Taking the Broad View of Model Selection for QTL in Experimental Crosses

Brian S. Yandell University of Wisconsin-Madison www.stat.wisc.edu/~yandell/statgen with Chunfang "Amy" Jin, UW-Madison, Patrick J. Gaffney, Lubrizol, and Jaya M. Satagopan, Sloan-Kettering Plant & Animal Genome XI, January 2003

Pareto diagram of QTL effects

how many (detectable) QTL?

- build *m* = number of QTL detected into model
 - directly allow uncertainty in genetic architecture
 - model selection over number of QTL, architecture
 - use Bayes factors and model averaging
 - to identify "better" models
- many, many QTL may affect most any trait
 - how many QTL are detectable with these data?
 - limits to useful detection (Bernardo 2000)
 - depends on sample size, heritability, environmental variation
 - consider probability that a QTL is in the model
 - avoid sharp in/out dichotomy
 - major QTL usually selected, minor QTL sampled infrequently

interval mapping basics

- observed measurements
 - Y = phenotypic trait
 - X = markers & linkage map
 - i = individual index 1, ..., n
- missing data
 - missing marker data
 - Q = QT genotypes
 - alleles QQ, Qq, or qq at locus
- unknown genetic architecture
 - $\lambda = QT$ locus (or loci)
 - θ = genetic action
 - m = number of QTL
- $pr(Q|X, \lambda, m)$ recombination model
 - grounded by linkage map, experimental cross
 - recombination yields multinomial for Q given X
- $pr(Y|Q, \theta, m)$ phenotype model
 - distribution shape (assumed normal here)
 - unknown parameters θ (could be non-parametric)

Classical vs. Bayesian IM

• MIM: classical LOD: mix over genotypes Q

 $- L(\lambda, \theta | Y, m) = pr(Y | X, \lambda, \theta, m)$

= product_i [sum_Q pr(Q|X_i, λ,m) pr(Y_i|Q, θ,m)]

- maximize $LOD(\lambda) = 2.3\log(LR(\lambda)) = \max_{\theta} \log_{10} L(\lambda, \theta | Y, m) / L(\mu | Y)$
- threshold for testing presence of QTL
- Kao Zeng Teasdale 1999; Zeng et al. 2000; Broman Speed 2002
- BIM: Bayesian posterior: *Q* as missing data
 - sample genotypes Q, loci λ , effects θ and number of QTL m
 - $\operatorname{pr}(\lambda, Q, \theta, m | Y, X) = [\operatorname{product}_{i} \operatorname{pr}(Q_{i} | X_{i}, \lambda, m) \operatorname{pr}(Y_{i} | Q_{i}, \theta, m)] \operatorname{pr}(\lambda, \theta | X, m) \operatorname{pr}(m)$
 - study marginal posteriors
 - $pr(\lambda, \theta | Y, X, m) = sum_Q pr(\lambda, Q, \theta | Y, X, m)$ with *m* fixed
 - $\operatorname{pr}(m|Y,X) = \operatorname{sum}_{(\lambda,\theta)} \operatorname{pr}(\lambda,\theta|Y,X,m)\operatorname{pr}(m)$
 - threshold for posterior "power" (positive false discovery rate)
 - Satagopan et al. 1996; Gaffney 2001; Yi Xu 2002

Model Selection for QTL

- what is the genetic architecture?
 - $M = \text{model} = (\lambda, \theta, m)$
 - $\lambda = QT$ locus (or loci)
 - θ = genetic action (additive, dominance, epistasis)
 - m = number of QTL
- how to assess models?
 - MIM: various flavors of AIC, BIC
 - BIM: Bayes factors
- how to search model space?
 - MIM: sequential forward selection/backward elimination
 - scan loci systematically across genome
 - BIM: sample forward/backward: transdimensional MCMC
 - sample loci at random across genome

Bayes factors to assess models

- Bayes factor: which model best supports the data?
 - ratio of posterior odds to prior odds
 - ratio of model likelihoods
- equivalent to LR statistic when
 - comparing two nested models
 - simple hypotheses (e.g. 1 vs 2 QTL)
- related to Bayes Information Criteria (BIC)
 - Schwartz introduced for model selection in general settings
 - penalty to balance model size (p = number of parameters)

$$BF = \frac{\Pr(m | Y, X) / \Pr(m+1 | Y, X)}{\Pr(m) / \Pr(m+1)} = \frac{\Pr(Y | m, X)}{\Pr(Y | m+1, X)} - 2\log(BF) = -2\log(LR) - 2\log(n)$$

QTL Bayes factors & RJ-MCMC

- easy to compute Bayes factors from samples
 - posterior pr(m|Y,X) is marginal histogram
 - posterior affected by prior pr(m)
- *BF* insensitive to shape of prior – geometric, Poisson, uniform

- *BF* sensitivity to prior variance on effects θ
 - prior variance should reflect data variability
 - resolved by using hyper-priors
 - automatic algorithm; no need for user tuning

multiple QTL phenotype model

- $Y = \mu + G_Q$ + environment
- partition genotypic effect into separate QTL effects

 $G_O =$ main QTL effects + epistatic interactions

$$G_Q = \theta_{1Q} + \ldots + \theta_{mQ} + \theta_{12Q} + \ldots$$

• priors on mean and effects

 $G_Q \sim N(0, h^2 s^2)$ model independent genotypic prior $\theta_{jQ} \sim N(0, \kappa_1 s^2/m.)$ effects and interactions $\theta_{j2Q} \sim N(0, \kappa_2 s^2/m.)$ down-weighted

