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outline

how are correlation and causation connected?
hotspots: do many traits really map to the same locus?
causal pairs: how to find causal drivers for hotspots?
causal networks: how to infer signal cascades?

how to scale up to larger problems



eeoe correlation & causation ¢



“The old view of cause and effect ... could only
fail, things are not in our experience either
independent or causative. All classes of
phenomena are linked together, and the
problem in each case is how close is the degree

of association.”

Karl Pearson (1911)
The Grammar of Science



“The ideal ... is the study of the direct influence of
one condition on another ...[when] all other
possible causes of variation are eliminated.... The
degree of correlation between two variables ...
[includes] all connecting paths of influence....
[Path coefficients combine] knowledge of ...

correlation among the variables in a system with
... causal relations.

Sewall Wright (1921)
Correlation and causation. J Agric Res



"Causality is not mystical or metaphysical. It can
be understood in terms of simple processes, and
it can be expressed in a friendly mathematical
language, ready for computer analysis.”

Judea Pearl (2000)
Causality: Models, Reasoning and Inference



problems and controversies

* Correlation does not imply causation.
— Common knowledge in field of statistics.

e Steady state (static) measures may not reflect
dynamic processes.
— Przytycka and Kim (2010) BMC Biol
— Blair, Kleibenstein, Churchill (2012) PLoS Comp Bio

* Population-based estimates may not reflect
within-individual processes.



randomization and causation

RA Fisher (1926) Design of Experiments
control other known factors
randomize assignment of treatment

— no causal effect of individuals on treatment
— No common cause of treatment and outcome
— reduce chance correlation with unknown factors

conclude (subsequent) outcome differences
are caused by (due to) treatment



correlation and causation

* temporal aspect: cause before reaction
— genotype (usually) drives phenotype
— phenotypes in time series
— but time order is not enough

e axioms of causality

— transitive: ifA—B,B—C,thenA—C
— local (Markov): events have proximate causes
— asymmetric: if A— B, thennotB — A

* Shipley (2000) Cause and Correlation in Biology



causation casts probability shadows
* causal relationship

—YV1=2 Y=Y
* conditional probability
— Pr(Yy) * Pr(Y, | Y,) * Pr(Y5 | Y,)
* linear model
—-Y,=u, +e
—Y, =t ByeY te
* addingin QTLs: Q, —= Y, —= Y, < Q,
—Y, =, +0,0Q te
—-Y,=u, +B,°Y,; + 6,eQ, +e



organizing correlated traits

functional grouping from prior studies
— GO, KEGG; KO panels; TF and PPI databases

co-expression modules (Horvath’s WGCNA)
eQTL hotspots (here briefly)

traits used as covariates for other traits
— does one trait essentially explain QTL of another?

causal networks (here and Horvath talk)

— modules of highly correlated traits



strategy from hotspot to causality

e detect “real” hotspots
— hotspot = locus where many traits map
— use permutation test to assess

* find causal architecture for each hotspot
— causal model selection tests for pairs of traits
— do local traits (at hotspot) drive other traits?

e build causal network for small set of traits

— cis (local) trait ideally is top of signal cascade



eee hotspots ¢



hotspots of correlated traits

* multiple correlated traits map to same locus
— is this a real hotspot, or an artifact of correlation?
— use QTL permutation across traits

 references

— Breitling R, Li Y, Tesson BM, Fu J, Wu C, Wiltshire T, Gerrits A, Bystrykh
LV, de Haan G, Su Al, Jansen RC (2008) Genetical Genomics: Spotlight
on QTL Hotspots. PLoS Genetics 4: €e1000232. [d0i:10.1371/
journal.pgen.1000232]

— Chaibub Neto E, Keller MP, Broman AF, Attie AD, Jansen RC, Broman
KW, Yandell BS, Quantile-based permutation thresholds for QTL
hotspots. Genetics (in review).



genetic architecture of gene expression in 6 tissues
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No. eQTL per 5 cM

eQTL vs SNP architecture

eQTL to SNP corr =0.83
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correlated traits in a hotspot
why are traits correlated?

