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outline

Correlation and causation
Correlated traits in organized groups

— modules and hotspots

— Genetic vs. environmental correlation

QTL-driven directed graphs

— Assume QTLs known, causal network unknown

Causal graphical models in systems genetics

— QTLs unknown, causal network unknown

Scaling up to larger networks
— Searching the space of possible networks
— Dealing with computation



“The old view of cause and effect ... could only
fail; things are not in our experience either
independent or causative. All classes of
phenomena are linked together, and the
problem in each case is how close is the degree
of association.”

Karl Pearson (1911)
The Grammar of Science



“The ideal ... is the study of the direct influence of
one condition on another ...[when] all other
possible causes of variation are eliminated.... The
degree of correlation between two variables ...
[includes] all connecting paths of influence....
[Path coefficients combine] knowledge of ...
correlation among the variables in a system with
... causal relations.

Sewall Wright (1921)
Correlation and causation. J Agric Res



"Causality is not mystical or metaphysical. It can
be understood in terms of simple processes, and
it can be expressed in a friendly mathematical
language, ready for computer analysis.”

Judea Pearl (2000)
Causality: Models, Reasoning and Inference



problems and controversies

* Correlation does not imply causation.
— Common knowledge in field of statistics.

e Steady state (static) measures may not reflect
dynamic processes.
— Przytycka and Kim (2010) BMC Biol

e Population-based estimates (from a sample of

individuals) may not reflect processes within
an individual.



randomization and causation

RA Fisher (1926) Design of Experiments
control other known factors

randomize assighment of treatment

— no causal effect of individuals on treatment

— no common cause of treatment and outcome

— reduce chance correlation with unknown factors

conclude outcome differences are caused by
(due to) treatment



correlation and causation

e temporal aspect: cause before reaction
— genotype (usually) drives phenotype
— phenotypes in time series
— but time order is not enough

e axioms of causality

— transitive: ifA—>B,B—>C,thenA —>C
— local (Markov): events have only proximate causes
— asymmetric: if A— B, then B cannot —> A

e Shipley (2000) Cause and Correlation in Biology



causation casts probability shadows

e causal relationship
—Y, =Y, =Y

e conditional probability
— Pr(Yy) * Pr(Y, | Y,) * Pr(Y5 | Y),)

e linear model
—-Y,=u, +e
—Y,=u, +B,°Y, +e

* addinginQTLs: Q;, > Y, > Y, < Q,
—Y, =y, +6,eQ, +e
—-Y,=u,+B,°Y,+ 6,oQ, +e



organizing correlated traits

functional grouping from prior studies
— GO, KEGG; KO panels; TF and PPI databases

co-expression modules (Horvath talk today)
eQTL hotspots (here briefly)
traits used as covariates for other traits

— does one trait essentially explain QTL of another?

causal networks (here and Horvath talk)

— modules of highly correlated traits



Correlated traits in a hotspot

e why are traits correlated?

— Environmental: hotspot is spurious
— One causal driver at locus

e Traits organized in causal cascade

— Multiple causal drivers at locus
e Several closely linked driving genes
e Correlation due to close linkage
e Separate networks are not causally related



one causal driver

Igene
chromosome
gene product
downstream
traits
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two linked causal drivers
pathways independent given drivers

| |
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hotspots of correlated traits

 multiple correlated traits map to same locus
— is this a real hotspot, or an artifact of correlation?
— use QTL permutation across traits

 references

— Breitling R, Li Y, Tesson BM, Fu J, Wu C, Wiltshire T, Gerrits A, Bystrykh
LV, de Haan G, Su Al, Jansen RC (2008) Genetical Genomics: Spotlight
on QTL Hotspots. PLoS Genetics 4: e1000232.
[d0i:10.1371/journal.pgen.1000232]

— Chaibub Neto E, Keller MP, Broman AF, Attie AD, Jansen RC, Broman
KW, Yandell BS, Quantile-based permutation thresholds for QTL
hotspots. Genetics (in review).



hOtSpOt permutation test
(Breitling et al. Jansen 2008 PLoS Genetics)

e for original dataset and each permuted set:

— Set single trait LOD threshold T
e Could use Churchill-Doerge (1994) permutations