- hyperparameters (to reduce sensitivity of Bayes factors to prior)
 - $s^2 =$ total sample variance
 - $m = m + m_2$ = number of QTL effects and interactions
 - $h^2 = \kappa_1 + \kappa_2$ = unknown heritability, $h^2/2 \sim \text{Beta}(a,b)$

Markov chain Monte Carlo idea

have posterior $pr(\theta|Y)$ want to draw samples

propose $\theta \sim pr(\theta|Y)$ (ideal: Gibbs sample)

propose new θ "nearby" accept if more probable toss coin if less probable based on relative heights (Metropolis-Hastings)

PAG XI © Brian S. Yandell

MCMC realization

added twist: occasionally propose from whole domain

PAG XI © Brian S. Yandell

a complicated simulation

- •simulated F2 intercross, 8 QTL
 - (Stephens, Fisch 1998)
 - n=200, heritability = 50%
 - detected 3 QTL
- •increase to detect all 8

- n=500, heritability to 97%

January 2003

PAG XI © Brian S. Yandell

loci pattern across genome

- notice which chromosomes have persistent loci
- best pattern found 42% of the time Chromosome

<u>m</u>	1	2	3	4	5	6	7	8	9	10	Count of 8000
8	2	0	1	0	0	2	0	2	1	0	3371
9	<u>3</u>	0	1	0	0	2	0	2	1	0	751
7	2	0	1	0	0	2	0	<u>1</u>	1	0	377
9	2	0	1	0	0	2	0	2	1	0	218
9	2	0	1	0	0	<u>3</u>	0	2	1	0	218
9	2	0	1	0	0	2	0	2	<u>2</u>	0	198

Bmapqtl: our RJ-MCMC software

- www.stat.wisc.edu/~yandell/qtl/software/Bmapqtl
 - module using QtlCart format
 - compiled in C for Windows/NT
 - extensions in progress
 - R post-processing graphics
 - library(bim) is cross-compatible with library(qtl)
- Bayes factor and reversible jump MCMC computation
- enhances MCMCQTL and revjump software
 - initially designed by JM Satagopan (1996)
 - major revision and extension by PJ Gaffney (2001)
 - whole genome
 - multivariate update of effects; long range position updates
 - substantial improvements in speed, efficiency
 - pre-burnin: initial prior number of QTL very large

B. napus 8-week vernalization whole genome study

- 108 plants from double haploid
 - similar genetics to backcross: follow 1 gamete
 - parents are Major (biennial) and Stellar (annual)
- 300 markers across genome
 - 19 chromosomes
 - average 6cM between markers
 - median 3.8cM, max 34cM
 - 83% markers genotyped
- phenotype is days to flowering
 - after 8 weeks of vernalization (cooling)
 - Stellar parent requires vernalization to flower

Markov chain Monte Carlo sequence

burnin (sets up chain) mcmc sequence

number of QTL environmental variance $h^2 =$ heritability (genetic/total variance) LOD = likelihood

MCMC sampled loci

subset of chromosomes N2, N3, N16

points jittered for view blue lines at markers note concentration on chromosome N2

on chromosome N2

PAG XI © Brian S. Yandell

Bayesian model assessment

row 1: # QTL row 2: pattern

col 1: posterior col 2: Bayes factor note error bars on bf

evidence suggests 4-5 QTL N2(2-3),N3,N16

PAG XI © Brian S. Yandell

model index

9

11

13

3

5

1

model posterior 0.1 0.2 0.3

0.0

Bayesian model diagnostics

Bayesian estimates of loci & effects

histogram of loci blue line is density red lines at estimates

estimate additive effects (red circles) grey points sampled from posterior blue line is cubic spline dashed line for 2 SD

January 2003

loci marginal posteriors

PAG XI © Brian S. Yandell

mapping gene expression

- 108 F2 mice
- mRNA to RT-PCR
- multivariate screen
 - clustering
 - PC analysis
- highlight SCD
- Lan et al. (2003)
- ch2 dominance

PAG XI © Brian S. Yandell

false detection rates and posteriors

- multiple comparisons: test QTL across genome
 - size = Pr(LOD(λ) > t | no QTL at λ)
 - genome-wise threshold
 - theoretical value or permutation value (Churchill Doerge 1995)
 - threshold guards against a single false detection
 - difficult to extend to multiple QTL
- positive false discovery rate (Storey 2001)
 - pFDR = Pr(no QTL at $\lambda \mid LOD(\lambda) > t$)
 - consider proportion of false detections for threshold
 - related to Bayesian posterior
 - extends naturally to multiple QTL

pFDR and QTL posterior

- single QTL case
 - pick a rejection region $R = \{\lambda | LOD(\lambda) > t\}$ for some t
 - pFDR = Pr(m=0)*size/[Pr(m=0)*size+Pr(m=1)*power]
 - power = $Pr(\lambda \text{ in } R \mid Y, X, m = 1)$
 - size = (length of R) / (length of genome)
- multiple QTL case
 - pFDR = Pr(m=0)*size/[Pr(m=0)*size+Pr(m>1)*power]
 - $\text{ power} = \Pr(\lambda \text{ in } R \mid Y, X, m > 1)$
- extends to other null hypotheses
 - pFDR = Pr(m=1)*size/[Pr(m=1)*size+Pr(m>2)*power]

B napus with *m*~Poisson(1)

January 2003

PAG XI © Brian S. Yandell

Summary

- Bayesian posteriors and Bayes factors

 Bayes factors for model assessment
 posteriors can reveal subtle hints of QTL
- graphical tools for model selection
 - Bayes factor ratios on log scale
 - model identified by m or genetic architecture
- connection to false discovery rate
 - whole genome evaluation
 - calibrate posterior region with pFDR