— Environmental
* hotspot is spurious

— Genetics and causal networks
* One causal driver at locus

— Traits organized in causal cascade

* Multiple causal drivers at locus
— Several closely linked driving genes
— Correlation due to close linkage
— Separate networks are not causally related



one causal driver

|gene

chromosome

gene product

signal cascade
of downstream traits
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two linked causal drivers
pathways independent given drivers

gene 1

<

> gene 2

chromosome

Jax SysGen: Yandell © 2013 19



hOtSpOt permutation test
(Breitling et al. Jansen 2008 PLoS Genetics)

* for original dataset and each permuted set:

— set single trait LOD threshold T
e use Churchill-Doerge (1994) permutations

— count number of traits (N) with LOD above T
e count for every locus (marker or pseudomarker)

* smooth counts if markers are dense

* find count with at most 5% of permuted sets

above (critical value) as count threshold

e conclude original counts above thresho

d are real



Single trait permutation schema

genotypes

—> LOD over genome =—> max LOD

phenotype

1. shuffle phenotypes to break QTL
2. repeat 1000 times and summarize

hotspots

UCLA 2013 © Yandell 21



Hotspot permutation schema

LOD at each locus

for each phenotype
over genome \

count LODs at locus
over threshold T

genotypes
phenotypes

max count N over genome

1. shuffle phenotypes by row to break QTL, keep correlation
2. repeat 1000 times and summarize

hotspots UCLA 2013 © Yandell 22



A Observed genotype and expression data

strain

permutation across traits
(Breitling et al. Jansen 2008 PLoS Genetics)
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number of traits

BxH ApoE-/- chr 2: hotspot
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number of traits
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guality vs. quantity in hotspots
(Chaibub Neto et al. 2012 Genetics)

* detect single trait with very large LOD
— control FWER across genome and all traits

* find small hotspots with very significant traits
— all traits have large LODs at same locus

— maybe one strongly disrupted sighal pathway?

* use sliding LOD threshold across hotspot sizes
— small LOD threshold (~4) for large hotspots
— large LOD threshold (~8) for small hotspots



eee causal pairs ¢



causal architecture

* focus on one hotspot

 identify all traits physically near hotspot
— local traits (called cis if it also maps to hotspot)

* what traits are up/downstream of local trait?
— focal trait causal to downstream target traits
— record count at Mb position of focal gene
— red = downstream, blue = upstream



causal model selection choices

in context of larger, unknown network

focal
trait

target
trait

target

trait

Jax SysGen: Yandell © 2013
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correlated
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causal architecture references

* BIC: Schadt et al. (2005) Nature Genet

e CIT: Millstein et al. (2009) BMC Genet

e Aten et al. Horvath (2008) BMC Sys Bio

e CMST: Chaibub Neto et al. (2012) Genetics

Extends Vuong's model selection tests to the comparison of 3,

possibly misspecified, models.
(My) (Ma2) (M3)

N
Q1= Y1—= Y= Qo Qiz=Yi= Y2= Q2 Q=Y Ya=Q:

Jax SysGen: Yandell © 2013 30



(a) BIC

BxH ApoE-/- study
Ghazalpour et al. (2008)
PLoS Genetics
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*ee causal networks e



QTL-driven directed graphs

* given genetic architecture (QTLs), what causal
network structure is supported by data?

* R/qdg available at www.github.org/byandell
* references

— Chaibub Neto, Ferrara, Attie, Yandell (2008) Inferring

causal phenotype networks from segregating populations.
Genetics 179: 1089-1100. [doi:genetics.107.085167]

— Ferrara et al. Attie (2008) Genetic networks of liver
metabolism revealed by integration of metabolic and
transcriptomic profiling. PLoS Genet 4: e1000034. [doi:
10.1371/journal.pgen.1000034]
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partial correlation (PC) skeleton
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edge direction: which is causal?
Mo @ M2 G
the above models are likelihood equivalent,

FO)f(v2 | y1) = fy1,2) = F(32)f (1 | y2)

( q)\ /(q_zl\ @\ /@
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@ @@ @
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test edge direction using LOD score
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» We constructed a
network from
metabolites and
transcripts
involved in liver
metabolism.

» We validated this
network with in
vitro experiments
(Ferrara et al
2008). Four out of
six predictions
were confirmed.
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causal graphical models in systems genetics

what if genetic architecture and causal network are
unknown?

— jointly infer both using iteration

Chaibub Neto, Keller, Attie, Yandell (2010) Causal Graphical Models in
Systems Genetics: a unified framework for joint inference of causal

network and genetic architecture for correlated phenotypes. Ann Appl
Statist 4: 320-339. [d0i:10.1214/09-A0AS288]

R/qtlnet available from www.github.org/byandell

Related references

— Schadt et al. Lusis (2005 Nat Genet); Li et al. Churchill (2006 Genetics);
Chen Emmert-Streib Storey(2007 Genome Bio); Liu de la Fuente
Hoeschele (2008 Genetics); Winrow et al. Turek (2009 PLoS ONE);
Hageman et al. Churchill (2011 Genetics)



basic idea of QTLnet

* jterate between finding QTL and network

* genetic architecture given causal network
— trait y depends on parents pa(y) in network
— QTL for y found conditional on pa(y)

e Parents pa(y) are interacting covariates for QTL scan
* causal network given genetic architecture
— build (adjust) causal network given QTL