— Count number of traits (N) with LOD above T

e Do this at every marker (or pseudomarker)
e Probably want to smooth counts somewhat

e find count with at most 5% of permuted sets
above (critical value) as count threshold

e conclude original counts above threshold are real



strain

permutation across traits
(Breitling et al. Jansen 2008 PLoS Genetics)
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guality vs. quantity in hotspots
(Chaibub Neto et al. in review)

e detecting single trait with very large LOD
— control FWER across genome
— control FWER across all traits

e finding small “hotspots” with significant traits
— all with large LODs
— could indicate a strongly disrupted signal pathway

e sliding LOD threshold across hotspot sizes



BxH ApoE-/- chr 2: hotspot
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causal model selection choices

in context of larger, unknown network

focal
trait

target
trait

target

trait
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causal

reactive

correlated

uncorrelated
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causal architecture

 how many traits are up/downstream of a trait?
— focal trait causal to downstream target traits
— record count at Mb position of focal gene
— red = downstream, blue = upstream

e what set of target traits to consider?
— all traits
— traits in module or hotspot



causal architecture references

e BIC: Schadt et al. (2005) Nature Genet

e CIT: Millstein et al. (2009) BMC Genet

e Aten et al. Horvath (2008) BMC Sys Bio

e CMST: Chaibub Neto et al. (2010) PhD thesis

Extends Vuong's model selection tests to the comparison of 3,
possibly misspecified, models.
(My) (Mz) (M)

T
Q1= Y11= Y= Qo Dz =Yi= Y= Q2 Qi =Y Ye=10Q:
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BxH ApoE-/- study
Ghazalpour et al. (2008)
PL0S Genetics

Liver expression data in a

mice intercross.

3,421 transcripts and 1,065

markers.

261 transcripts physically
located on chr 2.
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Analysis restricted to 78 traits
composing a hotspot around 54.2Mb.

This collection of traits enriches for
“immune system process’ .

Pscdbp, the local trait at 58.4Mb,
is a transcription factor.
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QTL-driven directed graphs

e given genetic architecture (QTLs), what causal
network structure is supported by data?

e R/gdg available at www.github.org/byandell
* references

— Chaibub Neto, Ferrara, Attie, Yandell (2008) Inferring

causal phenotype networks from segregating populations.
Genetics 179: 1089-1100. [doi:genetics.107.085167]

— Ferrara et al. Attie (2008) Genetic networks of liver
metabolism revealed by integration of metabolic and
transcriptomic profiling. PLoS Genet 4: e1000034.
[d0i:10.1371/journal.pgen.1000034]
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partial correlation (PC) skeleton

true graph
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edge direction: which is causal?
Mo @B M2 G
the above models are likelihood equivalent,

FOr) (2 | 1) =fly ) = F(0)f (1 | y2)

tf?ll ) f’t?zf} ( fhl ) f?f?zf}
: l}’lHH}’Eﬁ : : l}’l H—t}r’zﬁ
,-.f — \ N
_,-"'Ir
< — —
(qik ) (qa1y  (qik) (qar)
M "'\-\.,_._.-" L L

not likelihood equivalent due to QTL
Fla)f(yy [ au)f(y2 [ y1.92)f(a2)

flaz2)f (v2 | a2)f (y1 | yo. q1)f(q1)
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test edge direction using LOD score

v | au)f (i |y ﬂzfi'}
LOD = lo =
g10 {__-:= f Vo | qu}f{y1f | Y2is qlf)
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not likelihood equivalent because

Flap)f(ya [ au)f(v2 | y1,92)f (42)

fla2)f (v2 | az2)f (v1 | y2,91)f(q1)
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reverse edges
using QTLs

true graph
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» We constructed a

network from
metabolites and
transcripts
involved in liver
metabolism.

We validated this
network with in
vitro experiments
(Ferrara et al
2008). Four out of
six predictions
were confirmed.
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causal graphical models in systems genetics

e What if genetic architecture and causal network are
unknown?

— jointly infer both using iteration

e Chaibub Neto, Keller, Attie, Yandell (2010) Causal Graphical Models in
Systems Genetics: a unified framework for joint inference of causal

network and genetic architecture for correlated phenotypes. Ann Appl
Statist 4: 320-339. [d0i:10.1214/09-A0AS288]

* R/qgtlnet available from www.github.org/byandell

* Related references

— Schadt et al. Lusis (2005 Nat Genet); Li et al. Churchill (2006 Genetics);
Chen Emmert-Streib Storey(2007 Genome Bio); Liu de |la Fuente
Hoeschele (2008 Genetics); Winrow et al. Turek (2009 PLoS ONE);
Hageman et al. Churchill (2011 Genetics)



Basic idea of QTLnet

e jterate between finding QTL and network
e genetic architecture given causal network

