ QQ −=αθ
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Bayesian software for QTLs
• R/bim (Satagopan Yandell 1996; Gaffney 2001)

– www.stat.wisc.edu/~yandell/qtl/software/Bmapqtl
– www.r-project.org contributed package
– version available within WinQTLCart (statgen.ncsu.edu/qtlcart)

• Bayesian IM with epistasis (Nengjun Yi, U AB)
– separate C++ software (papers with Xu)
– plans in progress to incorporate into R/bim

• R/qtl (Broman et al. 2003)
– biosun01.biostat.jhsph.edu/~kbroman/software
– www.r-project.org contributed package

• Pseudomarker (Sen Churchill 2002)
– www.jax.org/staff/churchill/labsite/software

• Bayesian QTL / Multimapper
– Sillanpää Arjas (1998)
– www.rni.helsinki.fi/~mjs

• Stephens & Fisch (email)
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Bmapqtl: our RJ-MCMC software
• www.stat.wisc.edu/~yandell/qtl/software/Bmapqtl

– R contributed library (www.r-project.org)
• library(bim) is cross-compatible with library(qtl)

– module within WinQTLCart format
• Bayes factor & reversible jump MCMC

– initially designed by JM Satagopan (1996)
– major revision and extension by PJ Gaffney (2001)

• whole genome
• multivariate update of effects; long range position updates
• substantial improvements in speed, efficiency
• pre-burnin: initial prior number of QTL very large

– upgrade (H Wu, PJ Gaffney, CF Jin, BS Yandell 2003)
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shape phenotype in BC study
indexed by PC1

Liu et al. (1996) Genetics
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shape phenotype via PC

Liu et al. (1996) Genetics
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Zeng et al. (2000)
CIM vs. MIM

composite interval mapping
(Liu et al. 1996)
narrow peaks
miss some QTL

multiple interval mapping
(Zeng et al. 2000)
triangular peaks

both conditional 1-D scans
fixing all other "QTL"
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MIM effects for gonad shape
(Liu et al. 1996; Zeng et al. 2000)
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CIM, MIM and IM pairscan

mim

cim
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2 QTL + epistasis:
IM versus multiple imputation

IM pairscan multiple imputation
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multiple QTL: CIM, MIM and BIM

bim

cim

mim
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MCMC diagnostics for Dm shape
• m ~ Poisson(15) prior 

on number of QTL
• Bayesian LOD (log 

posterior density)
• Heritability

• 5% burnin
• 1,000,000 samples

– every 1000th recorded
• note stable mean
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MCMC sampled loci

• markers as blue lines
– horizontal jittering

• note denser regions
– 10-11 broad regions

• jointly sampling
– 15-30 QTL at once
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MCMC model selection

• m = number of QTL
– prior: Poisson(15)

• rescaled in blue
– posterior: mean 22.4
– Bayes factor increases

• pattern across genome
– prior depends on m and 

length of chromosomes
– posterior mode: m=20
– Bayes factor favors

• m = 24
• 3*1, 8*2, 13*3
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MCMC model selection
restricted to “better models”

• models with minimum
– m ≥ 24
– pattern ≥ 3*1, 8*2, 13*3

• note uncertainty in BF
– estimate ± 2 SE

• mode is chosen pattern
– ~14% of samples

• BF similar to more 
complicated patterns

– parsimony: simpler model
– 2SE intervals overlap
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MCMC loci and effects
• model averaging

– over all models
– 1000 samples

• histogram of loci
– marginal posteriors
– superimposed on genome
– 12 peaks identified

• scatterplot: loci & effects
– smoothed mean ± 2 SE
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B. napus 8-week vernalization
whole genome study

• 108 plants from double haploid
– similar genetics to backcross: follow 1 gamete
– parents are Major (biennial) and Stellar (annual)

• 300 markers across genome
– 19 chromosomes
– average 6cM between markers

• median 3.8cM, max 34cM
– 83% markers genotyped

• phenotype is days to flowering
– after 8 weeks of vernalization (cooling)
– Stellar parent requires vernalization to flower

• available in R/bim package
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Markov chain Monte Carlo sequence 

burnin (sets up chain)
mcmc sequence

number of QTL
environmental variance
h2 = heritability
(genetic/total variance)
LOD = likelihood
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MCMC sampled loci 

subset of chromosomes
N2, N3, N16

points jittered for view
blue lines at markers

note concentration
on chromosome N2
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Bayesian model assessment 

row 1: # QTL
row 2: pattern

col 1: posterior
col 2: Bayes factor
note error bars on bf

evidence suggests
4-5 QTL
N2(2-3),N3,N16
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Bayesian estimates of  loci & effects

histogram of loci
blue line is density
red lines at estimates

estimate additive effects
(red circles)

grey points sampled
from posterior

blue line is cubic spline
dashed line for 2 SD
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Bayesian model diagnostics 
pattern: N2(2),N3,N16
col 1: density
col 2: boxplots by m

environmental variance
σ2 = .008, σ = .09

heritability
h2 = 52%

LOD = 16
(highly significant)

but note change with m
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