— each direction change may alter neighbor edges



missing data method: MCMC

known phenotypes Y, genotypes Q
unknown graph G

want to study Pr(Y | G, Q)

break down in terms of individual edges
— Pr(Y|G,Q) =sum of Pr(Y; | pa(Y,), Q)
sample new values for individual edges
— given current value of all other edges

repeat many times and average results



MCMC steps for QTLnet

propose new causal network G

— with simple changes to current network:
— change edge direction

— add or drop edge

find any new genetic architectures Q
— update phenotypes when parents pa(y) change in new G

compute likelihood for new network and QTL
— Pr(Y | G, Q)

accept or reject new network and QTL

— usual Metropolis-Hastings idea



BxH ApoE-/- chr 2: causal architecture
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BxH ApoE-/- causal network
for transcription factor Pscdbp

causal trait\

unpublished work of Pscdbp
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scaling up to larger networks

* reduce complexity of graphs
— use prior knowledge to constrain valid edges
— restrict number of causal edges into each node

* make task parallel: run on many machines
— pre-compute conditional probabilities
— run multiple parallel Markov chains

* rethink approach
— LASSO, sparse PLS, other optimization methods



graph complexity with node parents

Jax SysGen: Yandell © 2013



* how many edges per node? (fan-in)
— few parents directly affect one node

how many node parents?

— many offspring affected by one node

BIC computations by maximum number of parents

#
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BIC computation

e each trait (node) has a linear model
—Y ~QTL + pa(Y) + other covariates
 BIC=LOD — penalty
— BIC balances data fit to model complexity

— penalty increases with number of parents

* |limit complexity by allowing only 3-4 parents



parallel phases for Iarger projects

Phase 1: identify parents
Phase 2: compute BICs m(’m

Phase 3: store BICs

Phase 4: run Markov chains @(

Phase 5: combine results



parallel implementation
* R/gtlnet available at www.github.org/byandell

e Condor cluster: chtc.cs.wisc.edu
— System Of Automated Runs (SOAR)

e ~2000 cores in pool shared by many scientists

e automated run of new jobs placed in project
SOAR Job Progress
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Jax SysGen: Yandell © 2013 53



BIC
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neighborhood edge reversal

select edge
drop edge
identify parents

orphan nodes
reverse edge
find new parents

Grzegorczyk M. and Husmeier D. (2008) Machine Learning 71 (2-3), 265-305.
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BIC
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8-node DAGs
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how to use functional information?

* functional grouping from prior studies
— may or may not indicate direction
— gene ontology (GO), KEGG
— knockout (KO) panels
— protein-protein interaction (PPI) database
— transcription factor (TF) database

* methods using only this information
* priors for QTL-driven causal networks

— more weight to local (cis) QTLs?



modeling biological knowledge

* infer graph G from biological knowledge B
—Pr(G | B, W) =exp(— W * |B—G]|) / constant
— B = prob of edge given TF, PPI, KO database
» derived using previous experiments, papers, etc.

— G = 0-1 matrix for graph with directed edges

W =inferred weight of biological knowledge
— W=0: no influence; W large: assumed correct
— P(W|B) = ¢ exp(- ¢ W) exponential

 Werhli and Husmeier (2007) J Bioinfo Comput Biol



combining eQTL and bio knowledge

* probability for graph G and bio-weights W
— given phenotypes Y, genotypes X, bio info B
Pr(G, W | Y, Q B) =Pr(Y|G,Q)Pr(G|B,W)Pr(W|B)
— Pr(Y|G,Q) is genetic architecture (QTLs)
* using parent nodes of each trait as covariates

— Pr(G|B,W) is relation of graph to biological info

e see previous slides

* put priors on QTL based on proximity, biological info

* related ref: Kim et al. Przytycka (2010) RECOMB
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integrated
ROC curve
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QTL software on CRAN

* R/qtlhot: hotspots & causal architecture
— map hotspots, permutation tests
— causal model selection tests

* R/qgtlnet: QTL-driven phenotype networks
— infer QTLs and directed graphs
— coming: prior biological information

* R/qtlbim: Bayesian Interval Mapping for QTL
— multiple QTL inference, graphical diagnostics

— see earlier Jax talks for details



many thanks!

* NIH/NIGMS with Karl Broman, Nengjun Yi
 NIH/NIDDK with Alan Attie, Mark Keller

e Other collaborators:
— Mark Keller (Attie Lab Scientist)
— Chris Plaisier (Institute for Systems Biology, Seattle)
— Elias Chaibub Neto (Sage Bionetworks, Seattle)
— Jee Young Moon (grad student)
— Xinwei Deng (VA Tech Asst Prof)
— and many more!