— trait y depends on parents pa(y) in network
— QTL for y found conditional on pa(y)

e Parents pa(y) are interacting covariates for QTL scan

e causal network given genetic architecture
— build (adjust) causal network given QTL
— each direction change may alter neighbor edges



missing data method: MCMC

known phenotypes Y, genotypes Q
unknown graph G

want to study Pr(Y | G, Q)

break down in terms of individual edges
— Pr(Y|G,Q) =sum of Pr(Y; | pa(Y), Q)
sample new values for individual edges
— given current value of all other edges

repeat many times and average results



MCMC steps for QTLnet

propose new causal network G

— with simple changes to current network:
— change edge direction

— add or drop edge

find any new genetic architectures Q

— update phenotypes when parents pa(y) change in new G
compute likelihood for new network and QTL

- Pr(Y | G, Q)

accept or reject new network and QTL

— usual Metropolis-Hastings idea



BxH ApoE-/- chr 2: causal architecture
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BxH ApoE-/- causal network
for transcription factor Pscdbp
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scaling up to larger networks

e reduce complexity of graphs
— use prior knowledge to constrain valid edges
— restrict number of causal edges into each node

* make task parallel: run on many machines
— pre-compute conditional probabilities
— run multiple parallel Markov chains

e rethink approach
— LASSO, sparse PLS, other optimization methods



graph complexity with node parents
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how many node parents?

* how many edges per node? (fan-in)
— few parents directly affect one node
— many offspring affected by one node

BIC computations by maximum number of parents

# 3 4 S 6 all
10 1,300 2,560 3,820 4,660 5,120
20 23,200 100,720 333,280 875,920 10.5M
30 122,700 835,230 4 _40M 18.6M 16.1B
40 396,800 3.69M 26.7M 157M 22_0T

50 982,500 11.6M 107M 806M 28.10Q



BIC computation

e each trait (node) has a linear model
— Y ~QTL + pa(Y) + other covariates
e BIC =LOD - penalty
— BIC balances data fit to model complexity

— penalty increases with number of parents

e |imit complexity by allowing only 3-4 parents



parallel phases for Iarger projects

Phase 1: identify parents
Phase 2: compute BICs @(’w

Phase 3: store BICs

Phase 4: run Markov chains @(

Phase 5: combine results



parallel implementation

e R/gtlnet available at www.github.org/byandell

e Condor cluster: chtc.cs.wisc.edu
— System Of Automated Runs (SOAR)

e ~2000 cores in pool shared by many scientists

e automated run of new jobs placed in project
SOAR Job Progress
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BIC
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BIC samples for 100 MCMC runs
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neighborhood edge reversal

select edge
drop edge
identify parents

orphan nodes
reverse edge P
find new parents 'HE_-;I

® ®

Grzegorczyk M. and Husmeier D. (2008) Machine Learning 71 (2-3), 265-305.
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BIC samples for 100 MCMC runs
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new update scheme N
. declde 10 upaate
MCMC proposals edge (2) or node (3)

~
\ 2. pick edge at random
/i drop or reverse edge

\ update node parents

T
(6} ) /ﬁ}
(5 —=(7a) : : 3. pick node at random

O O keep or drop offspring edges
update node parents



BIC
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how to use functional information?

e functional grouping from prior studies
— may or may not indicate direction
— gene ontology (GO), KEGG
— knockout (KO) panels
— protein-protein interaction (PPIl) database
— transcription factor (TF) database

* methods using only this information
e priors for QTL-driven causal networks

— more weight to local (cis) QTLs?



modeling biological knowledge

e infer graph G from biological knowledge B
— Pr(G | B, W) =exp(— W * |B-G]|) / constant
— B = prob of edge given TF, PPI, KO database

e derived using previous experiments, papers, etc.
— G = 0-1 matrix for graph with directed edges
W =inferred weight of biological knowledge

— W=0: no influence; W large: assumed correct
 Werhli and Husmeier (2007) J Bioinfo Comput Biol



combining eQTL and bio knowledge

e probability for graph G and bio-weights W
— given phenotypes Y, genotypes X, bio info B
Pr(G, W | Y, Q, B) = Pr(Y|G,Q)Pr(G| B,W)Pr(W|B)
— Pr(Y|G,Q) is genetic architecture (QTLs)
e using parent nodes of each trait as covariates

— Pr(G|B,W) is relation of graph to biological info

e see previous slides

e put priors on QTL based on proximity, biological info

e related ref: Kim et al. Przytycka (2010) RECOMB



future work

improve algorithm efficiency
— Ramp up to 100s of phenotypes

develop visual diagnostics to explore estimates

incorporate latent variables
— Aten et al. Horvath (2008 BMC Sys Biol)

extend to outbred crosses, humans



